
Dynamic call blending in the presenceof time-varying arrivalsAndras BalintE-mail: abalint@few.vu.nlSupervisor: Sandjai BhulaiE-mail: sbhulai@few.vu.nlVrije Universiteit Amsterdam, Faculty of SciencesDe Boelelaan 1081a, 1081 HV Amsterdam, The NetherlandsAugust 15, 2005AbstractCall blending (dynamically mixing inbound and outbound tra�c) is ane�cient method in call centers for obtaining high productivity whilesatisfying a constraint on service levels. We investigate, using com-puter simulation, how call blending should be implemented e�cientlyin the presence of time-varying arrivals. For homogeneous arrivalprocesses, the optimal policy is of threshold type, where the thresh-old represents the maximum number of agents working on outgoingcalls. The optimal threshold can be obtained by using a formula forthe expected average waiting time. We apply this idea for the case oftime-varying arrivals and give easily implementable methods, resultingin a considerable improvement compared to the traditional policy, i.e.,to using a �xed threshold. We also show that even better results canbe obtained by using stochastic approximation.
1

1 IntroductionCall centers provide an important link between companies and their cus-tomers. They have become the preferred way of communication � wherecustomer contact has to be arranged, it is very likely that a call center isused. The economic role of telephone call centers is signi�cant and growing.But in spite of their importance, most call centers cannot achieve simultane-ously high service levels and e�ciency (i.e., high productivity). One can �ndinteresting facts about this topic in [3].The aim of this paper is to �nd ideas worth pursuing in reality � itis focused much more on the applicability of the techniques than on theirtheoretical aspects. Thus, the results here are generally not supported bystrict proofs � they are obtained by computer simulation. Therefore, althoughbeing more or less informal, they could be very useful: �rstly, because thebest methods can be implemented, and secondly, because the results canshow what is worthy of further investigation.First of all, we give a short description of the problem. Imagine thefollowing situation: there is a certain number of employees (called `agents'from now on) working in a call center. Their primary task is to handle theincoming calls. Since the call center wants to deliver some quality of servicein terms of delay, there is a constraint on the average waiting time of thesecalls. But there are also outgoing calls to handle � we assume that theyare available in an in�nite quantity, because there is always something towork on. The problem is to decide which job to assign to an idle agentsuch that service level constraints are satis�ed for the incoming calls and thethroughput is maximized for the outgoing calls simultaneously.In this paper we examine methods to cope with all these requirements.It is strongly based on the results achieved by Bhulai and Koole, who havealready given a solution for the case when the parameter of the Poissonprocess of the incoming calls is constant (see [1] for details). Unfortunately,the assumption of the process being stationary is unrealistic: from observingcall arrival data of call centers it can be seen that there are busy and more orless idle periods during one day. This can be easily understood as we thinkabout the daily schedule of the people: for example, a peak period should beexpected before the end of their worktime, because it is a common habit tocall the call center before going home.The most primitive solution of the problem is to separate the agents in twogroups by assigning always the same agents to incoming and to outgoing calls(group 1 and 2). This policy is still quite commonly used due to its simplicity,despite the obvious disadvantages: during the busy periods there could bea need for more people working on incoming calls to satisfy the constraint2

on the average waiting time, while during other periods the productivity ofgroup 1 can be too low: the fraction of time that agents spend working istoo small.A better method, that tries to balance waiting times and productivity, isthe so-called call blending : dynamically assigning agents either to incomingor to outgoing tra�c. Of course, it should be done properly, according tothe properties of the system, because otherwise it could produce even worseresults than the traditional policy. The optimal way of call blending in thecase of constant parameters can be found in [1]. It has been shown thatagents should be assigned to outbound calls only if the number of availableagents exceeds a certain threshold. But in reality, the parameter of the arrivalprocess changes over time.The second problem is that the function of the parameter that changesover time is unknown. It can certainly be estimated, before doing anythingelse, using data from the past (provided that we have access to a su�cientamount of information on the previous years), but an estimate of this kindcan be di�cult to compute and not representative with respect to the changesof the system over the years. Hence, it could be more convenient to �nd amethod that gives an estimate of the parameter on the spot.First, we will try to apply the usual principles, the common way of obtain-ing results regardless of the model: �nd a reliable estimate of the parameterand substitute it in a proper formula. Di�erent methods will be tried toget the estimate: a moving average, exponential smoothing, and linear pre-diction. Then we use the formula for the expected average waiting time(published in [1], Section 3) to set a threshold. We always choose a thresholdthat would be optimal if the process of arriving calls was homogeneous withthe actual (estimated) rate.However, surprisingly enough, this way of thinking is not optimal in thiscase. As it is revealed later, the approach using stochastic approximation,adjusting the threshold directly, is signi�cantly more e�cient here. Not onlybecause it turns out to work better than any of the methods using estimates,but it outperforms even the local optimum, where the estimate is replacedby the real parameter.In Section 4 we will observe generalizations of the cases considered inthe �rst three sections, for example, when the service parameters are notequal or when the rate function of the arrival process is very peaked. Wewill examine how well our algorithms perform when applied to these moregeneral processes.
3

2 Model and important resultsIn the �rst part of this section we describe the mathematical formulation ofthe system that models the call center we want to work with. It is almostthe same model that is described in [1]; the only di�erence is that the para-meter of the arrival process is time-varying here. But we still need the mostimportant results for the constant parameter case, therefore we give a shortsummary of those in the second part.2.1 The modelConsider a system in which there are s identical servers (playing the role ofthe agents). There are two types of tra�c: type 1 for incoming calls andtype 2 for outgoing calls. Their service times are independent, exponentiallydistributed random variables, with rates µ1 and µ2, respectively. Type 1 jobsarrive according to a non-homogeneous Poisson process; the rate at time t isdenoted by λt. There is an in�nite waiting queue for type 1 jobs that cannotbe served yet. There is an in�nite supply of type 2 jobs: it is always possibleto start serving a job of this type, provided that there is at least one idleserver. The long-term average waiting time of type 1 jobs should be below aconstant α. (Waiting excludes the service time; if the response time is to beconsidered, then the average service time, 1
µ1

, should be added to the averagewaiting time.)The objective is to maximize the throughput of type 2 jobs, i.e., to serveon average per unit of time as many type 2 jobs as possible, of course, at thesame time obeying the constraint on the average waiting time of type 1 jobs.Controlling the system can be done through the following actions: when-ever a server is idle, it can� start serving a type 1 job (of course, only if there is at least one waiting inthe queue for service);� start serving a type 2 job;� remain idle.Note that it can be optimal here to schedule jobs between completionsand arrival instants, not like in the case of a homogeneous arrival process.For instance, if λt tends to 0 at a certain moment u, and stays 0 after that,then it is evidently optimal to assign all the idle servers to type 2 jobs at u,regardless of the fact whether or not there has been a completion or arrivalat u.It is very important that in our model preemption of jobs in service is notallowed. The case when preemption is allowed would be trivial. First of all,note that in that case idling is obviously suboptimal, so we need to consider4

only scheduling a type 1 job or a type 2 job as action. Here it is optimal tostart the service of a type 1 call as soon as possible.The following coupling argument shows that this is indeed true.Theorem 1: Suppose that a server is working on type 2 jobs while there aretype 1 jobs waiting in the queue. Then, under preemption, the action thatinterrupts the service of the type 2 job and schedules a type 1 job instead isamong the set of optimal actions when service is not lost.Proof: Let π be an arbitrary policy that respects the waiting time constrainton the type 1 jobs. Take a realization ω under this policy. Suppose thatthere is a time instant, when a type 1 job (denoted by j1) arrives and is notscheduled immediately, although there is a server, say s1, working on type2 jobs. Let us mention that there must be a later time instant when j1 isscheduled, since π respects the waiting time constraint on type 1 jobs.Formally: suppose that there exist t1, t2, t3, and t4 such that� j1 arrives at t1;� s1 is working on type 2 jobs between t1 and t2 (let us denote this set oftype 2 jobs by J2), t1 < t2;� the service of j1 starts at t3 on a server called s2, and ends at t4 (by �nishingor interrupting its service), t1 < t3 < t4.Note that all the quadruples t1, t
′
2, t3, t4, where t1 < t′2 < t2 satisfy allthese requirements. Choosing a t′2 small enough, we can get t1 < t′2 < t3 < t4with the same properties. Therefore, we can assume that t1 < t2 < t3 < t4.We can also assume without loss of generality that s1 = s2 in this case.(The servers are identical, hence using s1 to handle j1 between t3 and t4 whileletting s2 serve the jobs that s1 would have worked on gives the same waitingtime and throughput.) Therefore, from now on, we will talk about one serveronly.Furthermore, t2 can be chosen so small that t2 − t1 < t4 − t3. Theimportance of this property will be revealed later.So, let us suppose, that there exist t1 < t2 < t3 < t4, with t2−t1 < t4−t3,such that� a type 1 job, j1, arrives at t1;� there is a server working on type 2 jobs (denoted by J2) between t1 and t2;� j1 stays in the waiting queue until t3, when it is scheduled to the servermentioned above and its service there ends at t4.
5

Now consider the policy π′ with the following actions:� it follows all actions of π until t1;� schedules j1 at t1 and lets the server work on it until t2;� between t2 and t3, the actions of π′ are the same as those of π;� at t3, lets the server continue the work on j1 until t3+((t4 − t3) − (t2 − t1)) =
t4 − (t2 − t1);� then assigns the server to the work on J2 until t4;� after t4, it follows the actions of π again.These time intervals are well-de�ned because of the inequality t2 − t1 <
t4 − t3.The total number of type 2 customers served after t4 is equal under bothpolicies, thus also the throughput. However, the average waiting time underpolicy π′ is the same as or lower than under π, because the type 1 job isserved earlier. Since π and ω were arbitrary, the result follows.Certainly, the preemptive case is at least as good as the non-preemptive.In practice, the jobs that can be preempted in call centers are e-mail mes-sages. Therefore, it is bene�cial for call centers to encourage customers tosend their requests by e-mail.Remark: We used the assumption in the proof that the work already doneon the type 2 job that is preempted is not lost, so it can be continued later.This is also true for e-mail messages.2.2 Results for constant λIn [1] there are many results that can be used here. We will mostly deal withthe case of equal service requirements, i.e., µ1 = µ2, hence we give here onlythe theorems about that case.The reason for doing this is that the algorithm of computing the thresholdwhen µ1 6= µ2 is quite complicated, even in the case of a constant λ, and itobviously gets much worse when the parameter of the arrival process is time-varying. So, even in Section 4, where we will try to handle the case of unequalservice times, we use a much more practical approach: simulation instead ofapplying theorems.Let us consider the case of equal service requirements �rst. De�ne thecommon service parameter µ := µ1 = µ2.First of all, there is an almost obvious, but still very important statement:

6

Theorem 2: Suppose that a server becomes idle while there are type 1 jobswaiting in the queue. Then the action that schedules a type 1 job is amongthe set of optimal actions.We do not give the proof here (all the proofs of the theorems mentionedin this part can be found in [1]), but the following informal argument mighthelp to give insight into this.Consider the event that a server becomes idle, while there are one or moretype 1 jobs waiting. Then the controller has to choose between scheduling atype 1 or a type 2 job (or idling, but this is evidently suboptimal). Givingpriority to a type 2 job and delaying type 1 jobs obviously leads to higherwaiting times. Delaying the processing of a type 2 job does not change theperformance for this type, as we are interested in the long-term throughput.This intuitive argument implies that when a server becomes idle and atype 1 job is waiting, it is optimal to assign this type 1 job to the server.Let us model the system as a (constrained) Markov decision process asfollows:The state space is χ := N0; a state x represents the number of jobs inservice plus the number of type 1 jobs in the queue.We denote the transition rate of going from x ∈ χ to y ∈ χ (before takingany action) by p(x, y). Then we have p(x, x − 1) = min{x, s}µ (for x > 0)and p(x, x + 1) = λ.The possible actions in state x ∈ χ, x < s are a = 0, . . . , s − x, corre-sponding to scheduling a number of a jobs of type 2.In the states x ∈ χ, x ≥ s, a type 1 job is automatically scheduled,because, according to Theorem 2, it is an optimal action.Next, we uniformize the system (see [7], Section 11.5). For simplicity weassume that sµ + λ ≤ 1. (We can always get this by scaling.) Uniformizingis equivalent to adding dummy transitions (from a state to itself) such thatthe rate out of each state is equal to 1; then we can consider the rates to betransition probabilities.The objectives are modelled as follows. If action a is chosen, then a rewardof a is received (1 for each type 2 job that enters the service). This models thethroughput. Due to Poisson arrivals and uniformization, the average waitingtime is obtained by taking the cost rates equal to the expected waiting timeof an arriving customer. Thus, to obtain the average waiting costs, we cantake the cost rates equal to [x − s + 1]+/sµ, i.e., 0 if x < s, and x−s+1
sµ

if
x ≥ s. Note that the cost rates in this case are equivalent to lump costs ateach epoch.We will next see that the optimal policy is of threshold type:7

Theorem 3: There is a level c, called the threshold, such that if x < c,then the optimal action is c − x, otherwise an optimal action is 0 (with theintention of capacity reservation for a posterior need of serving type 1 jobs).A policy obeying these rules is called a threshold policy with thresholdlevel c. Note that under such a policy there are always at least c agentsworking.Examining the proof in [1], it can be observed that there can be a casewhen it is both optimal to schedule a type 2 job and not to schedule one(consider scheduling a group of type 2 jobs as scheduling them one by one;it is obvious that both forms are equivalent as is stated in the proof). In thiscase the two threshold policies, with threshold level c and c + 1, are bothoptimal, and so are all the policies that randomize between these two.Let the expected average waiting time be denoted by EW q. In general,to �nd a threshold policy that satis�es EW q = α, we need to randomize.Randomization between c and c+1 (where c+1 ≤ s) can be done as follows:If a transition from c+1 to c occurs, then we stay in state c with probability
δ or we go back to state c + 1 with probability 1 − δ, i.e., with probability
1 − δ a type 2 job is immediately scheduled.Finally, we give a formula for the waiting time and throughput under athreshold policy that randomizes between c and c + 1 using randomizationparameter δ.Unfortunately, the original expression in [1] is inaccurate. Therefore, wegive a proof for these new formulae here. The only di�erence is that nowwe will express all the stationary probabilities qx of the states x ∈ χ in qc+1instead of qc, because state c + 1 always exists independently of the value of
δ, unlike state c.We need the following important fact from queuing theory for the proof(see, e.g., Cooper [8], Expression 4.17):Theorem 4: De�ne C(s, ρ) as the stationary delay probability for s serversand a load of ρ = λ

µ
Erlang, i.e., the probability that an incoming requesthas to wait before the start of its service. Let the stationary probability of astate x be denoted by qx. Then EW q is given byEW q =

C(s, ρ)

µ(s − ρ)
, (2.1)with

C(s, ρ) =
∑

x≥s

qx. (2.2)
8

So, the theorem about the threshold policies is given as follows:Theorem 5: Let ρ := λ
µ
. Then the expected average waiting time as afunction of the threshold c (where c ∈ N0, c < s) and the randomizationparameter 0 ≤ δ ≤ 1 is given byEW q

(c,δ) =
ρs−(c+1)(c + 1)!

µ(s − 1)!(s − ρ)2
qc+1, (2.3)with

qc+1 =

[

δ(c + 1)

ρ
+
(

s−1
∑

x=c+1

ρx−(c+1)(c + 1)!

x!

)

+
ρs−(c+1)(c + 1)!

(s − 1)!(s − ρ)

]−1

. (2.4)The expected throughput of type 2 jobs isEξq

(c,δ) = µqc+1

[

δc(c + 1)

ρ
+
(

s−1
∑

x=c+1

ρx−(c+1)(c + 1)!

(x − 1)!

)

+
sρs−(c+1)(c + 1)!

(s − 1)!(s − ρ)

]

−λ.(2.5)When c = s, there is no randomization, which is equivalent to choosing
δ = 1 as a randomization parameter. The expected average waiting time andthroughput of type 2 jobs can be computed as follows:EW q

(s,1) =
1

µ (s − ρ)
, (2.6)and Eξq

(s,1) = µ (s − ρ) . (2.7)Proof: First, consider the case where c < s.Randomization results in a change of the transition rates in the Markovprocess model from c+1 to c of p(c+1, c) = δ(c+1)µ and from c+1 to itselfof p(c+1, c+1) = (1− δ)(c+1)µ. The lowest possible state is c, as the statemoves immediately up to c as soon as c − 1 is reached. The other positivetransition rates are p(x, x + 1) = λ for all x ≥ c and p(x, x − 1) = min{x, s}for all x > c + 1 (see Figure 1).The standard balance equations are given as follows.
λqc = δ(c + 1)µqc+1 (2.8)

(

δ(c + 1)µ + λ
)

qc+1 = λqc + (c + 2)µqc+2 (2.9)
(xµ + λ)qx = λqx−1 + (x + 1)µqx+1, (c + 1 < x < s)(2.10)
(sµ + λ)qx = λqx−1 + sµqx+1, (s ≤ x) (2.11)9

Figure 1: The Markov process for threshold level c < sWe can express everything in qc+1:
qc =

δ(c+1)
ρ

qc+1,
qx =

ρx−(c+1)(c+1)!
x!

qc+1, (c + 1 ≤ x < s),

qx =
ρx−(c+1)(c+1)!

sx−ss!
qc+1, (x ≥ s).These stationary probabilities must sum up to one:

1 = qc +

s−1
∑

x=c+1

qx +
∑

x≥s

qx.We obtain the expression for qc+1 stated in the theorem from this, because
C(c,δ)(s, ρ) :=

∑

x≥s

qx =
∞
∑

x=s

ρx−(c+1)(c + 1)!

sx−ss!
qc+1 =

ρs−(c+1)(c + 1)!

(s − 1)!(s − ρ)
qc+1.The notation de�ned above can be justi�ed, for this sum is exactly the prob-ability of delay under the given threshold policy.The waiting time here is completely equivalent to the one without type2 jobs. Therefore, we can compute the expected average waiting time withthe equivalent form of (2.1):EW q

(c,δ) =
C(c,δ)(s, ρ)

µ(s − ρ)
=

ρs−(c+1)(c + 1)!

µ(s − 1)!(s − ρ)2
qc+1.This is the formula for the type 1 waiting times. Next, we derive the expres-sion for the type 2 throughput, which we will denote by ξq.10

The throughput of type 2 is the total throughput minus the type 1throughput. This equation stays true also in expectation. Hence,Eξq

(c,δ) =

[

µcqc +

s−1
∑

x=c+1

µxqx +
∑

x≥s

µsqx

]

− λ.The desired result follows by substitution of the expressions of the stationaryprobabilities in qc+1.The case c = s is very simple. There are no states below s, so we cangive the delay probability without further calculations:
C(s,1)(s, ρ) =

∑

x≥s

qx = 1.Thus, EW q

(s,1) =
C(s,1)(s, ρ)

µ (s − ρ)
=

1

µ (s − ρ)
.Computing the expected throughput is even easier. There are s serversworking at every time instant, so the expected total throughput is sµ. Bysubtracting the expected type 1 throughput λ we obtainEξq

(s,1) = sµ − λ = µ(s − ρ),exactly what we wanted to prove.Remark: One has to be very careful, because the case c = s is reallydi�erent: (2.3) with c = s, δ = 1 does not give the same result as (2.6), andnor does (2.5) as (2.7). The reason is that Equation (2.8) is not true here:there should be an s instead of s + 1 on the right hand side.

11

3 Techniques and experiments(numerical results)We have used a computer simulation of the mathematical model to be ableto compare the e�ciency of the techniques described later. The algorithmthat we used to generate a non-homogeneous Poisson process (by thinning)can be found in [2], Section 4.Note that a policy that randomizes between c and c + 1 should obviouslyperform between the policies using �xed thresholds c and c + 1. Certainly, ifthe value of δ is close to 1, the performance will be more similar to the resultsof threshold policy c, and if δ is very small, then we get approximately thesame as with threshold policy c + 1. Therefore, it is convenient to introducea notation that allows us to use non-integer thresholds: the integer part of ageneralized threshold would denote the original threshold, and the remainderwould be 1− δ. For instance, a (generalized) threshold policy with thresholdlevel c = 3.3 denotes a policy that randomizes between the thresholds 3 and
4, using δ = 0.7 as randomization parameter. This notation will be usedquite frequently from now on.The function of the rate of the arrival process over time will be a linearapproximation of the data of the Charlotte Call Center, according to thedata in [3] (see Figure 2). By using real data we can expect the shape of thefunction to be more or less realistic and representative.

Figure 2: Parameter of the arrival process
12

We always take the same number of servers: s = 5, mostly the sameservice parameter: µ = µ1 = µ2 = 0.34, and (when needed) the same con-straint: α = 0.2, in order to be able to compare the results obtained by usingthe di�erent techniques. But according to the results of many numerical ex-periments, these concrete values of the parameters do not matter that much.The conclusions remain the same even when we use di�erent values.3.1 The traditional solution (�xed thresholds)The traditional way of assigning work to the agents is simply by dividingthem in two groups: the �rst group (of size n1) handles the incoming calls,and the second group (of size s − n1) is in charge of handling the outgoingcalls.A clearly better method can be given very easily by taking the thresholdpolicy with c := s − n1 as threshold. (The expression `clearly better' issupported by Theorem 2.) Thus, we have examined what the simulationgives for all the possible values of the threshold: from 0 to s (see Table 1).Threshold Average waiting time Throughput(seconds) (served type 2 jobs per hour)0 0.04932 01 0.05856 9072 0.08312 19503 0.11429 30714 0.34443 42055 0.93713 5251Table 1: Fixed thresholds (s = 5, µ = 0.34)Note that if we had a constraint of, for instance, α = 0.2, we could useonly c ≤ 3. This is evidently not optimal.If we allow using (�xed) randomization parameters, then we can getslightly better results. The experienced average waiting time under the �xedthreshold policy with a generalized threshold level of c = 3.44 happens to beapproximately 0.2 (actually it was 0.19948). The throughput of type 2 jobsfor this case was 3171 jobs/hour.This was the best �xed policy obeying the constraint α = 0.2, hence theprimary requirement of more complex methods is to at least produce thisthroughput with an average waiting time of approximately this level.13

3.2 Local optimumIn this section, we will apply Formula (2.3) (valid only for constant λ), usingthe actual real parameter λt at time t. Of course, it is not known in reallife, but we need to observe this case to be able to compare the results of theimplementable techniques to it.So, we would like to get the locally optimal threshold and randomizationparameter. We call it local optimum, because it would be optimal if theparameter of the arrival process was constant. An algorithm for �nding theoptimal threshold in the constant case (applying Equation (2.3) and Equation(2.6)) is as follows:1. c := 0;2. while (c + 1 ≤ s) AND (EW q

(c+1,1) ≤ α) do3. begin4. c := c + 1;5. end;This algorithm gives a c such that EW q

(c,1) ≤ α, and EW q

(c+1,1) > α (or
c = 0 or c = s in extremal cases; one of the equalities might not be true then,but there is nothing to do about it as 0 and s are natural bounds for c).Note that this method is based on an implicit assumption, namely on themonotonicity of EW q

(c,1) in c. This is evidently true, but we give a formalproof, because this algorithm plays a very important role in the methods wewant to use in this paper.Theorem 5: EW q

(c,1) is increasing in c.Proof: Let c1 and c2 be di�erent thresholds: c1, c2 ∈ N0, c1 < c2 ≤ s.Let us denote the stationary distribution of the Markov reward processescorresponding to the threshold policies with threshold level c1 and c2 by ν1and ν2, respectively. The expected average waiting time can be computedwith Formula (2.1) again: EW q

(ci,1)
=

C(ci,1)(s, ρ)

µ (s − ρ)
,with

C(ci,1)(s, ρ) =
∑

x≥s

νi(x), (i = 1, 2).14

We will show that ν1(x) < ν2(x) for all x ≥ c2 (thus, for all x ≥ s too).In the states x ∈ χ, x ≥ c2, the behaviour of the system is the same in bothcases. Hence, the fraction of the stationary probabilities must be the same:
ν1(x)

ν1(y)
=

ν2(x)

ν2(y)
, (x, y ∈ χ; x, y ≥ c2).Let x ∈ χ, x ≥ c2 be �xed. We can express all the stationary probabilitieswith ν1(x) and ν2(x):

ν2(z) = ν1(z)
ν2(x)

ν1(x)
, (∀z ∈ χ, z ≥ c2).Summing this over the states z ≥ c2 we obtain

∑

z≥c2

ν2(z) =

(

∑

z≥c2

ν1(z)

)

ν2(x)

ν1(x)
.But in the second system, the lowest possible state is c2, so

∑

z≥c2

ν2(z) = 1,while in the �rst system, the state can be below c2 with a probability p > 0,hence
∑

z≥c2

ν1(z) = 1 − p < 1.The result follows.After using this algorithm, we know that we need to randomize between
c and c + 1 to achieve EW q

(c,δ) = α. Such a δ must exist, with a possibleexception in the extremal cases. If EW q

(0,1) ≥ α, then we cannot do anythingbut to choose δ = 1, and if c = s, then we cannot randomize as choosing s+1as a threshold is not possible (no randomization in this case is equivalent tochoosing δ = 1). Otherwise, the existence of a good δ is ensured by thetheorem of Bolzano, due to the continuity of EW q

(c,δ) in δ between this c and
c + 1 (which can be seen clearly by looking at Expression (2.3)).But the proper randomization parameter still needs to be found. This isnot di�cult at all, taking in account that EW q

(c,δ) is decreasing in δ under a�xed c. This property follows directly from the de�nition of the randomiza-tion parameter, keeping in mind that EW q

(c,1) < EW q

(c,0), because the secondexpression equals to EW q

(c+1,1), and EW q

(c,1) is increasing in c.Therefore the problem can be solved as follows (for c ≤ s − 1):15

1. stepsize := 0.01; (the accuracy of the method)2. δ := 1;3. while (δ − stepsize > 0) AND (EW q

(c,δ−stepsize) ≤ α) do4. begin5. δ := δ − stepsize;6. end;By adjusting the step size (choosing it small enough) we can get arbitrarilyclose to the optimal δ.So now we know how to compute the optimal threshold and the random-ization parameter, provided that the values of s, µ, and λ are known (theyare really needed, because we use Expression (2.3)).The only di�erence in the time-varying parameter case is that we need touse λt at time t instead of using always the same λ when computing EW q

(c,δ)with Expression (2.3). This way we can obtain the locally optimal threshold:
ct, and the corresponding locally optimal randomization parameter: δt.However, it needs to be stressed, that these thresholds do not have togive the best results possible � being everywhere locally optimal in this sensedoes not necessarily mean being globally optimal. But at least we can hopethat it will be good enough � at least better than the policies with a �xedthreshold. Let us see whether this is true (see Table 2).Number of Average waiting time Throughputexperiment (seconds) (served type 2 jobs per hour)1 0.19519 41122 0.21129 41003 0.20011 4121Table 2: Results using locally optimal thresholds (s = 5, µ = 0.34, α = 0.2)Remember: the �xed thresholds that could have satis�ed the constraintwere c = 0, 1, 2, 3. But the throughput they can produce is much less thanthe throughput of our new method. Even the best constant policy obeyingthe constraint (c = 3, δ = 0.56) is by about 30% behind with respect to theproductivity. From another point of view: we would need a �xed threshold ofat least 4 to get the throughput obtained here. But the waiting time (whichrepresents the quality of the service!) is more than one and half times asmuch as the one experienced here. 16

Note that the average waiting time has stayed quite close to the con-straint. According to many experiments, the di�erence is almost alwayswithin 10% (usually even less than 5%). Hence, if we really want to staybelow α, then this can be done with high probability by taking α ′ := 0.9α asconstraint. Nevertheless, we can certainly claim that this method is reliable:we could never have satis�ed the constraint for sure due to the randomnessof the process.So it can be seen that we can outperform the traditional method by far ifwe know the real parameter. Thus, it might be really worth trying to obtaingood estimates for λt, hoping that a small di�erence would not cause toomuch trouble and we could still get better performance than in the case of�xed thresholds.3.3 Methods for estimating λtThe superiority of the results using the locally optimal thresholds and ran-domization parameters over the method of �xed thresholds seems to be im-pressive. But actually, although being promising, in reality it could be totallyuseless, because naturally we do not know the function of the arrival ratesover time. We can never even measure this parameter directly, we can onlyestimate it; the estimate of λt has to be based on the number of arrivalsbefore t, because that is observable. There are two di�erent attitudes toconsider.The �rst possibility is to estimate λt in advance, according to the dataof the previous days/months/years. This can be pretty problematic. Firstof all, there might not be enough data at new companies to get a reliableestimate � unless using data of other �rms, which is always a dubious thingto do concerning the di�erences likely to appear between the two systems.Secondly, even if our company is old enough to produce a su�cient amountof data, circumstances might change over time, and changes are sometimesnot so easy to be traced. Finally, even if we assume everything to be ap-proximately constant, estimating the parameter is still quite hard, due tothe complicated cyclic behaviour that can be observed in a call center (forexample, see [3], Section 3.2).Therefore, we prefer the other possibility: calculating the estimate of λton the spot, based only on the number of incoming calls in the interval [0, t),where 0 is the very �rst moment of the day. Note that an estimate of λtthat uses only the number of arrivals is not model-dependent. Thus, themethods described in this section can be used to estimate the rates of ageneral (non-homogeneous) Poisson process.Our goal is to �nd a proper, implementable method with which we could17

obtain results close to the local optimum or even outperform it � but mostimportantly it should work better than the �xed threshold policies. Hopingthat something better than the local optimum could be found is not un-realistic: a di�erence between the estimate and the real parameter is notnecessarily bad, it might even help to get closer to the global optimum. Thelocally optimal policies do not anticipate on the future, whereas the estimatesmight.So, the �rst task is to estimate λt as precise as possible. The next stepcould be a method that can even predict λt producing a curve of the functionnot reacting to the changes of the real one, but predicting the changes. Wecall a curve of this type pro-active, because it changes before the real onewould have done the same. Using estimates corresponding to a pro-activecurve could be a possible way of outperforming the local optimum, becausecapacity is provisioned before the actual surge in the call rate.Let us see the techniques and their performances.3.3.1 Average-type estimateA �rst thought could be to take the average number of arrivals until t as anestimate at time t. This would be a good estimate in the case of a stationaryprocess. A short argument corroborating this is the following.Suppose that we have a homogeneous Poisson process with rate λ. Letthe number of events between s and t be denoted by N(s, t) (we will usethe same notation in the non-homogeneous case as well). We know that thedistribution of N(s, t) is Poisson with parameter λ(t − s). Therefore, itsexpected value equals the parameter: EN(s, t) = λ(t − s). So, an unbiasedestimate for the parameter is given by λ̂ := N(s,t)
t−s

.Thus, if the function of the arrival parameter over time was �not too farfrom being constant� (e.g., very slowly varying), then we could expect quitegood results by applying the following formula:
λ̂t :=

N(0, t)

t
. (3.1)Let us try it out (see Table 3).This performance is quite disappointing: none of the good properties ofthe locally optimal case seem to appear here. Although the throughput isgood enough, the waiting times are much too high: they exceed the constraintby far. Therefore, this method is useless. But this is not surprising at all, ifwe take a look at Figure 3 comparing the real function and the estimate.18

Number of Average waiting time Throughputexperiment (seconds) (served type 2 jobs per hour)1 0.58055 43822 0.55525 43503 0.56568 4402Table 3: Results using average-type estimates (s = 5, µ = 0.34, α = 0.2)

Figure 3: Average-type estimate of λtThe estimates are very far from the real function � this type of estimatemight have been good in the constant parameter case, but it miserably failshere. This is certainly a su�cient reason explaining the poor performance.It can be concluded that taking this average is too primitive to work well;we need more sophisticated methods.3.3.2 Moving averageWe saw in Section 3.3.1 that the call rate function is very far from beingconstant. But in small time intervals of length l, the di�erence might not beso big. Hence, we use only the arrivals in the last l seconds.The method can be formulated as follows:
λ̂t :=

N(t − l, t)

l
. (3.2)19

This formula seems to be much more promising than Formula (3.1), be-cause it reacts faster to the changes.Unfortunately, the choice of the parameter is crucial here: l should notbe too small, because a sample of a su�cient size is needed to estimate theparameter of a process. On the other hand, l should not be too large either,because then the average-type estimate would take e�ect, which was notsatisfying.Nonetheless, this method gave much better estimates of λt than For-mula (3.1), almost regardless of the value of l (see Figure 4).

Figure 4: Moving average with di�erent l interval lengthsIt seems that l = 1000 gives the best estimate. For smaller intervallengths, the �uctuation around the real function is too strong; for l = 4000,the lag of the estimate with regard to λt is too large. In the case of l = 1000,there is almost no lag, and the �uctuation is not that big either, although asmoother function would be preferable.The results of the computer simulation for di�erent interval lengths canbe found in Table 4.The performance more or less validates our preconceptions about thecurves. The throughput is not that high in the case of l = 100, and there areproblems with the average waiting time if l = 4000.According to the data of many experiments with di�erent parameters sand µ, the average waiting time stays always around the constraint. Evenif it exceeds α, the di�erence is very small. Therefore, this method can beconsidered reliable enough. Its productivity is high � almost as high as in20

Number of Length of Average waiting time Throughputexperiment the interval (l) (seconds) (served type 2 jobs per hour)1 100 0.19841 40562 100 0.20821 40523 500 0.19968 41024 500 0.19800 41065 1000 0.19832 41136 1000 0.20081 40747 4000 0.20543 41288 4000 0.21533 4095Table 4: Results with the moving average (s = 5, µ = 0.34, α = 0.2)the case of using the real parameter. Hence, we can say, that this methodhas unambiguously outperformed the policies using �xed thresholds. Theimplementation is very easy: only the arrival times of the incoming calls inthe last 1000 seconds (i.e., approximately 17 minutes) need to be registered.Regarding to these good properties, we can say that we have achieved our�rst goal: using this easily implementable method instead of �xed thresholdpolicies would result in an improvement of around 30% in the productivity.But this method only approaches the local optimum, it does not give betterresults than that.Hence, we try a third technique, that hopefully uni�es the good propertiesof these estimates with di�erent interval lengths.3.3.3 Exponential smoothingThe key idea of exponential smoothing is the (exponentially) decreasing im-portance of the data of the past compared to the recent observations. Actu-ally it is a weighted average where the weights of the new events are big, butold observations count as well, albeit with much smaller weights.We used 1000 seconds as a time unit and 2 as smoothing parameter. Thismeans that the importance of the number of arrivals in [t− 1000, t) is twiceas much as those in [t − 2000, t − 1000), four times as much as the samenumber in [t− 3000, t− 2000), etc. For simplicity, we take into account onlythe events that occurred in the last 7000 seconds (which is about a 2 hours'period). With this choice, we expect that the �uctuations of the estimatedisappear and that the lag gets smaller.The mathematical formulation of this idea is given by21

λ̂t :=
64N1 + 32N2 + 16N3 + 8N4 + 4N5 + 2N6 + N7

127000
, (3.3)with the notation Nk := N

(

t − 1000k, t − 1000(k − 1)
).Note the number in the denominator: 127=64+32+16+8+4+2+1.Unfortunately, the results are not as good as we expected (see Table 5).Number of Average waiting time Throughputexperiment (seconds) (served type 2 jobs per hour)1 0.20598 40892 0.20369 40963 0.20346 4121Table 5: Results with exponential smoothing (s = 5, µ = 0.34, α = 0.2)The throughput of type 2 jobs is very high, but not signi�cantly morethan it was in the case of using a moving average. The average waiting time isslightly above the constraint. Therefore, this method is at most of the samequality as taking the moving average in this particular application. Maybethe relationship between the estimate and the real function can explain this.

Figure 5: Estimate of λt using exponential smoothingWe can see in Figure 5, that this curve is smooth enough � the lag is22

smaller, but it still exists. Therefore, our next target is to �nd a methodthat can produce a pro-active curve.3.3.4 Linear extrapolationLinearly projecting the past to get a forecast for the future is probably one ofthe simplest way of predicting. But, as can be read in [5]: `. . . when appliedto web-server page-request tra�c, even elementary prediction techniques canhave a surprising forecasting power'. The excellent results described in thatpaper inspired us to try out the method here.The general problem is the following:Given points in a plain with coordinates (xi, yi)
n
i=1, what are the parame-ters of the line y = ax + c, that �ts these points best?A solution can be given as follows:The problem can be reformulated as searching for a and c that satisfy thematrix-equation















1 x1

1 x2... ...
1 xn















(

c
a

)

=















y1

y2...
yn















(3.4)the best, in the sense that the norm of the error is minimal.The next well-known theorem gives the solution:Theorem 4: For a given matrix A ∈ C
n×m and a vector b ∈ C

n, the vector
x− := A−b ∈ C

m satis�es ||Ax−−b|| ≤ ||Ax−b|| ∀x ∈ C
m, where A− denotesthe Moore-Penrose generalized inverse of A.The columns of our matrix A are independent (except in the case of

x1 = x2 = · · · = xn, where the line we are looking for can be given as y = x1),thus the generalized inverse can be given easily by A− = (AT A)−1AT .Using all these results we get
(

c
a

)

=







n
n
∑

i=1

xi

n
∑

i=1

xi

n
∑

i=1

x2
i







−1





n
∑

i=1

yi

n
∑

i=1

xiyi






. (3.5)We just have to apply this method for forecasting. As we cannot observethe arrival parameter directly, we have to use estimates of the arrival pa-rameter from the past. Of course, it needs to be decided which estimationmethod we want to use. Taking the moving average is very simple and still23

very e�ective. In the case of l = 1000, the estimate was always very close tothe real parameter. So, we decided to use it here too. The other questionto decide on is the number of points to which the line should be �tted. Anextrapolation using only two points is evidently not reliable enough. So wewill try n = 3 and n = 4.Nevertheless, the following formulation of the problem includes all thecases. Let l be the length of the interval we want to use.The estimates of the old parameters are the following:
λ̂j :=

N(t − jl, t − (j − 1)l)

l
, (j = 1, . . . , n).Thus, the points to �t a line on are given by

x1 := t − l
2
, y1 := λ̂1,

x2 := t − 3l
2
, y2 := λ̂2,... ...

xn := t − (2n−1)l
2

, yn := λ̂n.So, the estimate of the parameter of the arrival process at time u, using cand a from Expression (3.5) with these points is given by
λ̂u := au + c, (u ≥ t). (3.6)It needs to be mentioned that this number can happen to be negative. Inthis case, one should take λ̂u := 0.Certainly, the old parameters need to be updated regularly. We did itwhenever an event (a new arrival or the end of a service) had occurred.Finding the most appropriate length of the interval is a very di�cult taskin itself. Fortunately, the variance of the results is small in this case too, so atleast we can have an idea about it by comparing the numerical experiments.Eventually, l = 1000 turned out to give quite good results (see Table 6).Number of Value Average waiting time Throughputexperiment of n (seconds) (served type 2 jobs per hour)1 3 0.20087 41032 3 0.19597 40963 4 0.19761 40784 4 0.18963 4101Table 6: Results using linear extrapolation (s = 5, µ = 0.34, α = 0.2)24

So, we have found yet another method of approximately the same qualityas the moving average and exponential smoothing. All three methods havesimilar advantages and disadvantages: while having an average waiting timevery close to the constraint, their productivity with regard to type 2 jobs ishigh, but not better than the local optimum.Let us see the relationship between the real function and the estimates:

Figure 6: Linear extrapolation-type estimate of λt using n = 3 points

Figure 7: Linear extrapolation-type estimate of λt using n = 4 pointsThese curves are still not pro-active enough, neither in the case of n = 3,nor when n = 4. Therefore, in the next section we try something moredrastic. 25

3.4 Known functionHere we assume that the whole function of the arrival parameter is known.This is obviously an unrealistic assumption. This allows us to check whetherwe could really outperform the local optimum in our model by using a pro-active curve.3.4.1 Future averageTaking simply λt+u as the �estimate� of λt would certainly predict the changesof the curve (precisely u seconds in advance), but should a sudden jumpoccur, it could cause very large di�erences between the used and the realparameter. We prefer a method that takes also the actual parameter intoaccount.Therefore, our �rst idea was to take the average:
λ̂t :=

λt + λt+u

2
, (u > 0). (3.7)Results for di�erent values of u are in Table 7.Number of Value of u Average waiting time Throughputexperiment (seconds) (seconds) (served type 2 jobs per hour)1 600 0.20153 41212 600 0.19860 41093 1200 0.19884 41404 1200 0.19701 41325 1800 0.20510 41176 1800 0.20912 4127Table 7: Future average (s = 5, µ = 0.34, α = 0.2)We can see that this method works well, indeed. It produces high through-put with average waiting times close to the constraint.Undoubtedly u = 1200 gives the best results: the throughput of type2 jobs is the highest here, while the experienced average waiting times arebelow the ones when using other values of u. However, these results are notsigni�cantly better than the ones using the real λt, in spite of the curvesbeing pro-active (see Figure 8).
26

Figure 8: Pro-active estimate 1 (Future average, u = 1800)3.4.2 Forward exponential smoothingThe results achieved by using exponential smoothing had been close tothe local optimum, so it seemed interesting to try it the other way: usingdata from the future. Furthermore, it might have been a big advantage inthis case that we were allowed to use the real parameters here, there was noneed for estimating them. The estimated function can be seen in Figure 9.

Figure 9: Pro-active estimate 2 (Forward exponential smoothing)This is virtually the same as Figure 8, only this curve is slightly smoother.27

The results do not di�er too much either, though both the throughput andthe average waiting times are lower (see Table 8).Number of Average waiting time Throughputexperiment (seconds) (served type 2 jobs per hour)1 0.19787 40352 0.19169 40413 0.19509 4031Table 8: Results of forward exponential smoothing (s = 5, µ = 0.34, α = 0.2)We can see that although having all the information possible, the resultsare not signi�cantly better than the local optimum. Hence, it seems that weneed to �nd a di�erent way to gain better results.Until now, we made decisions independently of the e�ects of our actionsbeforehand. The next step will be a method that has a learning e�ect.3.5 Stochastic approximationWhen we evaluate a method, the primary requirement is that it has to satisfythe constraint on the type 1 waiting times (with high probability). Hence, itseems to be reasonable to take actions depending on the relationship betweenthe constraint and the actual experienced average waiting time. If the waitingtime exceeds the constraint, then using a smaller threshold may be preferable,while if the waiting time is far below the constraint, then we might gain ahigher throughput on type 2 jobs at the expense of having a slightly higheraverage waiting time. The Robbins-Monro algorithm, published in [10] � aseminal work in the area of stochastic approximation � is based on exactlythis idea. We will use something similar to that, so we give the short reviewof the algorithm and the corresponding main theorem, following the contextof [9].3.5.1 Robbins-Monro algorithmRobbins and Monro consider a problem where an experiment is performed atdi�erent levels (inputs), and the response to the experiment can be measured.Formally, to each input value x , the measurement made is drawn from arandom variable Y with distribution p(Y |x) conditioned on x. Assume thatmeasurements are independent, and are identically distributed conditionedon the input x. Let M(x) denote the expected response to the experimentwhen the input is x, formally: M(x) := E(Y |x). Let α be a given number.28

The problem is to determine the input that produces an expected responseof α, i.e., the root θ of the equation M(x) = α.Robbins and Monro wanted to design a recursive procedure that convergesto the root, according to the scheme as follows.1. Start with some input x1, and measure the response y1.2. The input to the system in the second step is given as some functionof these values, formally x2 := f(x1, y1).3. Repeat this procedure, choosing the input to the measurement mecha-nism in step n as a function of the inputs and the measured responsesin the previous (n − 1) steps.The authors considered the update scheme described by Equation (3.8):
xn+1 = xn + an(α − yn). (3.8)They showed that in the presence of certain regularity assumptions, thesequence of the inputs converges to the desired root in probability.The main result in [10] is the following theorem.Theorem 6: Assume that:� ∀x ∃C ∈ R such that P (|Y (x)| ≤ C) = 1

(assumption on p(Y |x)
);� M(x) is non-decreasing in the input; the equation M(x) = α has a uniqueroot in θ

(assumptions on M(x)
);� The step sizes an are nonnegative, but not too big, and they are of type

1/n. Formally: an ≥ 0, ∑ a2
n < ∞, and ∃m′, m′′ such that m′

n
≤ an ≤ m′′

n
(assumptions on the step sizes).Then, xn → θ in mean square (and therefore, in probability).The proof and generalizations of this theorem can be found for examplein [9] or in [10].3.5.2 Call blending with SAWe will use a method similar to the Robbins-Monro algorithm describedabove. First of all, we choose a (short) time interval of length l. We will setthe (general) threshold at time instants nl where n ∈ N, with some initialthreshold. It is convenient to take l = 1. We want to adjust the thresholdwith regard to the relationship between the constraint and the waiting time.In our case, the parameter of the arrival process is time-varying, thereforethe step size should not go to zero. About choosing the proper step sizes,29

one can �nd applicable methods in [4] and in [6]. We chose to use a constantstep size instead of taking a sequence of di�erent step sizes.Let us denote the experienced average waiting time until time t by αt(this can always be measured). With this notation, the formula we used isas follows:
cn+1 = cn + ε(α − αn). (3.9)The results obtained by using this update scheme can be seen in Table 9.Number of Value of ε Average waiting time Throughputexperiment (seconds) (served type 2 jobs per hour)1 0.01 0.91239 49672 0.01 0.92287 49523 1 0.50701 34344 1 0.48634 29595 3 0.28429 21556 3 0.27633 26727 5 0.20176 26968 5 0.22046 24439 10 0.23651 262410 10 0.22937 2803Table 9: Results with update scheme (3.9) (s = 5, µ = 0.34, α = 0.2)We can see that at least ε = 5 is needed to have a chance of satisfyingthe constraint. But even in those cases, the throughput of the outgoing callsis low compared to the ones considered earlier. Therefore, this method is notgood enough.But we did not use all the information we had. We could perhaps con-struct a method that produces consistently high performance by using ourformulae (Expressions (2.3) and (2.6)) for EW q.The only problem with this is that the knowledge of all the parameters(including the rate of the arrival process) is needed. Thus, we need to esti-mate λt again, for example with exponential smoothing.The new formula for updating the threshold is given by

cn+1 = cn + ε
[

cn − (EW q

λ̂n

)−1(α)
]

, (3.10)where (EW q

λ̂n

)−1(α) denotes the generalized threshold that gives an expectedaverage waiting time of α if the rate of the arrival process is λ̂n, and can beobtained for example by the algorithms in Section 3.2.30

The results in Table 10 show that this method works much better thanthe previous one.Number of Value of ε Average waiting time Throughputexperiment (seconds) (served type 2 jobs per hour)1 0.5 0.23249 40672 0.5 0.21142 40883 1 0.21598 40934 1 0.21340 41005 1.5 0.19613 41406 1.5 0.20654 41117 2 0.18770 40618 2 0.20766 40919 3 0.20637 379810 3 0.21137 3777Table 10: Results with update scheme (3.10) (s = 5, µ = 0.34, α = 0.2)It seems that the value of ε should be between 1 and 2. In those cases, theaverage waiting time is close to α, while the throughput of the outgoing callsis high � sometimes even higher than the local optimum. But the di�erenceis very small.We also tried a third, hybrid update scheme given by
cn+1 = cn + ε1

[

cn − (EW q

λ̂n

)−1(α)
]

+ ε2 sgn(α − αn). (3.11)This method uses the information on the average waiting time, and has alearning e�ect as well, so we can expect good performance. Indeed, it givesvery good results with the choice of ε1 = 1.4 and ε2 = 0.1 (see Table 11):Number of Average waiting time Throughputexperiment (seconds) (served type 2 jobs per hour)1 0.19992 41902 0.19985 42183 0.19997 41144 0.20001 4358Table 11: Results of computer simulation using SA, update scheme (3.11)
(s = 5, µ = 0.34, α = 0.2, ε1 = 1.4, ε2 = 0.1)31

The results show that this is clearly the best policy among the ones triedhere. Albeit only slightly, it has outperformed the local optimum, repeatedly,while obeying the constraint. Note that the experienced average waiting timeis very close to α every time. Unfortunately, the variance of the throughputof the type 2 jobs is larger than in the other cases. Nevertheless, even theworst one here is as good as the local optimum.It might be possible to obtain even better results with a proper choice ofthe parameters. But the optimal parameters depend on the function of thearrival rate and the other parameters of the model as well, hence they need tobe determined somehow in every particular case. The most important thingis the fact that the local optimum can be outperformed by using stochasticapproximation.

32

4 GeneralizationsWe examined di�erent methods for call blending in Section 3 according to themodel described in Section 2. But the cases considered there were special:we always used the same function of the arrival rate and assumed that theservice parameters were equal. It needs to be examined how the algorithmsperform in more general cases.4.1 Unequal service requirementsThe assumption that the service parameters are equal is a bit strange � itis a very opportunistic case when the service times of type 1 jobs and type2 jobs are exactly of the same distribution. But if it is not true, then wecannot use formulae (2.3) and (2.6) for computing EW q in the algorithms ofSection 3.2 to obtain the optimal threshold and randomization parameter.Hence, there is a problem with all the methods based on estimating the arrivalparameter and calculating the locally optimal threshold with the algorithmsby substituting the estimate in the formulae.As we can see from this argument, the only thing needed to be ableto use the methods in Section 3 is to compute the optimal threshold andrandomization parameter somehow. It could be done by using the recursiveformula for calculating EW q in the case of µ1 6= µ2 described in [1], butthis is technically not so easy. Therefore, we tried to obtain a more simplealgorithm.4.1.1 Averaging µ1 and µ2Our �rst idea was to reduce this case to the one with equal service parame-ters, i.e., to make somehow one common parameter from the two di�erentparameters. After doing this, we can compute EW q with Expressions (2.3)and (2.6), and everything goes like before. Our task is to �nd a methodthat uni�es µ1 and µ2 so that the system with the new common parameter
µ behaves similarly to the one with the di�erent parameters. Of course, wedo not even know whether or not such a µ exists.The simplest way of unifying two numbers is to take the average:

µ :=
µ1 + µ2

2
. (4.1)We computed the local optimum with this µ, i.e., we always used thethreshold that would have been optimal in the equal parameter case withthe real actual arrival parameter and this service parameter. Unfortunately,this procedure does not work well (see Table 12).33

Number of µ1 µ2 Average waiting time Throughputexperiment (seconds) (served type 2 jobs per hour)1 0.20 0.50 1.20336 52052 0.20 0.50 0.97920 52143 0.30 0.40 0.24594 45954 0.30 0.40 0.23833 46045 0.40 0.30 0.17675 36536 0.40 0.30 0.17001 36727 0.50 0.20 0.20651 25548 0.50 0.20 0.21278 25589 0.75 0.05 1.12203 73210 0.75 0.05 1.12562 730Table 12: Local optimum with Formula (4.1) (s = 5, α = 0.2)If the di�erence of the two parameters is small, then it is not that bad, butotherwise this method is useless, because the average waiting time exceeds αby far.Despite these results being very disappointing, we tried an other unifyingmethod too, the geometric average:
µ :=

√
µ1µ2. (4.2)The results can be seen in Table 13.Number of µ1 µ2 Average waiting time Throughputexperiment (seconds) (served type 2 jobs per hour)1 0.20 0.50 1.06300 50572 0.20 0.50 0.98324 50563 0.30 0.40 0.23411 45874 0.30 0.40 0.23339 45905 0.40 0.30 0.17389 36546 0.40 0.30 0.16990 36487 0.50 0.20 0.12988 24548 0.50 0.20 0.13175 24599 0.75 0.05 0.05767 49510 0.75 0.05 0.05767 493Table 13: Local optimum with Formula (4.2) (s = 5, α = 0.2)34

The average waiting time is still too big compared to α in the �rst fourexperiments, so it does not really matter that the throughput of type 2 jobs ishigh. After the �fth experiment, the average waiting times are too small, soone can suspect that better results could be obtained with other thresholds.It will be revealed in the next subsection that this conjecture is indeed true.It seems that these unifying methods are not appropriate. We need to�nd the optimal thresholds in a di�erent way.4.1.2 Optimal threshold by simulationWe know from the law of large numbers that under a �xed threshold policy,the average waiting time converges to its expectation, i.e., to EW q, almostsurely. Hence, if we let a simulation of the system with �xed parameters
s, µ1, µ2, λ run long enough, then we can hope to experience an average wait-ing time close to the corresponding EW q

(c,δ). With this information in hand,we can compute the optimal threshold for these parameters via the algo-rithms in Section 3.2.The only question to decide on is when to run the simulation. We havetwo possibilities to consider.The �rst one can be described as follows.1. Compute a pro-active estimate for λt, i.e., let λ̂u be a forecast of λtwith u < t.2. Run a simulation of the system with λ̂u as arrival rate from u until
t with di�erent thresholds and randomization parameters to get thelargest generalized threshold for which the experienced average waitingtime is under α.3. Apply the threshold obtained in step 2 at time t.The advantage of this procedure is that it can be always used, regardlessof the values of the parameters. The disadvantages are that the time availablefor the simulation might not be su�cient to obtain a proper threshold that isclose to the optimum, and anyway, it is not that easy to produce pro-activeestimates.It needs to be mentioned that it is possible to use a dynamic programmingalgorithm (e.g., value iteration) with λ̂u as an arrival rate, instead of thesimulation. That method might converge faster to the expected waitingtime than the observed average waiting time in the simulation, but the sameproblems may still exist even in that case.35

If we have some information on the possible values of the arrival rate,e.g., that the values are in an interval [a, b], then a much more promisingprocedure is possible as follows.1. stepsize := 0.01; (the accuracy of the method)2. λ := a;3. while λ ≤ b do4. begin5. Get the optimal threshold for this λ via simulation.6. Store the result.7. λ := λ + stepsize;8. end;A table of an arbitrary accuracy can be constructed easily by choosinga small step size properly, and providing enough time for the simulation sothat the observed average waiting time can be close enough to the expectedaverage waiting time. An example of such a table can be seen in Table 14.
λ 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

copt 5 4.67 4.36 4.04 3.89 3.73 3.54 3.34 2.95 2.79 2.52Table 14: Some optimal thresholds for di�erent values of the arrival rate(s = 5, µ1 = 0.5, µ2 = 0.2, α = 0.2)A very big advantage of this method is that a table constructed once canbe used as long as the parameters of the system remain the same, so it isreally worth to build a very accurate one. It can also be extended withoutproblems if we experience a λ that is far from the ones included in the table.After having created a table, we can apply all the methods described inSection 3. We give the results of three methods, namely the local optimumin Table 16, using estimates with the moving average in Table 17, and theresults using stochastic approximation with the third update scheme in Table18. But �rst of all, we need to give the results with �xed thresholds in Ta-ble 15, because that is the traditional method, and our primary goal is tooutperform that if possible. 36

Threshold Average waiting time Throughput(seconds) (served type 2 jobs per hour)0 0.00584 01 0.01167 6262 0.03559 12893 0.11747 19584 0.38298 26465 1.24532 3252Table 15: Fixed thresholds (s = 5, µ1 = 0.5, µ2 = 0.2)Choosing α = 0.2 as a constraint again, we see that at most c = 3 agentsshould be assigned to outgoing calls. If we allow to use a �xed randomizationparameter, then the best �xed threshold policy that obeys the constraint onthe average waiting time of incoming calls is the one of threshold level 3.49(i.e., c = 3, δ = 0.51), producing a throughput of 2049 served type 2 jobs perhour.Next, let us investigate the local optimum, i.e., the results of a procedurethat uses always the optimal threshold corresponding to the actual real pa-rameter. More precisely, it uses the optimal threshold corresponding to theclosest value to the real parameter in the table constructed earlier.Number of Average waiting time Throughputexperiment (seconds) (served type 2 jobs per hour)1 0.20717 25512 0.19836 25533 0.19896 2555Table 16: Results of computer simulation using locally optimal thresholds
(s = 5, µ1 = 0.5, µ2 = 0.2, α = 0.2)These results are much better than the ones that the best �xed thresholdpolicy satisfying the constraint can provide. The throughput of this methodon type 2 jobs is about 25% higher than the one of the best allowed �xedthreshold policy, while there are no problems with obeying the constraint.The only problem is that here we used the real parameters of the arrivalprocess that are unknown in reality. Therefore, the results of the followingmethod using the moving average for estimating the parameters might bemore interesting, because that is implementable.Let us see the results in Table 17.37

Number of Average waiting time Throughputexperiment (seconds) (served type 2 jobs per hour)1 0.19684 25542 0.20380 25413 0.20296 2557Table 17: Results using the moving average for estimating the arrival rate
(s = 5, µ1 = 0.5, µ2 = 0.2, α = 0.2)The results show that this method works approximately as good as thelocal optimum. The throughput is high, and this method is reliable enough:the average waiting time stays close to α. Note that the throughput is indeedbetter than the ones in Table 13. Implementing this method is exactly aseasy as in the case of equal service parameters.However, these results are not better than the local optimum, so it isworth trying to apply the stochastic approximation algorithm that workedso good in the case of µ1 = µ2. The results can be found in Table 18.Number of Average waiting time Throughputexperiment (seconds) (served type 2 jobs per hour)1 0.20006 26612 0.20030 25913 0.20002 2614Table 18: Results using stochastic approximation, with update scheme (3.11)
(s = 5, µ1 = 0.5, µ2 = 0.2, α = 0.2, ε1 = 1.5, ε2 = 0.1)It seems that this last method outperforms all the others (including thelocal optimum) again. It can be observed how little the di�erence is betweenthe constraint and the experienced average waiting time. The throughput oftype 2 jobs is undoubtedly higher in this case than the local optimum. Itneeds to be stressed that the properties of this method were equally good forother values of µ1 and µ2 as well.Hence, we can conclude that under the given circumstances (i.e., usingthe arrival rate function of the Charlotte Call Center) a stochastic approxi-mation method seems to be the most appropriate, even in the case of unequalparameters.

38

4.2 Peaked arrival rate functionThe examination of the system with the data of the Charlotte Call Centerthat we used until now is complete with the case considered in Section 4.1,because that is the most general case that �ts in our model.It might be interesting to see how the estimation methods work if thefunction of the parameters of the arrival process is of a di�erent shape. Thesecond thing to observe is whether we can obtain the best results with sto-chastic approximation methods like before.We will consider a very peaked function, because handling slowly varying,smooth functions is much easier; even the average-type estimate is not thatbad in that case. The plot of the function that we used can be seen in Figure10.

Figure 10: Parameter of the arrival processFirst of all, it needs to be examined whether the estimation methodsconsidered before can approximate this function as well. There should beno problems with estimating the parts where the function is constant. Butthere are sudden changes as well, and handling those may make a distinctionbetween appropriate and non-appropriate methods here.Because of the peaks, the evaluation of the methods here will be primarilydetermined by the lags they produce. For example, if the estimate is 30minutes behind the real function, then it stays constant between 8:00 and8:30, while there is a high peak in the real function. So, the number of agentsassigned to incoming calls will be much lower than needed, hence there willbe a serious backlog with regard to the average waiting time.39

Not surprisingly, the average-type estimate that uses Formula (3.1) givesjust as poor results as in Section 3.3.1 (see Figure 11).

Figure 11: Average-type estimate of λtThis estimate is virtually useless, except that it follows the real functionuntil its �rst change very well.Let us see the moving average-estimate next. According to the argumentabout the importance of not producing a lag, we chose a rather small intervallength, l = 400.

Figure 12: Moving average estimate with interval length l = 400We can see that there is almost no lag indeed, but choosing a smallinterval length has as a side e�ect that the �uctuation is quite big.40

The exponential smoothing method might help to get an estimate that isstill not behind the real function, but has a smaller variance. The estimatewith l = 400 as a time unit and 2 as smoothing parameter can be seen inFigure 13.

Figure 13: Estimate of λt using exponential smoothingIt seems that this curve is worse than the previous one. Although the�uctuation is really not that big, it is still signi�cant, and there is also anot-negligible lag present.The next method that we consider is linear extrapolation (see Figure 14).

Figure 14: Linear extrapolation-type estimate of λt using n = 4 points,
l = 250 41

This curve is a bit like the one when we used a moving average to estimatethe function. We can see that linear extrapolation displays the changes assoon as they have occurred, but the estimate alternates around the realfunction very frequently.We have tried all the estimation algorithms that we used in Section 3.Now, we just have to apply them. Naturally, we will consider the unequalparameter case, because that is more general. The parameters for whichwe will give the results of the computer simulation are always the same:
s = 5, µ1 = 0.5, µ2 = 0.2, α = 0.2.Let us see �rst what the traditional method with a �xed threshold givesfor all the possible values of the threshold (see Table 19).Threshold Average waiting time Throughput(seconds) (served type 2 jobs per hour)0 0.00344 01 0.00889 6092 0.02568 12613 0.08563 19354 0.31351 26015 1.18851 3193Table 19: Fixed thresholds (s = 5, µ1 = 0.5, µ2 = 0.2) (peaked arrival ratefunction)We can see that if we want the average waiting time to be below 0.2,then we can choose the threshold to be at most c = 3. The best allowedgeneralized threshold would be 3.71, with a throughput of 2149 served type2 jobs per hour.The results in Table 20 show that the local optimum is by far better thanthis.Number of Average waiting time Throughputexperiment (seconds) (served type 2 jobs per hour)1 0.19745 25282 0.20027 25153 0.20277 2522Table 20: Results of computer simulation using locally optimal thresholds
(s = 5, µ1 = 0.5, µ2 = 0.2, α = 0.2) (peaked arrival rate function)It is important that the experienced average waiting times of the incoming42

calls here are almost the same as α, so this method is reliable enough � itrespects the constraint at a reasonable extent. The di�erence between thethroughput of the type 2 jobs of the best allowed �xed threshold policy andthe local optimum is about 30% again, similar to what is was in the casewhen we used the arrival rate function of the Charlotte Call Center.We have just seen that the local optimum gives indeed very good resultsagain. But the most important thing is how the implementable methodswork here. Let us start with the moving average (see Table 21).Number of Average waiting time Throughputexperiment (seconds) (served type 2 jobs per hour)1 0.20225 25262 0.19899 25283 0.19976 2521Table 21: Results using the moving average for estimating the arrival rate
(s = 5, µ1 = 0.5, µ2 = 0.2, α = 0.2, l = 400) (peaked arrival rate function)We can conclude that taking the moving average is again an easily imple-mentable method that provides a high throughput and an average waitingtime that is close to the constraint.The next method is the one that uses exponential smoothing for estimat-ing the parameter (see Table 22).Number of Average waiting time Throughputexperiment (seconds) (served type 2 jobs per hour)1 0.21229 25272 0.21245 25223 0.20664 2524Table 22: Results using exponential smoothing for estimating the arrival rate
(s = 5, µ1 = 0.5, µ2 = 0.2, α = 0.2) (peaked arrival rate function)These results are unequivocally worse than the ones in Table 21. Thethroughput is virtually the same, but the average waiting times are higherhere, and the di�erence with which they exceed α is barely acceptable. Itseems that the argument at the beginning of this subsection about the laghaving a worse e�ect here than the �uctuations is indeed true. Therefore, wecan expect good results from the next method again, as one can rememberthat the linear extrapolation estimate had almost no lag.The results of the computer simulation are given in Table 23.43

Number of Average waiting time Throughputexperiment (seconds) (served type 2 jobs per hour)1 0.20392 25362 0.20272 25283 0.20266 2536Table 23: Results using linear extrapolation for estimating the arrival rate
(s = 5, µ1 = 0.5, µ2 = 0.2, α = 0.2) (peaked arrival rate function)It is clear by looking at these results, that this estimating algorithmworks very good in this case. It gives the highest throughput of type 2 jobsexperienced until now. It is even better than the local optimum, albeit thedi�erence between them is not really signi�cant. The average waiting timeexceeds α by 1-2%, but such a small di�erence might be acceptable.The last procedure that we try here is the stochastic approximationmethod with update scheme (3.11). We hope that it would work as goodas in the case of the other arrival function. Unfortunately, this is not true(see Table 24).Number of Average waiting time Throughputexperiment (seconds) (served type 2 jobs per hour)1 0.19997 25252 0.20004 25153 0.20015 2529Table 24: Results using stochastic approximation, with update scheme (3.11)
(s = 5, µ1 = 0.5, µ2 = 0.2, α = 0.2, ε1 = 1.3, ε2 = 0.11) (peaked arrival ratefunction)We can be really satis�ed with the average waiting times that this methodprovides � the di�erence between those and the constraint is very small. Thethroughput of type 2 jobs is not that bad either. It is almost the same asthe local optimum, but this time it is not better than that.There might exist some parameter values of ε1 and ε2 with which the localoptimum could be outperformed even in this case, but we have not found anydespite trying many di�erent values. But this is still a very good method,and let us mention that there are no problems with implementing it.

44

5 ConclusionsThe problem that we wanted to investigate was how call blending in acall center should be done if the incoming calls arrive according to a non-homogeneous Poisson process. The arrival rate function that we used isconstructed according to the data of the Charlotte Call Center.We considered the equal service parameter case �rst, and saw that thetraditional method used in call centers can be outperformed by using thresh-old policies with the locally optimal thresholds. These thresholds dependon the rate of the arrival process, but that is unknown. So, it needs to beestimated in applications.We examined procedures for estimating the time-varying parameter of anon-homogeneous Poisson process. All the methods are based only on thenumber of arrivals in the process, hence they are model-free, they can beused for di�erent systems as well.With the proper choice of the parameters, estimates of di�erent types(e.g., pro-active, smooth) can be produced, according to what is needed inthe particular case. In this model, it depends primarily on the shape ofthe function of the arrival process. If there are sudden big changes, thenhaving no lag is of primary importance, while if the function is smooth andslowly varying, then we might allow the estimate to have a little lag to avoid�uctuations.Then, we tried stochastic approximation methods with a learning e�ectin order to obtain better results than the local optimum.The most important observations in the equal service parameter case arethe following:1. The local optimum is much better than using �xed thresholds.2. Taking the moving average as an estimate is an easily implementablemethod that outperforms the traditional method by far, but is notbetter than the local optimum.3. Using stochastic approximation works even better than the local opti-mum.In the general case when µ1 6= µ2, we can draw the same conclusions.The �rst two statements remain true in the case of the peaked functionthat we examined in Section 4.2, but it seems that the stochastic approx-imation method with upgrade scheme (3.11) is only as good as the localoptimum, not better than that in that case.45

There are many parameters to choose in the di�erent estimation algo-rithms. The optimal choice of those might improve the performance signi�-cantly in each particular case. The possibilities in stochastic approximationare also not fully exploited, other update schemes or these with other stepsizes might work better in other cases.We would like to emphasize that all the evaluations of the methods arebased on results obtained by computer simulation, therefore they are notnecessarily completely accurate. However, it seems to be certain that usingone of these procedures instead of the traditional method would result in aremarkable improvement in productivity.

46

References[1] Sandjai Bhulai, and Ger Koole:A queuing model for call blending in call centers.IEEE Transactions on Automatic Control, 48:1434�1438, 2003.[2] Peter A.W. Lewis, and Gerald S. Shedler:Simulation methods for Poisson processes in non-stationary systems.[3] Noah Gans, Ger Koole, and Avishai Mandelbaum:Telephone Call Centers: Tutorial, Review and Research Prospects.Manufacturing & Service Operations Management, 5:79�141, 2003.[4] Harold J. Kushner, and J. Yang:Analysis of Adaptive Step Size SA Algorithms for Parameter Tracking,1994.[5] Yuliy Baryshnikov, Ed Co�man, Guillaume Pierre, Dan Rubenstein,Mark Squillante, and Teddy Yimwadsana:Predictability of Web-Server Tra�c Congestion, 2005.[6] Harold J. Kushner, and G. George Yin:Stochastic Approximation and Recursive Algorithms and Applications(second edition), 2003.[7] M.L. Puterman:Markov Decision Processes, 1994.[8] R.B. Cooper:Introduction to Queuing Theory, 1981.[9] Vivek Raghunathan:Stochastic Approximation.[10] Herbert Robbins, and Sutton Monro:A Stochastic Approximation Method.Annals of Mathematical Statistics, 22:3:400�407, 1951.
47

