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Abstract

Call blending (dynamically mixing inbound and outbound traffic) is an
efficient method in call centers for obtaining high productivity while
satisfying a constraint on service levels. We investigate, using com-
puter simulation, how call blending should be implemented efficiently
in the presence of time-varying arrivals. For homogeneous arrival
processes, the optimal policy is of threshold type, where the thresh-
old represents the maximum number of agents working on outgoing
calls. The optimal threshold can be obtained by using a formula for
the expected average waiting time. We apply this idea for the case of
time-varying arrivals and give easily implementable methods, resulting
in a considerable improvement compared to the traditional policy, i.e.,
to using a fixed threshold. We also show that even better results can
be obtained by using stochastic approximation.



1 Introduction

Call centers provide an important link between companies and their cus-
tomers. They have become the preferred way of communication  where
customer contact has to be arranged, it is very likely that a call center is
used. The economic role of telephone call centers is significant and growing.
But in spite of their importance, most call centers cannot achieve simultane-
ously high service levels and efficiency (i.e., high productivity). One can find
interesting facts about this topic in [3].

The aim of this paper is to find ideas worth pursuing in reality — it
is focused much more on the applicability of the techniques than on their
theoretical aspects. Thus, the results here are generally not supported by
strict proofs they are obtained by computer simulation. Therefore, although
being more or less informal, they could be very useful: firstly, because the
best methods can be implemented, and secondly, because the results can
show what is worthy of further investigation.

First of all, we give a short description of the problem. Imagine the
following situation: there is a certain number of employees (called ‘agents’
from now on) working in a call center. Their primary task is to handle the
incoming calls. Since the call center wants to deliver some quality of service
in terms of delay, there is a constraint on the average waiting time of these
calls. But there are also outgoing calls to handle — we assume that they
are available in an infinite quantity, because there is always something to
work on. The problem is to decide which job to assign to an idle agent
such that service level constraints are satisfied for the incoming calls and the
throughput is maximized for the outgoing calls simultaneously.

In this paper we examine methods to cope with all these requirements.
It is strongly based on the results achieved by Bhulai and Koole, who have
already given a solution for the case when the parameter of the Poisson
process of the incoming calls is constant (see [1] for details). Unfortunately,
the assumption of the process being stationary is unrealistic: from observing
call arrival data of call centers it can be seen that there are busy and more or
less idle periods during one day. This can be easily understood as we think
about the daily schedule of the people: for example, a peak period should be
expected before the end of their worktime, because it is a common habit to
call the call center before going home.

The most primitive solution of the problem is to separate the agents in two
groups by assigning always the same agents to incoming and to outgoing calls
(group 1 and 2). This policy is still quite commonly used due to its simplicity,
despite the obvious disadvantages: during the busy periods there could be
a need for more people working on incoming calls to satisfy the constraint



on the average waiting time, while during other periods the productivity of
group 1 can be too low: the fraction of time that agents spend working is
too small.

A better method, that tries to balance waiting times and productivity, is
the so-called call blending: dynamically assigning agents either to incoming
or to outgoing traffic. Of course, it should be done properly, according to
the properties of the system, because otherwise it could produce even worse
results than the traditional policy. The optimal way of call blending in the
case of constant parameters can be found in [1]. Tt has been shown that
agents should be assigned to outbound calls only if the number of available
agents exceeds a certain threshold. But in reality, the parameter of the arrival
process changes over time.

The second problem is that the function of the parameter that changes
over time is unknown. It can certainly be estimated, before doing anything
else, using data from the past (provided that we have access to a sufficient
amount of information on the previous years), but an estimate of this kind
can be difficult to compute and not representative with respect to the changes
of the system over the years. Hence, it could be more convenient to find a
method that gives an estimate of the parameter on the spot.

First, we will try to apply the usual principles, the common way of obtain-
ing results regardless of the model: find a reliable estimate of the parameter
and substitute it in a proper formula. Different methods will be tried to
get the estimate: a moving average, exponential smoothing, and linear pre-
diction. Then we use the formula for the expected average waiting time
(published in [1], Section 3) to set a threshold. We always choose a threshold
that would be optimal if the process of arriving calls was homogeneous with
the actual (estimated) rate.

However, surprisingly enough, this way of thinking is not optimal in this
case. As it is revealed later, the approach using stochastic approximation,
adjusting the threshold directly, is significantly more efficient here. Not only
because it turns out to work better than any of the methods using estimates,
but it outperforms even the local optimum, where the estimate is replaced
by the real parameter.

In Section 4 we will observe generalizations of the cases considered in
the first three sections, for example, when the service parameters are not
equal or when the rate function of the arrival process is very peaked. We
will examine how well our algorithms perform when applied to these more
general processes.



2 Model and important results

In the first part of this section we describe the mathematical formulation of
the system that models the call center we want to work with. It is almost
the same model that is described in |1]; the only difference is that the para-
meter of the arrival process is time-varying here. But we still need the most
important results for the constant parameter case, therefore we give a short
summary of those in the second part.

2.1 The model

Consider a system in which there are s identical servers (playing the role of
the agents). There are two types of traffic: type 1 for incoming calls and
type 2 for outgoing calls. Their service times are independent, exponentially
distributed random variables, with rates p; and 9, respectively. Type 1 jobs
arrive according to a non-homogeneous Poisson process; the rate at time ¢ is
denoted by A;. There is an infinite waiting queue for type 1 jobs that cannot
be served yet. There is an infinite supply of type 2 jobs: it is always possible
to start serving a job of this type, provided that there is at least one idle
server. The long-term average waiting time of type 1 jobs should be below a
constant . (Waiting excludes the service time; if the response time is to be
considered, then the average service time, i, should be added to the average
waiting time.)

The objective is to maximize the throughput of type 2 jobs, i.e., to serve
on average per unit of time as many type 2 jobs as possible, of course, at the
same time obeying the constraint on the average waiting time of type 1 jobs.

Controlling the system can be done through the following actions: when-
ever a server is idle, it can

start serving a type 1 job (of course, only if there is at least one waiting in
the queue for service);

start serving a type 2 job;
— remain idle.

Note that it can be optimal here to schedule jobs between completions
and arrival instants, not like in the case of a homogeneous arrival process.
For instance, if A\; tends to 0 at a certain moment u, and stays 0 after that,
then it is evidently optimal to assign all the idle servers to type 2 jobs at u,
regardless of the fact whether or not there has been a completion or arrival
at wu.

It is very important that in our model preemption of jobs in service is not
allowed. The case when preemption is allowed would be trivial. First of all,
note that in that case idling is obviously suboptimal, so we need to consider



only scheduling a type 1 job or a type 2 job as action. Here it is optimal to
start the service of a type 1 call as soon as possible.
The following coupling argument shows that this is indeed true.

Theorem 1: Suppose that a server is working on type 2 jobs while there are
type 1 jobs waiting in the queue. Then, under preemption, the action that
interrupts the service of the type 2 job and schedules a type 1 job instead is
among the set of optimal actions when service is not lost.

Proof: Let 7 be an arbitrary policy that respects the waiting time constraint
on the type 1 jobs. Take a realization w under this policy. Suppose that
there is a time instant, when a type 1 job (denoted by j;) arrives and is not
scheduled immediately, although there is a server, say s;, working on type
2 jobs. Let us mention that there must be a later time instant when j; is
scheduled, since 7 respects the waiting time constraint on type 1 jobs.

Formally: suppose that there exist t1, t9, t3, and ¢4 such that
— g1 arrives at tq;
— s1 is working on type 2 jobs between t; and ¢y (let us denote this set of
type 2 jobs by Js), t1 < to;
the service of j; starts at ¢3 on a server called s, and ends at ¢, (by finishing
or interrupting its service), t; < t3 < ty.

Note that all the quadruples ¢y, 5, t5,ts, where t; < t, < ty satisfy all
these requirements. Choosing a ¢, small enough, we can get t; < t,, < t3 <1,
with the same properties. Therefore, we can assume that t; <ty < t3 < t4.

We can also assume without loss of generality that s; = sy in this case.
(The servers are identical, hence using s; to handle j; between ¢3 and ¢, while
letting s serve the jobs that s; would have worked on gives the same waiting
time and throughput.) Therefore, from now on, we will talk about one server
only.

Furthermore, ¢35 can be chosen so small that ¢, — t; < t4 — t3. The
importance of this property will be revealed later.

So, let us suppose, that there exist t; < ty < t3 < ty, with to —t; < t4—t3,
such that
a type 1 job, 7y, arrives at t;
there is a server working on type 2 jobs (denoted by .J;) between ¢; and to;
— j1 stays in the waiting queue until ¢3, when it is scheduled to the server
mentioned above and its service there ends at 4.



Now consider the policy 7’ with the following actions:

— it follows all actions of 7 until #;

schedules j; at t; and lets the server work on it until ¢o;

between ¢y and t3, the actions of 7’ are the same as those of ;

at t3, lets the server continue the work on j; until t3+((ty — t3) — (to — t1)) =
ty — (ta — 11);
— then assigns the server to the work on Jy until #y4;

after t4, it follows the actions of 7 again.

These time intervals are well-defined because of the inequality t, — t; <
ty — t3.

The total number of type 2 customers served after ¢, is equal under both
policies, thus also the throughput. However, the average waiting time under
policy 7’ is the same as or lower than under 7w, because the type 1 job is
served earlier. Since m and w were arbitrary, the result follows.

Certainly, the preemptive case is at least as good as the non-preemptive.
In practice, the jobs that can be preempted in call centers are e-mail mes-
sages. Therefore, it is beneficial for call centers to encourage customers to
send their requests by e-mail.

Remark: We used the assumption in the proof that the work already done
on the type 2 job that is preempted is not lost, so it can be continued later.
This is also true for e-mail messages.

2.2 Results for constant )\

In [1] there are many results that can be used here. We will mostly deal with
the case of equal service requirements, i.e., 11 = 9, hence we give here only
the theorems about that case.

The reason for doing this is that the algorithm of computing the threshold
when gy # o is quite complicated, even in the case of a constant A, and it
obviously gets much worse when the parameter of the arrival process is time-
varying. So, even in Section 4, where we will try to handle the case of unequal
service times, we use a much more practical approach: simulation instead of
applying theorems.

Let us consider the case of equal service requirements first. Define the
common service parameter p := iy = fio.

First of all, there is an almost obvious, but still very important statement:



Theorem 2: Suppose that a server becomes idle while there are type 1 jobs
waiting in the queue. Then the action that schedules a type 1 job is among
the set of optimal actions.

We do not give the proof here (all the proofs of the theorems mentioned
in this part can be found in [1]), but the following informal argument might
help to give insight into this.

Consider the event that a server becomes idle, while there are one or more
type 1 jobs waiting. Then the controller has to choose between scheduling a
type 1 or a type 2 job (or idling, but this is evidently suboptimal). Giving
priority to a type 2 job and delaying type 1 jobs obviously leads to higher
waiting times. Delaying the processing of a type 2 job does not change the
performance for this type, as we are interested in the long-term throughput.

This intuitive argument implies that when a server becomes idle and a
type 1 job is waiting, it is optimal to assign this type 1 job to the server.

Let us model the system as a (constrained) Markov decision process as
follows:

The state space is x := Ng; a state x represents the number of jobs in
service plus the number of type 1 jobs in the queue.

We denote the transition rate of going from = € x to y € x (before taking
any action) by p(z,y). Then we have p(x,z — 1) = min{z, s}u (for x > 0)
and p(z,z+1) = A\

The possible actions in state x € x, v < s are a = 0,...,5 — x, corre-
sponding to scheduling a number of a jobs of type 2.

In the states z € x, * > s, a type 1 job is automatically scheduled,
because, according to Theorem 2, it is an optimal action.

Next, we uniformize the system (see [7], Section 11.5). For simplicity we
assume that sy + A < 1. (We can always get this by scaling.) Uniformizing
is equivalent to adding dummy transitions (from a state to itself) such that
the rate out of each state is equal to 1; then we can consider the rates to be
transition probabilities.

The objectives are modelled as follows. If action a is chosen, then a reward
of a is received (1 for each type 2 job that enters the service). This models the
throughput. Due to Poisson arrivals and uniformization, the average waiting
time is obtained by taking the cost rates equal to the expected waiting time
of an arriving customer. Thus, to obtain the average waiting costs, we can
take the cost rates equal to [x — s + 1]7 /sy, i.e., 0 if z < s, and x’s—sjl if
x > s. Note that the cost rates in this case are equivalent to lump costs at
each epoch.

We will next see that the optimal policy is of threshold type:



Theorem 3: There is a level ¢, called the threshold, such that if x < c,
then the optimal action is ¢ — x, otherwise an optimal action is 0 (with the
intention of capacity reservation for a posterior need of serving type 1 jobs).

A policy obeying these rules is called a threshold policy with threshold
level c¢. Note that under such a policy there are always at least ¢ agents
working.

Examining the proof in [1], it can be observed that there can be a case
when it is both optimal to schedule a type 2 job and not to schedule one
(consider scheduling a group of type 2 jobs as scheduling them one by one;
it is obvious that both forms are equivalent as is stated in the proof). In this
case the two threshold policies, with threshold level ¢ and ¢ + 1, are both
optimal, and so are all the policies that randomize between these two.

Let the expected average waiting time be denoted by EW4Y. In general,
to find a threshold policy that satisfies EW? = «, we need to randomize.
Randomization between ¢ and ¢+ 1 (where ¢+ 1 < s) can be done as follows:
If a transition from ¢+ 1 to ¢ occurs, then we stay in state ¢ with probability
0 or we go back to state ¢ + 1 with probability 1 — ¢, i.e., with probability
1 —9 a type 2 job is immediately scheduled.

Finally, we give a formula for the waiting time and throughput under a
threshold policy that randomizes between ¢ and ¢ + 1 using randomization
parameter 0.

Unfortunately, the original expression in [1] is inaccurate. Therefore, we
give a proof for these new formulae here. The only difference is that now
we will express all the stationary probabilities ¢, of the states x € x in g.41
instead of ¢., because state ¢ + 1 always exists independently of the value of
0, unlike state c.

We need the following important fact from queuing theory for the proof
(see, e.g., Cooper [8], Expression 4.17):

Theorem 4: Define C(s, p) as the stationary delay probability for s servers
and a load of p = ﬁ Erlang, i.e., the probability that an incoming request
has to wait before the start of its service. Let the stationary probability of a
state x be denoted by q,. Then EW?1 is given by
C
EW? = M7 (2_1)
(s = p)
with
Cls,p) = 4 (2.2)

r>s



So, the theorem about the threshold policies is given as follows:

Let p := ﬁ Then the expected average waiting time as a

Theorem 5:
function of the threshold ¢ (where ¢ € Ny, ¢ < s) and the randomization

parameter 0 < < 1 is given by
P~ (e + 1)

EWY . — "y 2.3
(c,0) ,u(s—l)!(s—p)QqH (2.3)

with
5(c+1) < e+ DN e (e |
Gors = + ) (2.4)
‘ p x:ZCH ! (s = D!s —p)

The expected throughput of type 2 jobs is

s—1

sp*~ D (c 4 1)!
(s = Dl(s = p)

de(e+1) P (e 4 1)!
£ e S0 4 (§2 20 o

r=c+1

(2.5)

When ¢ = s, there is no randomization, which is equivalent to choosing

0 = 1 as a randomization parameter. The expected average waiting time and
throughput of type 2 jobs can be computed as follows:

EWe, =~ 2.6
=D (s —p) (26)

and
E& 1 = n(s—p). (2.7)
Proof: First, consider the case where ¢ < s.

Randomization results in a change of the transition rates in the Markov
process model from c¢+1 to c of p(c+1, ¢) = d(c+1)p and from c+1 to itself
of p(c+1,¢+1) = (1—6)(c+1)u. The lowest possible state is ¢, as the state
moves immediately up to ¢ as soon as ¢ — 1 is reached. The other positive
transition rates are p(z,z + 1) = A for all x > ¢ and p(z,x — 1) = min{z, s}
for all z > ¢+ 1 (see Figure 1).

The standard balance equations are given as follows.

Age = O(c+ 1)pges

(6(c+ 1)p+ A)gera
(Tp + Ao
(sp+ AN)ge

(2.8)

(2.9)
(c+1<x<s)2.10)
(s<z) (2.11)

© oo

/\QC + (C + 2):“’(]04-2
Az—1 + (2 + 1) gy,
AGz—1 + S[Gzy1,

9
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Figure 1: The Markov process for threshold level ¢ < s

We can express everything in q.,:

_ 6(ct1)
dc = p( +1;]c+1a
pr—\¢ c+1)!
G = xﬁ L, (ct1<a<s),
px—(c+1)(c+1)!
Gz = GT—5g] Gc+1, ($ > 3)'

These stationary probabilities must sum up to one:

s—1
l=gq.+ Z Qx+ZQx

r=c+1 r>s

We obtain the expression for g..; stated in the theorem from this, because

2 po D (e 4 1)1 p*~ e (e + 1)

Z 4z = go—sg| Qe+1 = (s—1)(s—p) Qe+1-
x>s z=s
The notation defined above can be justified, for this sum is exactly the prob-
ability of delay under the given threshold policy.

The waiting time here is completely equivalent to the one without type
2 jobs. Therefore, we can compute the expected average waiting time with
the equivalent form of (2.1):

_ Cleg(s,p)  p= (e +1)! ot
)T uls—p)  pls—D)i(s —p)2t

This is the formula for the type 1 waiting times. Next, we derive the expres-
sion for the type 2 throughput, which we will denote by &9.

EWE s

10



The throughput of type 2 is the total throughput minus the type 1
throughput. This equation stays true also in expectation. Hence,

s—1
FEL s = [mege+ Y prge + Y psge| — A
z=c+1 T>s

The desired result follows by substitution of the expressions of the stationary
probabilities in g.i1.

The case ¢ = s is very simple. There are no states below s, so we can
give the delay probability without further calculations:

O(s,l)(sap) - ZQLB =1

r>s

Thus,
EWq _ O(Svl)(87p) o 1
(s,1) _ - —_ )
p(s—p)  p(s—p)
Computing the expected throughput is even easier. There are s servers
working at every time instant, so the expected total throughput is su. By

subtracting the expected type 1 throughput A we obtain

EEl 1y = s — A= p(s—p),
exactly what we wanted to prove.

Remark: One has to be very careful, because the case ¢ = s is really
different: (2.3) with ¢ = s, = 1 does not give the same result as (2.6), and
nor does (2.5) as (2.7). The reason is that Equation (2.8) is not true here:
there should be an s instead of s 4+ 1 on the right hand side.
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3 Techniques and experiments
(numerical results)

We have used a computer simulation of the mathematical model to be able
to compare the efficiency of the techniques described later. The algorithm
that we used to generate a non-homogeneous Poisson process (by thinning)
can be found in [2], Section 4.

Note that a policy that randomizes between ¢ and ¢+ 1 should obviously
perform between the policies using fixed thresholds ¢ and ¢+ 1. Certainly, if
the value of d is close to 1, the performance will be more similar to the results
of threshold policy ¢, and if § is very small, then we get approximately the
same as with threshold policy ¢+ 1. Therefore, it is convenient to introduce
a notation that allows us to use non-integer thresholds: the integer part of a
generalized threshold would denote the original threshold, and the remainder
would be 1 —§. For instance, a (generalized) threshold policy with threshold
level ¢ = 3.3 denotes a policy that randomizes between the thresholds 3 and
4, using 0 = 0.7 as randomization parameter. This notation will be used
quite frequently from now on.

The function of the rate of the arrival process over time will be a linear
approximation of the data of the Charlotte Call Center, according to the
data in [3| (see Figure 2). By using real data we can expect the shape of the
function to be more or less realistic and representative.
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Figure 2: Parameter of the arrival process
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We always take the same number of servers: s = 5, mostly the same
service parameter: g = pu; = ps = 0.34, and (when needed) the same con-
straint: a = 0.2, in order to be able to compare the results obtained by using
the different techniques. But according to the results of many numerical ex-
periments, these concrete values of the parameters do not matter that much.
The conclusions remain the same even when we use different values.

3.1 The traditional solution (fixed thresholds)

The traditional way of assigning work to the agents is simply by dividing
them in two groups: the first group (of size n;) handles the incoming calls,
and the second group (of size s — np) is in charge of handling the outgoing
calls.

A clearly better method can be given very easily by taking the threshold
policy with ¢ := s — ny as threshold. (The expression ‘clearly better’ is
supported by Theorem 2.) Thus, we have examined what the simulation
gives for all the possible values of the threshold: from 0 to s (see Table 1).

Threshold | Average waiting time Throughput
(seconds) (served type 2 jobs per hour)

0 0.04932 0

1 0.05856 907
2 0.08312 1950
3 0.11429 3071
4 0.34443 4205
) 0.93713 5251

Table 1: Fixed thresholds (s =5, 1 = 0.34)

Note that if we had a constraint of, for instance, a = 0.2, we could use
only ¢ < 3. This is evidently not optimal.

If we allow using (fixed) randomization parameters, then we can get
slightly better results. The experienced average waiting time under the fixed
threshold policy with a generalized threshold level of ¢ = 3.44 happens to be
approximately 0.2 (actually it was 0.19948). The throughput of type 2 jobs
for this case was 3171 jobs/hour.

This was the best fixed policy obeying the constraint @ = 0.2, hence the
primary requirement of more complex methods is to at least produce this
throughput with an average waiting time of approximately this level.
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3.2 Local optimum

In this section, we will apply Formula (2.3) (valid only for constant \), using
the actual real parameter \; at time ¢t. Of course, it is not known in real
life, but we need to observe this case to be able to compare the results of the
implementable techniques to it.

So, we would like to get the locally optimal threshold and randomization
parameter. We call it local optimum, because it would be optimal if the
parameter of the arrival process was constant. An algorithm for finding the
optimal threshold in the constant case (applying Equation (2.3) and Equation
(2.6)) is as follows:

1. c:=0;

2. while  (c+1<s) AND (EW{,, ,<a) do
3. begin

4. ci=c+1;

5. end;

This algorithm gives a ¢ such that IEW 1 < a, and IEI/VCJF]L > (or
¢ = 0 or ¢ = s in extremal cases; one of the equah’rleq might not be ’rrue then,
but there is nothing to do about it as 0 and s are natural bounds for ¢).

Note that this method is based on an implicit assumption, namely on the
monotonicity of IEW("CJ) in ¢. This is evidently true, but we give a formal
proof, because this algorithm plays a very important role in the methods we
want to use in this paper.

Theorem 5: IEW(‘IC ) is increasing in c.

Proof: Let ¢; and ¢y be different thresholds: c¢1,cs € Ny, ¢7 < ¢ < s.
Let us denote the stationary distribution of the Markov reward processes
corresponding to the threshold policies with threshold level ¢; and ¢y by 14
and vy, respectively. The expected average waiting time can be computed
with Formula (2.1) again:

Cf(cz7 (S>p)
D (s —p)

)

IEW(C“
with

0(027 )(S p) ZVZ‘(I)7 (Z =1, 2)‘

xr>s
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We will show that v1(z) < v,(z) for all x > ¢y (thus, for all z > s too).
In the states € x,x > cg, the behaviour of the system is the same in both
cases. Hence, the fraction of the stationary probabilities must be the same:

: (z,y € x;2,y > c2).

Let x € x, x > ¢y be fixed. We can express all the stationary probabilities
with vy (x) and vy(x):

I/l(Z) VQ(‘T)

v > .
(@) (Vz € x,2z>c)

(z) =

Summing this over the states z > ¢, we obtain

ZVQ(Z) = (Z V1(2)> ZZ(IB;

X
z>co z>co 1(

But in the second system, the lowest possible state is cg, so

Z vo(2) =1,

z>co

while in the first system, the state can be below ¢y with a probability p > 0,

hence
Zul(z) =1-p<1.

z>co

The result follows.

After using this algorithm, we know that we need to randomize between
c and ¢ + 1 to achieve IEW(qc’&) = «. Such a J must exist, with a possible
exception in the extremal cases. If IEW(%J) > «, then we cannot do anything
but to choose 6 = 1, and if ¢ = s, then we cannot randomize as choosing s+ 1
as a threshold is not possible (no randomization in this case is equivalent to
choosing 0 = 1). Otherwise, the existence of a good § is ensured by the
theorem of Bolzano, due to the continuity of IEW(‘IC’(S) in § between this ¢ and
¢+ 1 (which can be seen clearly by looking at Expression (2.3)).

But the proper randomization parameter still needs to be found. This is
not difficult at all, taking in account that IEW 8 is decreasing in 9 under a
fixed c. This property follows directly from ’rhe definition of the randomiza-
tion parameter, keeping in mind that IEW(CJ) < IEW(C’O), because the second
expression equals to EW?

(c+1,1)
Therefore the problem can be solved as follows (for ¢ < s —1):

q . . . .
, and ]EW(CJ) is increasing in c.

15



—_

. stepsize 1= 0.01; (the accuracy of the method)
2. 0:=1;

3. while (6 — stepsize > 0) AND (EW{ ;s 0.0 < @) do

4.  begin
5. 0 := 0 — stepsize;
6. end;

By adjusting the step size (choosing it small enough) we can get arbitrarily
close to the optimal 9.

So now we know how to compute the optimal threshold and the random-
ization parameter, provided that the values of s, u, and A are known (they
are really needed, because we use Expression (2.3)).

The only difference in the time-varying parameter case is that we need to
use )\; at time t instead of using always the same A\ when computing ]EW(qcﬁ)
with Expression (2.3). This way we can obtain the locally optimal threshold:
¢, and the corresponding locally optimal randomization parameter: 9.

However, it needs to be stressed, that these thresholds do not have to
give the best results possible — being everywhere locally optimal in this sense
does not necessarily mean being globally optimal. But at least we can hope
that it will be good enough at least better than the policies with a fixed
threshold. Let us see whether this is true (see Table 2).

Number of | Average waiting time Throughput
experiment (seconds) (served type 2 jobs per hour)
1 0.19519 4112
2 0.21129 4100
3 0.20011 4121

Table 2: Results using locally optimal thresholds (s =5, u = 0.34,« = 0.2)

Remember: the fixed thresholds that could have satisfied the constraint
were ¢ = 0,1,2,3. But the throughput they can produce is much less than
the throughput of our new method. Even the best constant policy obeying
the constraint (¢ = 3, 0 = 0.56) is by about 30% behind with respect to the
productivity. From another point of view: we would need a fixed threshold of
at least 4 to get the throughput obtained here. But the waiting time (which
represents the quality of the service!) is more than one and half times as
much as the one experienced here.
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Note that the average waiting time has stayed quite close to the con-
straint. According to many experiments, the difference is almost always
within 10% (usually even less than 5%). Hence, if we really want to stay
below «, then this can be done with high probability by taking o’ := 0.9« as
constraint. Nevertheless, we can certainly claim that this method is reliable:
we could never have satisfied the constraint for sure due to the randomness
of the process.

So it can be seen that we can outperform the traditional method by far if
we know the real parameter. Thus, it might be really worth trying to obtain
good estimates for )\;, hoping that a small difference would not cause too
much trouble and we could still get better performance than in the case of
fixed thresholds.

3.3 Methods for estimating \;

The superiority of the results using the locally optimal thresholds and ran-
domization parameters over the method of fixed thresholds seems to be im-
pressive. But actually, although being promising, in reality it could be totally
useless, because naturally we do not know the function of the arrival rates
over time. We can never even measure this parameter directly, we can only
estimate it; the estimate of A\; has to be based on the number of arrivals
before t, because that is observable. There are two different attitudes to
consider.

The first possibility is to estimate )\; in advance, according to the data
of the previous days/months/years. This can be pretty problematic. First
of all, there might not be enough data at new companies to get a reliable
estimate — unless using data of other firms, which is always a dubious thing
to do concerning the differences likely to appear between the two systems.
Secondly, even if our company is old enough to produce a sufficient amount
of data, circumstances might change over time, and changes are sometimes
not so easy to be traced. Finally, even if we assume everything to be ap-
proximately constant, estimating the parameter is still quite hard, due to
the complicated cyclic behaviour that can be observed in a call center (for
example, see [3|, Section 3.2).

Therefore, we prefer the other possibility: calculating the estimate of )\,
on the spot, based only on the number of incoming calls in the interval [0, ¢),
where 0 is the very first moment of the day. Note that an estimate of )\,
that uses only the number of arrivals is not model-dependent. Thus, the
methods described in this section can be used to estimate the rates of a
general (non-homogeneous) Poisson process.

Our goal is to find a proper, implementable method with which we could
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obtain results close to the local optimum or even outperform it — but most
importantly it should work better than the fixed threshold policies. Hoping
that something better than the local optimum could be found is not un-
realistic: a difference between the estimate and the real parameter is not
necessarily bad, it might even help to get closer to the global optimum. The
locally optimal policies do not anticipate on the future, whereas the estimates
might.

So, the first task is to estimate \; as precise as possible. The next step
could be a method that can even predict \; producing a curve of the function
not reacting to the changes of the real one, but predicting the changes. We
call a curve of this type pro-active, because it changes before the real one
would have done the same. Using estimates corresponding to a pro-active
curve could be a possible way of outperforming the local optimum, because
capacity is provisioned before the actual surge in the call rate.

Let us see the techniques and their performances.

3.3.1 Average-type estimate

A first thought could be to take the average number of arrivals until ¢ as an
estimate at time ¢. This would be a good estimate in the case of a stationary
process. A short argument corroborating this is the following.

Suppose that we have a homogeneous Poisson process with rate A. Let
the number of events between s and ¢ be denoted by N(s,t) (we will use
the same notation in the non-homogeneous case as well). We know that the
distribution of N(s,t) is Poisson with parameter A(¢ — s). Therefore, its
expected value equals the parameter: EN(s,t) = A(f — s). So, an unbiased

N N(s,t)

estimate for the parameter is given by \ := =

Thus, if the function of the arrival parameter over time was “not too far
from being constant” (e.g., very slowly varying), then we could expect quite
good results by applying the following formula:

N(0,t)

Xt = P

(3.1)

Let us try it out (see Table 3).

This performance is quite disappointing: none of the good properties of
the locally optimal case seem to appear here. Although the throughput is
good enough, the waiting times are much too high: they exceed the constraint
by far. Therefore, this method is useless. But this is not surprising at all, if
we take a look at Figure 3 comparing the real function and the estimate.
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Number of | Average waiting time Throughput
experiment (seconds) (served type 2 jobs per hour)
1 0.58055 4382
2 0.55525 4350
3 0.56568 4402

Table 3: Results using average-type estimates (s =5, u = 0.34, « = 0.2)
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Figure 3: Average-type estimate of \;

The estimates are very far from the real function — this type of estimate
might have been good in the constant parameter case, but it miserably fails
here. This is certainly a sufficient reason explaining the poor performance.

It can be concluded that taking this average is too primitive to work well;
we need more sophisticated methods.

3.3.2 Moving average

We saw in Section 3.3.1 that the call rate function is very far from being
constant. But in small time intervals of length [, the difference might not be
so big. Hence, we use only the arrivals in the last [ seconds.
The method can be formulated as follows:
. N(t—1,t)

A= — (3.2)
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This formula seems to be much more promising than Formula (3.1), be-
cause it reacts faster to the changes.

Unfortunately, the choice of the parameter is crucial here: [ should not
be too small, because a sample of a sufficient size is needed to estimate the
parameter of a process. On the other hand, [ should not be too large either,
because then the average-type estimate would take effect, which was not
satisfying.

Nonetheless, this method gave much better estimates of A\; than For-
mula (3.1), almost regardless of the value of [ (see Figure 4).

i=100 =500
1 . T
1=1000 1=4000

Figure 4: Moving average with different [ interval lengths

It seems that [ = 1000 gives the best estimate. For smaller interval
lengths, the fluctuation around the real function is too strong; for [ = 4000,
the lag of the estimate with regard to \; is too large. In the case of [ = 1000,
there is almost no lag, and the fluctuation is not that big either, although a
smoother function would be preferable.

The results of the computer simulation for different interval lengths can
be found in Table 4.

The performance more or less validates our preconceptions about the
curves. The throughput is not that high in the case of [ = 100, and there are
problems with the average waiting time if [ = 4000.

According to the data of many experiments with different parameters s
and g, the average waiting time stays always around the constraint. Even
if it exceeds «, the difference is very small. Therefore, this method can be
considered reliable enough. Its productivity is high almost as high as in
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Number of Length of Average waiting time Throughput
experiment | the interval ({) (seconds) (served type 2 jobs per hour)

1 100 0.19841 4056

2 100 0.20821 4052

3 200 0.19968 4102

4 200 0.19800 4106

D 1000 0.19832 4113

6 1000 0.20081 4074

7 4000 0.20543 4128

8 4000 0.21533 4095

Table 4: Results with the moving average (s =5, 1 = 0.34,a = 0.2)

the case of using the real parameter. Hence, we can say, that this method
has unambiguously outperformed the policies using fixed thresholds. The
implementation is very easy: only the arrival times of the incoming calls in
the last 1000 seconds (i.e., approximately 17 minutes) need to be registered.

Regarding to these good properties, we can say that we have achieved our
first goal: using this easily implementable method instead of fixed threshold
policies would result in an improvement of around 30% in the productivity.
But this method only approaches the local optimum, it does not give better
results than that.

Hence, we try a third technique, that hopefully unifies the good properties
of these estimates with different interval lengths.

3.3.3 Exponential smoothing

The key idea of exponential smoothing is the (exponentially) decreasing im-
portance of the data of the past compared to the recent observations. Actu-
ally it is a weighted average where the weights of the new events are big, but
old observations count as well, albeit with much smaller weights.

We used 1000 seconds as a time unit and 2 as smoothing parameter. This
means that the importance of the number of arrivals in [t — 1000, ¢) is twice
as much as those in [t — 2000,¢ — 1000), four times as much as the same
number in [t — 3000, ¢ — 2000), etc. For simplicity, we take into account only
the events that occurred in the last 7000 seconds (which is about a 2 hours’
period). With this choice, we expect that the fluctuations of the estimate
disappear and that the lag gets smaller.

The mathematical formulation of this idea is given by
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~

t -

_ 64Ny + 32Ny + 16 N3 + 8Ny + 4N5 + 2Ng + Ny

127000

with the notation N, := N (¢ — 1000k, ¢ — 1000(k — 1)).
Note the number in the denominator: 127—64+32416+8+4+2+1.

(3.3)

Unfortunately, the results are not as good as we expected (see Table 5).

Number of | Average waiting time Throughput
experiment (seconds) (served type 2 jobs per hour)
1 0.20598 4089
2 0.20369 4096
3 0.20346 4121

Table 5: Results with exponential smoothing (s =5,y = 0.34, ¢ = 0.2)

The throughput of type 2 jobs is very high, but not significantly more
than it was in the case of using a moving average. The average waiting time is
slightly above the constraint. Therefore, this method is at most of the same
quality as taking the moving average in this particular application. Maybe
the relationship between the estimate and the real function can explain this.
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Figure 5: Estimate of )\; using exponential smoothing

We can see in Figure 5, that this curve is smooth enough — the lag is
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smaller, but it still exists. Therefore, our next target is to find a method
that can produce a pro-active curve.

3.3.4 Linear extrapolation

Linearly projecting the past to get a forecast for the future is probably one of
the simplest way of predicting. But, as can be read in [5]: ‘... when applied
to web-server page-request traffic, even elementary prediction techniques can
have a surprising forecasting power’. The excellent results described in that
paper inspired us to try out the method here.

The general problem is the following:

Given points in a plain with coordinates (x;, y;)!" ;, what are the parame-
ters of the line y = ax + ¢, that fits these points best?

A solution can be given as follows:

The problem can be reformulated as searching for a and ¢ that satisfy the
matrix-equation

1 = Y1
1 x Yo
. C .
( ‘ ) _ (3.4)
Iz, Yn

the best, in the sense that the norm of the error is minimal.
The next well-known theorem gives the solution:

Theorem 4: For a given matrix A € C™*"™ and a vector b € C", the vector
= A"b e C™ satisfies ||Az™ —b|| < ||Ax—b|| Vo € C™, where A~ denotes
the Moore-Penrose generalized inverse of A.

The columns of our matrix A are independent (except in the case of
xr1 = Ty = -+ = x,, where the line we are looking for can be given as y = x1),
thus the generalized inverse can be given easily by A~ = (AT A)71AT.

Using all these results we get

-1

=1 =1 =1

We just have to apply this method for forecasting. As we cannot observe
the arrival parameter directly, we have to use estimates of the arrival pa-
rameter from the past. Of course, it needs to be decided which estimation
method we want to use. Taking the moving average is very simple and still
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very effective. In the case of [ = 1000, the estimate was always very close to
the real parameter. So, we decided to use it here too. The other question
to decide on is the number of points to which the line should be fitted. An
extrapolation using only two points is evidently not reliable enough. So we
will try n = 3 and n = 4.

Nevertheless, the following formulation of the problem includes all the
cases. Let [ be the length of the interval we want to use.

The estimates of the old parameters are the following:

N —jlt— (=1 .
Aj = ( l ( )), (j=1,...,n).

Thus, the points to fit a line on are given by

T ::t—é, Y1 = /:\1,
To I:t—%l, Yo = )\27
Ty =1t — —(2";1)1, Un = An.

So, the estimate of the parameter of the arrival process at time wu, using c
and a from Expression (3.5) with these points is given by

~

Ao i=au+c, (u>t). (3.6)

It needs to be mentioned that this number can happen to be negative. In
this case, one should take 5\u = 0.

Certainly, the old parameters need to be updated regularly. We did it
whenever an event (a new arrival or the end of a service) had occurred.

Finding the most appropriate length of the interval is a very difficult task
in itself. Fortunately, the variance of the results is small in this case too, so at
least we can have an idea about it by comparing the numerical experiments.
Eventually, [ = 1000 turned out to give quite good results (see Table 6).

Number of | Value | Average waiting time Throughput
experiment | of n (seconds) (served type 2 jobs per hour)
1 3 0.20087 4103
2 3 0.19597 4096
3 4 0.19761 4078
4 4 0.18963 4101

Table 6: Results using linear extrapolation (s =5, u = 0.34,« = 0.2)
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So, we have found yet another method of approximately the same quality
as the moving average and exponential smoothing. All three methods have
similar advantages and disadvantages: while having an average waiting time
very close to the constraint, their productivity with regard to type 2 jobs is
high, but not better than the local optimum.

Let us see the relationship between the real function and the estimates:
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Figure 6: Linear extrapolation-type estimate of \; using n = 3 points
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Figure 7: Linear extrapolation-type estimate of \; using n = 4 points

These curves are still not pro-active enough, neither in the case of n = 3,
nor when n = 4. Therefore, in the next section we try something more

stic.
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3.4 Known function

Here we assume that the whole function of the arrival parameter is known.
This is obviously an unrealistic assumption. This allows us to check whether
we could really outperform the local optimum in our model by using a pro-
active curve.

3.4.1 Future average

Taking simply A, as the “estimate” of \; would certainly predict the changes
of the curve (precisely u seconds in advance), but should a sudden jump
occur, it could cause very large differences between the used and the real
parameter. We prefer a method that takes also the actual parameter into
account.

Therefore, our first idea was to take the average:

g o= N A (u>0). (3.7)
Results for different values of uw are in Table 7.

Number of | Value of u | Average waiting time Throughput
experiment | (seconds) (seconds) (served type 2 jobs per hour)

1 600 0.20153 4121

2 600 0.19860 4109

3 1200 0.19884 4140

4 1200 0.19701 4132

! 1800 0.20510 4117

6 1800 0.20912 4127

Table 7: Future average (s =5, u = 0.34,a = 0.2)

We can see that this method works well, indeed. It produces high through-
put with average waiting times close to the constraint.

Undoubtedly u = 1200 gives the best results: the throughput of type
2 jobs is the highest here, while the experienced average waiting times are
below the ones when using other values of u. However, these results are not
significantly better than the ones using the real )\;, in spite of the curves
being pro-active (see Figure 8).
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Figure 8: Pro-active estimate 1 (Future average, u = 1800)

3.4.2 Forward exponential smoothing
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The results achieved by using exponential smoothing had been close to
the local optimum, so it seemed interesting to try it the other way: using
data from the future. Furthermore, it might have been a big advantage in
this case that we were allowed to use the real parameters here, there was no
need for estimating them. The estimated function can be seen in Figure 9.
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Figure 9: Pro-active estimate 2 (Forward exponential smoothing)

This is virtually the same as Figure 8, only this curve is slightly smoother.
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The results do not differ too much either, though both the throughput and
the average waiting times are lower (see Table 8).

Number of | Average waiting time Throughput
experiment (seconds) (served type 2 jobs per hour)
1 0.19787 4035
2 0.19169 4041
3 0.19509 4031

Table 8: Results of forward exponential smoothing (s = 5, u = 0.34,« = 0.2)

We can see that although having all the information possible, the results
are not significantly better than the local optimum. Hence, it seems that we
need to find a different way to gain better results.

Until now, we made decisions independently of the effects of our actions
beforehand. The next step will be a method that has a learning effect.

3.5 Stochastic approximation

When we evaluate a method, the primary requirement is that it has to satisfy
the constraint on the type 1 waiting times (with high probability). Hence, it
seems to be reasonable to take actions depending on the relationship between
the constraint and the actual experienced average waiting time. If the waiting
time exceeds the constraint, then using a smaller threshold may be preferable,
while if the waiting time is far below the constraint, then we might gain a
higher throughput on type 2 jobs at the expense of having a slightly higher
average waiting time. The Robbins-Monro algorithm, published in [10] a
seminal work in the area of stochastic approximation — is based on exactly
this idea. We will use something similar to that, so we give the short review
of the algorithm and the corresponding main theorem, following the context
of [9].

3.5.1 Robbins-Monro algorithm

Robbins and Monro consider a problem where an experiment is performed at
different levels (inputs), and the response to the experiment can be measured.
Formally, to each input value x , the measurement made is drawn from a
random variable Y with distribution p(Y'|z) conditioned on x. Assume that
measurements are independent, and are identically distributed conditioned
on the input z. Let M(x) denote the expected response to the experiment
when the input is z, formally: M(z) := E(Y|z). Let a be a given number.
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The problem is to determine the input that produces an expected response
of a, i.e., the root 0 of the equation M(x) = a.

Robbins and Monro wanted to design a recursive procedure that converges
to the root, according to the scheme as follows.

1. Start with some input x;, and measure the response ;.

2. The input to the system in the second step is given as some function
of these values, formally x5 := f(x1,11).

3. Repeat this procedure, choosing the input to the measurement mecha-
nism in step n as a function of the inputs and the measured responses
in the previous (n — 1) steps.

The authors considered the update scheme described by Equation (3.8):

Tpi1 = Tp + ap(@ — Yn). (3.8)

They showed that in the presence of certain regularity assumptions, the
sequence of the inputs converges to the desired root in probability.
The main result in [10] is the following theorem.

Theorem 6: Assume that:

Vz 3C € R such that P(]Y (z)| < C) =1 (assumption on p(Y|z));

M (x) is non-decreasing in the input; the equation M(x) = « has a unique
root in @ (assumptions on M(z));
— The step sizes a,, are nonnegative, but not too big, and they are of type
1/n. Formally: a, >0, > a2 < oo, and Im’, m” such that %/ <a, < mT"
(assumptions on the step sizes).

Then, x, — € in mean square (and therefore, in probability).

The proof and generalizations of this theorem can be found for example
in [9] or in [10].

3.5.2 Call blending with SA

We will use a method similar to the Robbins-Monro algorithm described
above. First of all, we choose a (short) time interval of length {. We will set
the (general) threshold at time instants nl where n € N, with some initial
threshold. It is convenient to take [ = 1. We want to adjust the threshold
with regard to the relationship between the constraint and the waiting time.
In our case, the parameter of the arrival process is time-varying, therefore
the step size should not go to zero. About choosing the proper step sizes,
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one can find applicable methods in [4] and in [6]. We chose to use a constant
step size instead of taking a sequence of different step sizes.

Let us denote the experienced average waiting time until time ¢ by o4
(this can always be measured). With this notation, the formula we used is
as follows:

Cni1 = Cn + (e — ). (3.9)
The results obtained by using this update scheme can be seen in Table 9.
Number of | Value of ¢ | Average waiting time Throughput
experiment (seconds) (served type 2 jobs per hour)
1 0.01 0.91239 4967
2 0.01 0.92287 4952
3 1 0.50701 3434
4 1 0.48634 2959
5 3 0.28429 2155
6 3 0.27633 2672
7 5 0.20176 2696
8 5 0.22046 2443
9 10 0.23651 2624
10 10 0.22937 2803

Table 9: Results with update scheme (3.9) (s =5, = 0.34,« = 0.2)

We can see that at least ¢ = 5 is needed to have a chance of satisfying
the constraint. But even in those cases, the throughput of the outgoing calls
is low compared to the ones considered earlier. Therefore, this method is not
good enough.

But we did not use all the information we had. We could perhaps con-
struct a method that produces consistently high performance by using our
formulae (Expressions (2.3) and (2.6)) for EW?<.

The only problem with this is that the knowledge of all the parameters
(including the rate of the arrival process) is needed. Thus, we need to esti-
mate )\, again, for example with exponential smoothing.

The new formula for updating the threshold is given by

Cutt = Cn+ € | — (EW? )*1(04)] , (3.10)
where (EW{ )~!(a) denotes the generalized threshold that gives an expected

average waiting time of « if the rate of the arrival process is ;\n, and can be
obtained for example by the algorithms in Section 3.2.

30



The results in Table 10 show that this method works much better than
the previous one.

Number of | Value of ¢ | Average waiting time Throughput
experiment (seconds) (served type 2 jobs per hour)

1 0.5 0.23249 4067

2 0.5 0.21142 4088

3 1 0.21598 4093

4 0.21340 4100

5 1.5 0.19613 4140

6 1.5 0.20654 4111

7 2 0.18770 4061

8 2 0.20766 4091

9 3 0.20637 3798

10 3 0.21137 3707

Table 10: Results with update scheme (3.10) (s =5, u = 0.34,a = 0.2)

It seems that the value of € should be between 1 and 2. In those cases, the
average waiting time is close to «, while the throughput of the outgoing calls
is high — sometimes even higher than the local optimum. But the difference
is very small.

We also tried a third, hybrid update scheme given by

Cnt1 = Cp + €1 [cn - (]EW;\Z )71(04)] + exsgn(a — ay,). (3.11)

This method uses the information on the average waiting time, and has a
learning effect as well, so we can expect good performance. Indeed, it gives
very good results with the choice of &1 = 1.4 and g5 = 0.1 (see Table 11):

Number of | Average waiting time Throughput
experiment (seconds) (served type 2 jobs per hour)
1 0.19992 4190
2 0.19985 4218
3 0.19997 4114
4 0.20001 4358

Table 11: Results of computer simulation using SA, update scheme (3.11)
(s=5,14=034,0=02e =14 =0.1)
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The results show that this is clearly the best policy among the ones tried
here. Albeit only slightly, it has outperformed the local optimum, repeatedly,
while obeying the constraint. Note that the experienced average waiting time
is very close to « every time. Unfortunately, the variance of the throughput
of the type 2 jobs is larger than in the other cases. Nevertheless, even the
worst one here is as good as the local optimum.

It might be possible to obtain even better results with a proper choice of
the parameters. But the optimal parameters depend on the function of the
arrival rate and the other parameters of the model as well, hence they need to
be determined somehow in every particular case. The most important thing
is the fact that the local optimum can be outperformed by using stochastic
approximation.
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4 Generalizations

We examined different methods for call blending in Section 3 according to the
model described in Section 2. But the cases considered there were special:
we always used the same function of the arrival rate and assumed that the
service parameters were equal. It needs to be examined how the algorithms
perform in more general cases.

4.1 Unequal service requirements

The assumption that the service parameters are equal is a bit strange it
is a very opportunistic case when the service times of type 1 jobs and type
2 jobs are exactly of the same distribution. But if it is not true, then we
cannot use formulae (2.3) and (2.6) for computing EW? in the algorithms of
Section 3.2 to obtain the optimal threshold and randomization parameter.
Hence, there is a problem with all the methods based on estimating the arrival
parameter and calculating the locally optimal threshold with the algorithms
by substituting the estimate in the formulae.

As we can see from this argument, the only thing needed to be able
to use the methods in Section 3 is to compute the optimal threshold and
randomization parameter somehow. It could be done by using the recursive
formula for calculating EW? in the case of p; # po described in [1], but
this is technically not so easy. Therefore, we tried to obtain a more simple
algorithm.

4.1.1 Averaging i, and o

Our first idea was to reduce this case to the one with equal service parame-
ters, i.e., to make somehow one common parameter from the two different
parameters. After doing this, we can compute EW? with Expressions (2.3)
and (2.6), and everything goes like before. Our task is to find a method
that unifies p; and us so that the system with the new common parameter
i behaves similarly to the one with the different parameters. Of course, we
do not even know whether or not such a p exists.
The simplest way of unifying two numbers is to take the average:

e

pr=—p—

We computed the local optimum with this u, i.e., we always used the

threshold that would have been optimal in the equal parameter case with

the real actual arrival parameter and this service parameter. Unfortunately,
this procedure does not work well (see Table 12).

(4.1)
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Number of | 4 lo | Average waiting time Throughput
experiment (seconds) (served type 2 jobs per hour)

1 0.20 | 0.50 1.20336 5205

2 0.20 | 0.50 0.97920 5214

3 0.30 | 0.40 0.24594 4595

4 0.30 | 0.40 0.23833 4604

D 0.40 | 0.30 0.17675 3653

6 0.40 | 0.30 0.17001 3672

7 0.50 | 0.20 0.20651 2554

8 0.50 | 0.20 0.21278 2558

9 0.75 | 0.05 1.12203 732

10 0.75 ] 0.05 1.12562 730

Table 12: Local optimum with Formula (4.1) (s = 5,a = 0.2)

If the difference of the two parameters is small, then it is not, that bad, but
otherwise this method is useless, because the average waiting time exceeds «

by far.

Despite these results being very disappointing, we tried an other unifying
method too, the geometric average:

fi= /o (4.2)
The results can be seen in Table 13.

Number of | 4 lo | Average waiting time Throughput
experiment (seconds) (served type 2 jobs per hour)

1 0.20 | 0.50 1.06300 5057

2 0.20 | 0.50 0.98324 5056

3 0.30 | 0.40 0.23411 4587

4 0.30 | 0.40 0.23339 4590

5 0.40 | 0.30 0.17389 3654

6 0.40 | 0.30 0.16990 3648

7 0.50 | 0.20 0.12988 2454

8 0.50 | 0.20 0.13175 2459

9 0.75 1 0.05 0.05767 495

10 0.75 | 0.05 0.05767 493

Table 13: Local optimum with Formula (4.2) (s =5,a = 0.2)
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The average waiting time is still too big compared to « in the first four
experiments, so it does not really matter that the throughput of type 2 jobs is
high. After the fifth experiment, the average waiting times are too small, so
one can suspect that better results could be obtained with other thresholds.
It will be revealed in the next subsection that this conjecture is indeed true.

It seems that these unifying methods are not appropriate. We need to
find the optimal thresholds in a different way.

4.1.2 Optimal threshold by simulation

We know from the law of large numbers that under a fixed threshold policy,
the average waiting time converges to its expectation, i.e., to EW?, almost
surely. Hence, if we let a simulation of the system with fixed parameters
S, ji1, f42, A run long enough, then we can hope to experience an average wait-
ing time close to the corresponding ]EW(qcﬂé). With this information in hand,
we can compute the optimal threshold for these parameters via the algo-
rithms in Section 3.2.

The only question to decide on is when to run the simulation. We have
two possibilities to consider.

The first one can be described as follows.

1. Compute a pro-active estimate for \;, i.e., let M\, be a forecast of \;
with u < t.

2. Run a simulation of the system with M. as arrival rate from w until
t with different thresholds and randomization parameters to get the
largest generalized threshold for which the experienced average waiting
time is under a.

3. Apply the threshold obtained in step 2 at time t.

The advantage of this procedure is that it can be always used, regardless
of the values of the parameters. The disadvantages are that the time available
for the simulation might not be sufficient to obtain a proper threshold that is
close to the optimum, and anyway, it is not that easy to produce pro-active
estimates.

It needs to be mentioned that it is possible to use a dynamic programming
algorithm (e.g., value iteration) with Ae as an arrival rate, instead of the
simulation. That method might converge faster to the expected waiting
time than the observed average waiting time in the simulation, but the same
problems may still exist even in that case.
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If we have some information on the possible values of the arrival rate,
e.g., that the values are in an interval [a,b], then a much more promising
procedure is possible as follows.

1. stepsize := 0.01; (the accuracy of the method)
2. A :=a;

3. while A <b do

4. begin

5. Get the optimal threshold for this A\ via simulation.
6. Store the result.

7. A= )\ + stepsize;

8. end;

A table of an arbitrary accuracy can be constructed easily by choosing
a small step size properly, and providing enough time for the simulation so
that the observed average waiting time can be close enough to the expected
average waiting time. An example of such a table can be seen in Table 14.

A0 01]02]03]04]05|06]|07]08]09 1
Copt | O | 4.67 | 4.36 | 4.04 | 3.89 | 3.73 | 3.54 | 3.34 | 2.95 | 2.79 | 2.52

Table 14: Some optimal thresholds for different values of the arrival rate
(s =5,u1 =05, =0.2a=0.2)

A very big advantage of this method is that a table constructed once can
be used as long as the parameters of the system remain the same, so it is
really worth to build a very accurate one. It can also be extended without
problems if we experience a A that is far from the ones included in the table.

After having created a table, we can apply all the methods described in
Section 3. We give the results of three methods, namely the local optimum
in Table 16, using estimates with the moving average in Table 17, and the
results using stochastic approximation with the third update scheme in Table
18.

But first of all, we need to give the results with fixed thresholds in Ta-
ble 15, because that is the traditional method, and our primary goal is to
outperform that if possible.
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Threshold | Average waiting time Throughput
(seconds) (served type 2 jobs per hour)

0 0.00584 0

1 0.01167 626
2 0.03559 1289
3 0.11747 1958
4 0.38298 2646
5 1.24532 3252

Table 15: Fixed thresholds (s = 5, u1 = 0.5, uo = 0.2)

Choosing o = 0.2 as a constraint again, we see that at most ¢ = 3 agents
should be assigned to outgoing calls. If we allow to use a fixed randomization
parameter, then the best fixed threshold policy that obeys the constraint on
the average waiting time of incoming calls is the one of threshold level 3.49
(i.e., c = 3,0 = 0.51), producing a throughput of 2049 served type 2 jobs per
hour.

Next, let us investigate the local optimum, i.e., the results of a procedure
that uses always the optimal threshold corresponding to the actual real pa-
rameter. More precisely, it uses the optimal threshold corresponding to the
closest value to the real parameter in the table constructed earlier.

Number of | Average waiting time Throughput
experiment (seconds) (served type 2 jobs per hour)
1 0.20717 2551
2 0.19836 2553
3 0.19896 2555

Table 16: Results of computer simulation using locally optimal thresholds
(s=5,u1 =0.5,uy =02, =0.2)

These results are much better than the ones that the best fixed threshold
policy satisfying the constraint can provide. The throughput of this method
on type 2 jobs is about 25% higher than the one of the best allowed fixed
threshold policy, while there are no problems with obeying the constraint.

The only problem is that here we used the real parameters of the arrival
process that are unknown in reality. Therefore, the results of the following
method using the moving average for estimating the parameters might be
more interesting, because that is implementable.

Let us see the results in Table 17.

37



Number of | Average waiting time Throughput
experiment (seconds) (served type 2 jobs per hour)
1 0.19684 2554
2 0.20380 2541
3 0.20296 2557

Table 17: Results using the moving average for estimating the arrival rate
(s=5,u1 =05, =02 a=0.2)

The results show that this method works approximately as good as the
local optimum. The throughput is high, and this method is reliable enough:
the average waiting time stays close to . Note that the throughput is indeed
better than the ones in Table 13. Implementing this method is exactly as
easy as in the case of equal service parameters.

However, these results are not better than the local optimum, so it is
worth trying to apply the stochastic approximation algorithm that worked
so good in the case of p; = po. The results can be found in Table 18.

Number of | Average waiting time Throughput
experiment (seconds) (served type 2 jobs per hour)
1 0.20006 2661
2 0.20030 2591
3 0.20002 2614

Table 18: Results using stochastic approximation, with update scheme (3.11)
(s=5,u1=05pu2=02aa=02e, = 15,69 =0.1)

It seems that this last method outperforms all the others (including the
local optimum) again. It can be observed how little the difference is between
the constraint and the experienced average waiting time. The throughput of
type 2 jobs is undoubtedly higher in this case than the local optimum. It
needs to be stressed that the properties of this method were equally good for
other values of p; and py as well.

Hence, we can conclude that under the given circumstances (i.e., using
the arrival rate function of the Charlotte Call Center) a stochastic approxi-
mation method seems to be the most appropriate, even in the case of unequal
parameters.

38



4.2 Peaked arrival rate function

The examination of the system with the data of the Charlotte Call Center
that we used until now is complete with the case considered in Section 4.1,
because that is the most general case that fits in our model.

It might be interesting to see how the estimation methods work if the
function of the parameters of the arrival process is of a different shape. The
second thing to observe is whether we can obtain the best results with sto-
chastic approximation methods like before.

We will consider a very peaked function, because handling slowly varying,
smooth functions is much easier; even the average-type estimate is not that

bad in that case. The plot of the function that we used can be seen in Figure
10.
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Figure 10: Parameter of the arrival process

First of all, it needs to be examined whether the estimation methods
considered before can approximate this function as well. There should be
no problems with estimating the parts where the function is constant. But
there are sudden changes as well, and handling those may make a distinction
between appropriate and non-appropriate methods here.

Because of the peaks, the evaluation of the methods here will be primarily
determined by the lags they produce. For example, if the estimate is 30
minutes behind the real function, then it stays constant between 8:00 and
8:30, while there is a high peak in the real function. So, the number of agents
assigned to incoming calls will be much lower than needed, hence there will
be a serious backlog with regard to the average waiting time.
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Not surprisingly, the average-type estimate that uses Formula (3.1) gives

just as poor results as in Section 3.3.1 (see Figure 11).
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Figure 11: Average-type estimate of )\,

This estimate is virtually useless, except that it follows the real function
until its first change very well.
Let us see the moving average-estimate next. According to the argument
about the importance of not producing a lag, we chose a rather small interval

length, [ = 400.
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Figure 12: Moving average estimate with interval length [ = 400

We can see that there is almost no lag indeed, but choosing a small

interval length has as a side effect that the fluctuation is quite big.
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The exponential smoothing method might help to get an estimate that is
still not behind the real function, but has a smaller variance. The estimate

with [ = 400 as a time unit and 2 as smoothing parameter can be seen in
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Figure 13: Estimate of \; using exponential smoothing

It seems that this curve is worse than the previous one. Although the
fluctuation is really not that big, it is still significant, and there is also a

not-negligible lag present.

The next method that we consider is linear extrapolation (see Figure 14).
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Figure 14: Linear extrapolation-type estimate
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This curve is a bit like the one when we used a moving average to estimate
the function. We can see that linear extrapolation displays the changes as
soon as they have occurred, but the estimate alternates around the real
function very frequently.

We have tried all the estimation algorithms that we used in Section 3.
Now, we just have to apply them. Naturally, we will consider the unequal
parameter case, because that is more general. The parameters for which
we will give the results of the computer simulation are always the same:
s =09,u1 =05, =02,a=0.2.

Let us see first what the traditional method with a fixed threshold gives
for all the possible values of the threshold (see Table 19).

Threshold | Average waiting time Throughput
(seconds) (served type 2 jobs per hour)

0 0.00344 0

1 0.00889 609
2 0.02568 1261
3 0.08563 1935
4 0.31351 2601
5) 1.18851 3193

Table 19: Fixed thresholds (s = 5, 1 = 0.5, o = 0.2) (peaked arrival rate
function)

We can see that if we want the average waiting time to be below 0.2,
then we can choose the threshold to be at most ¢ = 3. The best allowed
generalized threshold would be 3.71, with a throughput of 2149 served type
2 jobs per hour.

The results in Table 20 show that the local optimum is by far better than
this.

Number of | Average waiting time Throughput
experiment (seconds) (served type 2 jobs per hour)
1 0.19745 2528
2 0.20027 2515
3 0.20277 2522

Table 20: Results of computer simulation using locally optimal thresholds
(s =5,u1 = 0.5, 40 = 0.2, = 0.2) (peaked arrival rate function)

It is important that the experienced average waiting times of the incoming
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calls here are almost the same as «a, so this method is reliable enough — it
respects the constraint at a reasonable extent. The difference between the
throughput of the type 2 jobs of the best allowed fixed threshold policy and
the local optimum is about 30% again, similar to what is was in the case
when we used the arrival rate function of the Charlotte Call Center.

We have just seen that the local optimum gives indeed very good results
again. But the most important thing is how the implementable methods
work here. Let us start with the moving average (see Table 21).

Number of | Average waiting time Throughput
experiment (seconds) (served type 2 jobs per hour)
1 0.20225 2526
2 0.19899 2528
3 0.19976 2521

Table 21: Results using the moving average for estimating the arrival rate
(s =5,u1 = 0.5, 40 = 0.2, = 0.2,] = 400) (peaked arrival rate function)

We can conclude that taking the moving average is again an easily imple-
mentable method that provides a high throughput and an average waiting
time that is close to the constraint.

The next method is the one that uses exponential smoothing for estimat-
ing the parameter (see Table 22).

Number of | Average waiting time Throughput
experiment (seconds) (served type 2 jobs per hour)
1 0.21229 2527
2 0.21245 2522
3 0.20664 2524

Table 22: Results using exponential smoothing for estimating the arrival rate
(s =5,u1 = 0.5, 40 = 0.2, = 0.2) (peaked arrival rate function)

These results are unequivocally worse than the ones in Table 21. The
throughput is virtually the same, but the average waiting times are higher
here, and the difference with which they exceed « is barely acceptable. It
seems that the argument at the beginning of this subsection about the lag
having a worse effect here than the fluctuations is indeed true. Therefore, we
can expect good results from the next method again, as one can remember
that the linear extrapolation estimate had almost no lag.

The results of the computer simulation are given in Table 23.
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Number of | Average waiting time Throughput
experiment (seconds) (served type 2 jobs per hour)
1 0.20392 2536
2 0.20272 2528
3 0.20266 2536

Table 23: Results using linear extrapolation for estimating the arrival rate
(s =5,u1 = 0.5, = 0.2, = 0.2) (peaked arrival rate function)

It is clear by looking at these results, that this estimating algorithm
works very good in this case. It gives the highest throughput of type 2 jobs
experienced until now. It is even better than the local optimum, albeit the
difference between them is not really significant. The average waiting time
exceeds a by 1-2%, but such a small difference might be acceptable.

The last procedure that we try here is the stochastic approximation
method with update scheme (3.11). We hope that it would work as good
as in the case of the other arrival function. Unfortunately, this is not true
(see Table 24).

Number of | Average waiting time Throughput
experiment (seconds) (served type 2 jobs per hour)
1 0.19997 2525
2 0.20004 2515
3 0.20015 2529

Table 24: Results using stochastic approximation, with update scheme (3.11)
(s =501 =05, =02, =02, = 13,69 = 0.11) (peaked arrival rate
function)

We can be really satisfied with the average waiting times that this method
provides — the difference between those and the constraint is very small. The
throughput of type 2 jobs is not that bad either. It is almost the same as
the local optimum, but this time it is not better than that.

There might exist some parameter values of £; and £, with which the local
optimum could be outperformed even in this case, but we have not found any
despite trying many different values. But this is still a very good method,
and let us mention that there are no problems with implementing it.
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5 Conclusions

The problem that we wanted to investigate was how call blending in a
call center should be done if the incoming calls arrive according to a non-
homogeneous Poisson process. The arrival rate function that we used is
constructed according to the data of the Charlotte Call Center.

We considered the equal service parameter case first, and saw that the
traditional method used in call centers can be outperformed by using thresh-
old policies with the locally optimal thresholds. These thresholds depend
on the rate of the arrival process, but that is unknown. So, it needs to be
estimated in applications.

We examined procedures for estimating the time-varying parameter of a
non-homogeneous Poisson process. All the methods are based only on the
number of arrivals in the process, hence they are model-free, they can be
used for different systems as well.

With the proper choice of the parameters, estimates of different types
(e.g., pro-active, smooth) can be produced, according to what is needed in
the particular case. In this model, it depends primarily on the shape of
the function of the arrival process. If there are sudden big changes, then
having no lag is of primary importance, while if the function is smooth and
slowly varying, then we might allow the estimate to have a little lag to avoid
fluctuations.

Then, we tried stochastic approximation methods with a learning effect
in order to obtain better results than the local optimum.

The most important observations in the equal service parameter case are
the following:

1. The local optimum is much better than using fixed thresholds.

2. Taking the moving average as an estimate is an easily implementable
method that outperforms the traditional method by far, but is not
better than the local optimum.

3. Using stochastic approximation works even better than the local opti-
mum.

In the general case when py # 9, we can draw the same conclusions.

The first two statements remain true in the case of the peaked function
that we examined in Section 4.2, but it seems that the stochastic approx-
imation method with upgrade scheme (3.11) is only as good as the local
optimum, not better than that in that case.
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There are many parameters to choose in the different estimation algo-
rithms. The optimal choice of those might improve the performance signifi-
cantly in each particular case. The possibilities in stochastic approximation
are also not fully exploited, other update schemes or these with other step
sizes might work better in other cases.

We would like to emphasize that all the evaluations of the methods are
based on results obtained by computer simulation, therefore they are not
necessarily completely accurate. However, it seems to be certain that using
one of these procedures instead of the traditional method would result in a
remarkable improvement in productivity.
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