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Abstract

In this thesis we have studied Markov decision processes with unbounded transition rates. In
order to facilitate the search for optimal policies, we are interested in structural properties of
the relative value function of these systems. Properties of interest are for example monotonic-
ity or convexity as a function of the input parameters. This can not be done by the standard
mathematical tools, since the systems are not uniformizable. In this study we have examined
whether a newly developed method called Smoothed Rate Truncation can overcome this problem.

We introduce how this method is used for a processor sharing queue. We have shown that it can
be applied to a system with service control. We have also obtained nice results in the framework of
event-based dynamic programming. Due to Smoothed Rate Truncation new operators arise. We
have shown that for these operators propagation results, similar to results for existing operators,
can be derived. We can conclude that Smoothed Rate Truncation can be used to analyse other
processes that have unbounded transition rates.
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Chapter 1

Introduction

If we look at Markov control problems, it is desirable that optimal strategies for these problems
are well-behaved as a function of the input parameters. For practical applications, this makes
computation or approximation of optimal policies possible. To check if a model has such a struc-
ture on its policies, we can study the so-called relative value function. Important properties
of the value function, necessary to show the desirable structure, are monotonicity, convexity
or supermodularity. A standard work is Puterman [10], and monotonicity results are given in
Stidham and Weber [12], [13]. A common method for deriving such properties is the successive
approximations method for discrete-time Markov decision processes.
If the original problem is modelled in continuous-time, it is possible to use the successive approx-
imations scheme, but that requires that the Markov decision process is uniformizable (see [9]).
A continuous-time Markov decision process is uniformizable if the transition rates are bounded.
For continuous-time MDPs that have bounded rates, there is a nice framework developed, called
event-based dynamic programming, which unifies results obtained for different models. The
founders of this framework were Topkis [14] and later Glasserman and Yao [4] and [5]. Koole [8]
has further developed this area, in this thesis we will use his work as a main reference.

In modern applications of Markov decision processes the transition rates are often unbounded as
a function of actions or states. This can be due to impatient customers. The successive approxi-
mations method is not applicable then. There have been attempts to overcome this problem. In
a paper of Down et al. [3], where a system with service control on a single server with abandon-
ments is treated, a finite state space truncation is used. To keep the structural properties of the
model intact, a special choice of the transition rates on the boundary is necessary. Unfortunately,
this method is very model-dependent and seems not to be applicable in general.
Bhulai et al. [2] have studied a different system where jump rates are unbounded. A processor
sharing queue with impatient customers who can retry if they abandon the queue. Two solutions
are presented, a coupling method and a method called Smoothed Rate Truncation principle (ab-
breviated SRT). This last method uses linearly truncated rates, such that the adapted system
has a recurrent closed class which is finite. As a consequence the transition rates become bounded.

We have investigated if the SRT principle is more widely applicable. We have successfully ap-
plied the SRT method on the model that is treated in [3]. With this method the same results are
obtained as in the paper. Further, we have studied to what extent SRT fits in the framework of
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event-based DP. The theory of event-based dynamic programming can be extended with theory
on MDPs with unbounded transition rates.

The structure of the thesis is as follows. In the next chapter we give an introduction of the existing
methods for showing structural properties and we specify the problem with unbounded rates.
In Chapter 3 we introduce the smoothed rate truncation and demonstrate its application on the
processor sharing queue and the system with service control. In Chapter 4 we derive some results
in event-based DP that can be obtained for events in systems with unbounded transition rates.
We finish by drawing some conclusions and recommendations for further research in Chapter
5.
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Chapter 2

Basic theory

2.1 Markov decision processes

A Markov decision process is a stochastic process, where the probabilities can be influenced by
a decision maker. Markov decision processes provide a mathematical framework for modelling
decision making in many applications.
We are interested in giving a structure on optimal policies of Markov control problems. For
example, in many systems it would be desirable that the optimal policy is a threshold policy.
I.e. the optimal action would depend on a threshold value as a function of the input parameters.
This can be done by using properties of the relative value function of these models. Without
this structure the search for optimal policies is very difficult, if not impossible. For discrete-time
MDPs there is a method for showing such structural properties of the value function: the suc-
cessive approximations scheme.
In real life, most problems are in continuous time. The method for showing structural properties
for these problems, is to translate these processes into discrete-time processes. In order to do so
a uniformization step is needed. In this chapter we will first explain how to compute the relative
value function using the successive approximations scheme. Then we will explain uniformization
of continuous-time MDPs.

A discrete-time Markov decision process consists of the following quadruple

{X , A, p(x, a, y), r(x, a)}.

1. A denumerable set X , called the state space. It is the set of all states of the system under
observation;

2. The compact action space A, the set of all actions that the decision maker can take;

3. The transition probabilities p(x, a, y), the probability that under action a the system moves
from state x to y;

4. A function r : X × A → R, the reward function. We can replace r(x, a) by c(x, a) and
interpret it as a cost function instead of a reward function.
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A deterministic stationary policy R : X → A is a function which assigns an action to each state.
Let R be the set of all policies. We assume that the conditions for existence of a limiting distri-
bution are fulfilled. For a theoretical background on MDPs see Hernandez-Lerma and Lassere
[6] and [7]. Let πR∗ be the limiting distribution under policy R. The goal of our optimization is
to maximize the expected average reward gR, where

gR =
∑
x∈X

πR∗ (x)r(x,R(x)).

Calculation and maximization of the expected average reward directly is not trivial. In order to
evaluate the expected average rewards, for each policy, it is necessary to compute the limiting
distribution πR∗ . To avoid this, we use optimality criteria for the maximum expected average
reward g. This is stated in the optimality equation or Bellman equation:

V (x) + g = max
a∈A
{r(x, a) +

∑
y∈X

p(x, a, y)V (y)},

where V is the relative value function of the optimal policy. This is a system with a countable
collection of variables and equations and is not easy to solve. A general method to overcome this
problem is to approximate the value function via the successive approximations scheme. Define
a sequence Vn as follows. Let V0 ≡ 0 and iteratively

Vn+1(x) = max
a∈A
{r(x, a) +

∑
y∈X

p(x, a, y)Vn(y)}.

Then we have that Vn(x) − Vn(0) → V (x) − V (0) as n → ∞, for some reference state 0. This
algorithm plays a crucial role when we want to show properties of the relative value function.
We will see that we can only prove anything if the properties propagate through this recursion.
In practice, for most problems the time is continuous. Under some conditions the continuous-
time processes have a discrete-time equivalent. Let a continuous-time Markov decision process be
given. Let λ(x, a, y) be the rate from x to y under action a. Then the process is uniformizable if
there exists a number γ such that for all x and all a we have

∑
y 6=x λ(x, a, y) ≤ γ. The uniformiza-

tion works as follows. In each state x with
∑
y λ(x, a, y) < γ we add fictitious transitions from x

to x, such that the rates out of a state sum up to γ. This new process will have expected transi-
tion times equal to 1/γ for all states. Then we can define the related discrete-time process with
transition probabilities p(x, a, y) = λ(x, a, y)/γ if y 6= x and p(x, a, x) = 1 −

∑
y 6=x λ(x, a, y)/γ.

For this discrete time process we are able to approximate the relative value function using the
successive approximations scheme.

Through an example, we will illustrate how this uniformization works. Let us look at the M |M |s-
queue. This is a multi-server queue model with the following specifications. Arrivals occur
according to a Poisson process with rate λ. The service time is exponentially distributed with
mean 1/µ, there is a fixed number of s servers. All servers are mutually independent and
independent of arrivals. The queue has an infinite buffer, so X = Z+. There are no actions in
this example. If there are s or more customers in the system then the servers are working at
maximum speed with rate sµ. The service rate is xµ if there are less than s customers in the
system. So we get the transition rates

λ(x, y) =

 λ if y = x+ 1,
xµ if y = x− 1, 0 ≤ x ≤ s,
sµ if y = x− 1, x > s.
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All rates are zero elsewhere. We see that the maximum jump rate out of a state is λ+ sµ, so we
take γ = λ + sµ. Then artificial rates are introduced such that we have rate out equal to γ for
all x. For x < s we add dummy transitions; λ(x, x) = (s− x)µ. The discrete-time equivalent of
this process has the following transition probabilities

p(x, y) =


λ/γ if y = x+ 1,
xµ/γ if y = x− 1, 0 ≤ x ≤ s,
sµ/γ if y = x− 1, x > s,
(s− x)µ/γ if y = x, 0 ≤ x ≤ s.

Now that the uniformization is finished, we are ready to use the successive approximations
scheme. In the next section we specify which properties of the relative value function we are
interested in.

2.2 Monotonicity

Let f : X → R. Let X = Zm+ . For 1 ≤ i, j ≤ m, define the following properties, let f is

I(i) if f(x+ ei) ≥ f(x) ∀x ∈ X ;
C(i) if f(x+ 2ei)− f(x+ ei) ≥ f(x+ ei)− f(x) ∀x ∈ X ;

Super(i, j) if f(x) + f(x+ ei + ej) ≥ f(x+ ei) + f(x+ ej) ∀x ∈ X ;
DI(i, j) if f(x+ ei) ≥ f(x+ ej) ∀x ∈ X ,

where ei is the i-th unit vector. In words, f is I(i) if it is non-decreasing in variable i; C(i)
means convex in variable i. A function is Super(i, j) if it is supermodular in the variables i and
j, this is a sort of 2-dimensional generalization of convexity. DI(i, j) means that f is increasing
in the direction (ei,−ej).

We apply successive approximations to the M |M |s-queue with holding cost r(x) = x. Without
loss of generality we can assume that γ = 1. Then define Vn by the successive approximations
scheme. V0 ≡ 0 and

Vn+1(x) =
{
x+ λVn(x+ 1) + µxVn(x− 1) + µ(s− x)Vn(x) 0 ≤ x ≤ s,
x+ λVn(x+ 1) + µsVn(x− 1) x > s.

As an example, we will prove that Vn is non-decreasing, for all n.

Proof. The proof is done with induction. Clearly V0 ≡ 0 is non-decreasing. Now suppose that
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Vn is non-decreasing, then Vn+1 is non-decreasing, since for 0 ≤ x < s we have

Vn+1(x+ 1)− Vn+1(x) = (x+ 1)− x
+ λVn(x+ 2)− λVn(x+ 1)
+ µ(x+ 1)Vn(x)− µxVn(x− 1)
+ µ(s− x− 1)Vn(x+ 1)− µ(s− x)Vn(x)
= 1 + λ[Vn(x+ 2)− Vn(x+ 1)]
+ µx[Vn(x)− Vn(x− 1)] + µVn(x)
+ µ(s− x− 1)[Vn(x+ 1)− Vn(x)]− µVn(x)
≥ 0.

All terms between the square brackets are greater than or equal to zero, because of the induction
hypothesis. This gives the desired inequality. For x ≥ s we have

Vn+1(x+ 1)− Vn+1(x) = (x+ 1)− x
+ λ[Vn(x+ 2)− Vn(x+ 1)]
+ µs[Vn(x)− Vn(x− 1)]
≥ 0.

With induction we conclude that Vn is non-decreasing, for all n.

Hence, by taking the limit n→∞, we conclude that the relative value function V has the same
property, i.o.w. V is non-decreasing. If we would add actions to this model, this structure could
help in finding more efficient algorithms to determine an optimal policy.

2.3 Formal specification of problem

There are models where the Markov decision process does not have all properties necessary for
uniformization. For example, in many telecommunication systems the total rate out of a state
grows infinitely large as a function of the state variable. If the transition rates are unbounded,
then uniformization is not possible. Hence it is not possible (or very difficult) to prove structural
properties for the relative value function. This in spite of the fact that there may be strong
evidence for the process to have these properties.

In the previous example we have seen how uniformization works in the M |M |s-queue. Now we
look at the M |M |∞-queue. This queue is the same as the M |M |s-queue, except that there is an
infinite number of servers. We have transition rates

λ(x, y) =
{
λ if y = x+ 1,
xµ if y = x− 1.

The jump rates out of a state sum up to λ+xµ,which tends to infinity when x grows to infinity.
The transition rates are unbounded, so uniformization is not possible.

It would be desirable to have a method that allows us to solve such problems. That is the main
question we consider in this thesis. How can we prove structural properties of the relative value
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function of Markov decision processes with unbounded rates?
We will focus especially on the smoothed rate truncation principle. Is it possible to use the
SRT-principle to prove properties of the value function for different systems with unbounded
rates? Further, we want to know if the smoothed rate truncation principle can be embedded in
the event-based dynamic programming framework? How should this be done?
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Chapter 3

Smoothed Rate Truncation
principle

3.1 Definition and intuition

In order to deal with processes with unbounded rates, we will use an adaptation of these processes
such that the rates become bounded. We will do this by truncating part of the transition rates,
such that the resulting process has a finite recurrent closed class. Therefore, as the transition
rates increase as a function of the state, the rates remain bounded inside the recurrent class.
We approximate the model on a countable state space X by a series of models with finite state
spaces XN , such that XN ⊂ XN+1 and limN→∞ XN = X . Let the N th model have transition
rates λN (x, a, y). These should be a perturbation of λ(x, a, y) such that there are no transitions
from XN to X \ XN .
One näıve way to do this is to leave all transition rates unchanged, except for the transitions
that move out of XN , i.e.

λN (x, a, y) = λ(x, a, y) for x 6= y ∈ XN ,
λN (x, a, y) = 0 if x ∈ XN , y /∈ XN ,
λN (x, a, x) = λ(x, a, x) +

∑
y/∈XN

λ(x, a, y) if x ∈ XN ,

λN (x, a, y) = 0 if x /∈ XN .

Unfortunately, close to the boundary the value function will lose its inherent properties as a
consequence of the sharp cut in the rates.

An example where the value function loses its properties is the following. It is possible to solve
the Poisson equations for the M |M |1-queue (see Bhulai [1]), and we obtain an exact formula of
the value function

V (x) =
x(x+ 1)
2µ(1− ρ)

,
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with ρ = λ/µ < 1. The value function is clearly convex. On the other hand, if we truncate the
system as described above, then the resulting process obtains the following value function:

V N (x) =
x(x+ 1)
2µ(1− ρ)

− c

x+

(
1
ρ

)x
− 1

1− ρ

 ,

where the constant c is given by

c =
(N + 1)ρ

µ

((
1
ρ

)N
− ρ
)

(1− ρ)
.

The value function of the truncated system consists of a positive part and a dominant negative
part which increases exponentially, hence V N is not convex anymore.

We wish to avoid this problem, therefore it is necessary to truncate the transition rates in a
more smoothed way. This is the idea of the Smoothed Rate Truncation principle: the rates of all
transitions leading in a direction outside XN are linearly decreased until they equal zero. They
are kept zero outside XN . All transitions that make the state variables smaller stay unchanged.
In this way stability and ergodicity are preserved.
The smoothed rate truncation, which we shall abbreviate as SRT, is linear in the state variable.
The transition rates are linearly truncated as the state increases until they equal zero. Suppose
that a transition moves in the direction xi with rate λ, then in the perturbed process this rate
is replaced by λN := λ(1− xi/N)+.

3.2 Limit theorems

The SRT method can only work, if the relative value function of the smoothed MDP converges to
the relative value function of the original Markov decision process. We will need a limit theorem
to get the validity of this approach.

Suppose we have a collection of parametrized countable state Markov processes, X(a) = {Xt(a)}t,
where a is a parameter from a compact parameter set A. Let Q(a) =

(
qxy
)

be the associated
rate matrix. We assume each process X(a) has at most one closed class, plus possibly inessential
states.

A function f : E → R+ is a moment function if there exists an increasing sequence of finite
sets En ↑ E, n → ∞, such that inf{f(x)|x /∈ En} → ∞ as n → ∞. We can use the following
theorem, that is proven by Spieksma [11].

Theorem 1. Let the collection {X(a)}a∈A as above. Suppose the following conditions hold.

i) {X(a)}a∈A is f -exponentially recurrent for some moment function f . I.e. there exists a
moment function f : E → R+, constants c, d > 0 and a finite set K such that∑

y

qxy(a)f(y) ≤ −cf(x) + d1{K}(x), x ∈ E.
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ii) a 7→ qxy(a), a 7→
∑
y qxy(a)f(y) are continuous functions, for each x, y ∈ E.

Then we have the following properties.

1) {X(a)}a∈A is f -exponentially ergodic, in other words, there exist constants α, κ > 0 with∑
y

|Pt,xy(a)− π(a)|f(y) ≤ κe−αtf(x), t ≥ 0, a ∈ A,

where π(a) = (πx(a))x∈X is the unique stationary distribution of X(a).

2) Let c(a) = (c(x, a))x∈E , a ∈ A, be a cost function with a 7→ c(x, a) continuous for each x ∈ E.
If supx | supa c(x, a)|/f(x) < ∞, then a 7→ g(a) = π(a)c(a) =

∑
x πx(a)c(x, a) is continuous

and a 7→ V (a) =
∫∞
0
Pt(a)(c(a)− g(a))dt is component-wise continuous.

Now we wish to apply this theorem to a parametrized collection of Markov processes, associated
with the smoothed rate truncation. Let A = 0 ∪ {1/N}N∈N. For an optimal policy R∗, on A we
define the rate matrix Q(a) as follows.
For a = 0 we take Q(0) =

(
λ(x,R∗(x), y)

)
xy

, for a = 1/N let Q(1/N) =
(
λN (x,R∗(x), y)

)
xy

.
The following corollary gives the desired convergence of the value function.

Corollary 1. Let V N be the associated value function of the process {X(1/N)}N∈N, let V be
the value function associated to {X(0)}.
If {X(a)} satisfies conditions i) and ii) from Theorem 1, then for all x ∈ X

V N (x)→ V (x).

The models that we have studied satisfy the conditions of the theorem easily.

3.3 Processor-sharing retrial queue

The processor-sharing queue has been examined by Bhulai et al. [2]. This is the model for which
they have developed the SRT principle. We will first introduce the model and then look at how
the SRT principle does its work. We will pay special attention to the difficulties that arose and
the solutions to these difficulties.

The system is as follows. There is a service facility Q1 where customers arrive according to a
Poisson process with rate λ. The customers are served in a processor-sharing discipline, where
the potential inter-departure times are exponential with mean 1/µ. Customers are impatient in
the following way. They will leave Q1 after an exponentially distributed period with mean 1/β,
independent of all other customers. After a customer has left Q1 it abandons the system with
probability 1− ψ and it will go to a retrial queue Q2 with probability ψ. Each customer in the
retrial queue independently rejoins the tail of Q1 after an exponentially waiting time with mean
1/γ. Further, the system is controlled by the joining rule [s], for s ∈ [0, 1] upon arrival a customer
joins facility Q1 with probability s and gets blocked with probability 1− s, independent of other
customers. In the paper properties of the value function as a function of the control parameter
s are obtained. This requires a difficult approximation technique and we will not discuss it here.
We will regard s as if it is constant.
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The system can be modelled as follows. Let (X(s), Y (s)) = {Xt(s), Yt(s)}t≥0 be a Markov
process representing the number of customers in facilities Q1 and Q2, under joining rule [s] at
time t. The state space X = Z+ × Z+, so (Xt(s), Yt(s)) = (x, y) ∈ X if at time t there are x
customers in Q1 and y customers in Q2. Denote the transition rate from (x, y) to (x′, y′) by
qxy,x′y′(s). Then for (x, y), (x′, y′) 6= (x, y) ∈ Z+ × Z+ we have

qxy,x′y′(s) =


λs if (x′, y′) = (x+ 1, y),
µ+ βx(1− ψ) if (x′, y′) = (x− 1, y), x > 0,
βxψ if (x′, y′) = (x− 1, y + 1), x > 0,
yγ if (x′, y′) = (x+ 1, y − 1), y > 0,
0 else.

We have a cost function d(x, y) = dx+ y, with d = 1 +β(1−ψ)R, representing the holding costs
of both facilities plus the future potential loss due to abandonments. Further it is important to
note that this process satisfies the stability conditions stated in Section 3.2 if either ψ < 1, or
ψ = 1 and λ < µ.

In order to show structural properties of the relative value function, smoothed rate truncation, as
described in Section 3.1 was applied. Hence, the jump rates that increase one of the components
of the state variable are adapted in the following way

λNx,y = λ(1− x

N
)+,

γNx,y = γ(1− x

N
)+,

(βψ)Nx,y = βψ(1− y

b(N)
)+,

where N and b(N) are natural numbers. The smoothing ensures that there is one finite closed
class, XN = {(x, y) ∈ X | x ≤ N, y ≤ b(N)}. On XN the transition rates are bounded, w.l.o.g.
we can assume that the total jump rate is less than 1. So on XN uniformization is possible and
we are able to compute the relative value function by successive approximations. We suppress
N in the notation of this scheme, so V Nn will be just Vn. We will always do this if write down
the successive approximations scheme. Define V0 ≡ 0, and on XN

Vn+1(x, y) = λNx,ysVn(x+ 1, y) + µVn((x− 1)+, y) + γNx,yyVn(x+ 1, y − 1)

+βx(1− ψ)(Vn(x− 1, y) +R) + (βψ)Nx,yxVn(x− 1, y + 1)

+(1− λNx,ys− µ− γNx,yy − βx(1− ψ)− (βψ)Nx,yx)Vn(x, y).

Set Vn(x, y) = 0 if (x, y) /∈ XN . Using the successive approximations scheme, the following
properties of the relative value function have been shown.

Theorem (properties for the processor-sharing retrial queue). On XN the following
holds. The value function V N is non-decreasing in x and y. If γ/N = βψ/b(N), then V N is
also C(x), C(y) and Super(x, y).
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This relationship between N and b(N) emerges in the proof of supermodularity of V N . This
means that b(N) = Nψβ/γ. In general, ψβ/γ is not rational, hence b(N) is not integer. To
solve this problem γ is slightly perturbed, such that b(N) is integer. This perturbation goes to
0, when N tends to infinity.

We will only give the proof that V N is supermodular, as this is the hardest proof and it is
typical for the other proofs. First make some remarks on the other proofs. The proof of non-
decreasingness in both variables is pretty straightforward. To show convexity in the variables x
and y, it is necessary that the value function is also Super(x, y). To prove that V N is Super(x, y),
we need to show that for all n, Vn is Super(x, y).

Proof. We will prove this with induction. It is clear that V0 ≡ 0 is C(x), C(y) and Super(x, y).
Now suppose that Vn is C(x), C(y) and Super(x, y), then for 0 ≤ x ≤ N − 1, 0 ≤ y ≤ b(N)− 1
we obtain
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Vn+1(x, y) + Vn+1(x+ 1, y + 1)− Vn+1(x+ 1, y)− Vn+1(x, y + 1)

= λ
(

1− x

N

)
sVn(x+ 1, y) + λ

(
1− x+ 1

N

)
sVn(x+ 2, y + 1)

−λ
(

1− x+ 1
N

)
sVn(x+ 2, y)− λ

(
1− x

N

)
sVn(x+ 1, y + 1)

+µ
[
Vn((x− 1)+, y) + Vn(x, y + 1)− Vn(x, y)− Vn((x− 1)+, y + 1)

]
+γ
(

1− x

N

)
yVn(x+ 1, y − 1) + γ

(
1− x+ 1

N

)
(y + 1)Vn(x+ 2, y)

−γ
(

1− x+ 1
N

)
yVn(x+ 2, y − 1)− γ

(
1− x

N

)
(y + 1)Vn(x+ 1, y)

+βx(1− ψ)Vn(x− 1, y) + β(x+ 1)(1− ψ)Vn(x, y + 1)
−β(x+ 1)(1− ψ)Vn(x, y)− βx(1− ψ)Vn(x− 1, y + 1)

+βψ
(

1− y

b(N)

)
xVn(x− 1, y + 1) + βψ

(
1− y + 1

b(N)

)
(x+ 1)Vn(x, y + 2)

−βψ
(

1− y

b(N)

)
(x+ 1)Vn(x, y + 1)− βψ

(
1− y + 1

b(N)

)
xVn(x− 1, y + 2)

+
(

1− λ
(

1− x

N

)
s− µ− γ

(
1− x

N

)
y − βx(1− ψ)− βψ

(
1− y

b(N)

)
x
)
Vn(x, y)

+
(

1− λ
(

1− x+ 1
N

)
s− µ− γ

(
1− x+ 1

N

)
(y + 1)− β(x+ 1)(1− ψ)

−βψ
(

1− y + 1
b(N)

)
(x+ 1)

)
Vn(x+ 1, y + 1)

−
(

1− λ
(

1− x+ 1
N

)
s− µ− γ

(
1− x+ 1

N

)
y − β(x+ 1)(1− ψ)

−βψ
(

1− y

b(N)

)
(x+ 1)

)
Vn(x+ 1, y)

−
(

1− λ
(

1− x

N

)
s− µ− γ

(
1− x

N

)
(y + 1)− βx(1− ψ)

−βψ
(

1− y + 1
b(N)

)
x
)
Vn(x, y + 1)

≥ λ

(
1− x+ 1

N

)
s
[
Vn(x+ 1, y) + Vn(x+ 2, y + 1)− Vn(x+ 2, y)− Vn(x+ 1, y + 1)

]
+
λs

N
(Vn(x+ 1, y)− Vn(x+ 1, y + 1))

+γ
(

1− x+ 1
N

)
y
[
Vn(x+ 1, y − 1) + Vn(x+ 2, y)− Vn(x+ 2, y − 1)− Vn(x+ 1, y)

]
+
γy

N
Vn(x+ 1, y − 1) + γ

(
1− x+ 1

N

)
Vn(x+ 2, y)

−γ(y + 1)
N

Vn(x+ 1, y)− γ
(

1− x+ 1
N

)
Vn(x+ 1, y)
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+βx(1− ψ)
[
Vn(x− 1, y) + Vn(x, y + 1)− Vn(x, y)− Vn(x− 1, y + 1)

]
+β(1− ψ)(Vn(x, y + 1)− Vn(x, y))

+βψ
(

1− y + 1
b(N)

)
x
[
Vn(x− 1, y + 1) + Vn(x, y + 2)− Vn(x, y + 1)− Vn(x− 1, y + 2)

]
+
βψx

b(N)
Vn(x− 1, y + 1) + βψ

(
1− y + 1

b(N)

)
Vn(x, y + 2)

−βψ(x+ 1)
b(N)

Vn(x, y + 1)− βψ
(

1− y + 1
b(N)

)
Vn(x, y + 1)

+
(

1− λ
(

1− x

N

)
s− µ− γ

(
1− x

N

)
(y + 1)− β(x+ 1)(1− ψ)

−βψ
(

1− y + 1
b(N)

)
(x+ 1)

)[
Vn(x, y) + Vn(x+ 1, y + 1)− Vn(x+ 1, y)− Vn(x, y + 1)

]
+
λs

N
(Vn(x+ 1, y + 1)− Vn(x+ 1, y))

+γ
(

1− x

N

)
Vn(x, y) +

γ(y + 1)
N

Vn(x+ 1, y + 1)

−γ
(

1− x+ 1
N

)
Vn(x+ 1, y)− γ(y + 1)

N
Vn(x+ 1, y)

+β(1− ψ)(Vn(x, y)− Vn(x, y + 1))

+βψ
(

1− y

b(N)

)
Vn(x, y) +

βψ(x+ 1)
b(N)

Vn(x+ 1, y + 1)

−βψ
(

1− y

b(N)

)
Vn(x, y + 1)− βψx

b(N)
Vn(x, y + 1)

≥ γy

N

[
Vn(x+ 1, y − 1)− Vn(x+ 1, y) + Vn(x+ 1, y + 1)− Vn(x+ 1, y)

]
+γ
(

1− x+ 1
N

)[
Vn(x+ 2, y)− Vn(x+ 1, y) + Vn(x, y)− Vn(x+ 1, y)

]
+
βψx

b(N)

[
Vn(x− 1, y + 1)− Vn(x, y + 1) + Vn(x+ 1, y + 1)− Vn(x, y + 1)

]
+βψ

(
1− y + 1

b(N)

)[
Vn(x, y + 2)− Vn(x, y + 1) + Vn(x, y)− Vn(x, y + 1)

]
+
γ

N
(Vn(x+ 1, y + 1)− 2Vn(x+ 1, y) + Vn(x, y))

+
βψ

b(N)
(Vn(x+ 1, y + 1)− 2Vn(x, y + 1) + Vn(x, y))

≥ 0.

The first inequality is a result of supermodularity on the terms after µ, the second inequality
follows from supermodularity of all terms between the square brackets. Further, the terms with
λs
N and β(1−ψ) cancel each other out. For the last inequality we need the induction hypothesis
that Vn is convex in x and y. The last two lines are greater than 0 if γ/N = βψ/b(N).
Some extra attention to the boundary states, if x = 0 then the square brackets with µ in front
of it are equal to 0. all other boundaries cause no trouble since the jump rates outside XN are
0. This finishes the prove that Vn is supermodular for all n. From this we can conclude that V N

is supermodular on XN .
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Corollary 2. The value function V is I(x), I(y), C(x), C(y) and Super(x, y).

Proof. The properties of the value function V follow directly by applying Corollary 1 on V N as
N →∞.

As we have seen, proving properties for the value function V consists of multiple steps. Using
the successive approximation scheme we prove that a desired property holds for Vn. Then we
take the limit n→∞ to get this results for V N . By the theorems of Section 3.2 we can transfer
these properties to V .

3.4 Service control on a single server with abandonments

The smoothed rate truncation principle has been designed to determine structural properties of
the relative value function of the processor-sharing retrial queue. To test whether this method
also works for other problems, we consider a system of two queues and one server attending
both queues. This system has unbounded rates as a consequence of impatient customers. Two
variations of this system are discussed in Down et al. [3]. They show sufficient conditions for
a priority-rule for the server to hold. In that paper both variations of the problem require a
different approach. The first problem is solved by a coupling method. The second problem is
solved by a finite state space approximation. This solution is quite awkward, since it first re-
quires a change of the state variables and then it needs an ad hoc specification of how to choose
the transitions leading out of the closed set. With the SRT principle we are able to solve both
problems directly. The results presented are not new, they are exactly the same as in Down et
al., but it gives an idea of the strength of the SRT principle.
The difference between the two models that we will study is the goal of the optimization in both
cases. In the two systems the reward / costs are obtained as follows:

1. In the first model, for each completed customer, a class-dependent reward is received.

2. In the second model, each queue has holding costs and there is a class-dependent penalty
for each customer that abandons due to impatience.

We shall refer to the problems as the reward model and the cost model. Let us describe the
dynamics of the problems. Suppose two stations are served by a single server. Let X = Z+×Z+ be
the state space, and let (x, y) ∈ X be the number of customers in stations 1 and 2. Customers of
types 1 and 2 arrive according to independent Poisson processes with rates λ1 and λ2, respectively.
The service times of both types of customers are exponential with mean 1/µ. Both classes have
limited patience, customers are only willing to wait an exponentially distributed amount of time
with means 1/β1 and 1/β2, respectively. Hence the abandonment rate of station 1 is xβ1, if the
number of customers in station 1 is x, and yβ2, when there are y customers in station 2. We
have two possible actions, serve station 1 or serve station 2. We shall call these actions 1 and 2.
So we have the following transition rates
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qxy,x′y′ =


λ1 if(x′, y′) = (x+ 1, y),
λ2 if(x′, y′) = (x, y + 1),
µ1{a=1} + xβ1 if(x′, y′) = (x− 1, y), x > 0,
µ1{a=2} + yβ2 if(x′, y′) = (x, y − 1), x > 0,
0 else.

3.4.1 Reward model

In the reward model, every time a customer of type i (i = 1, 2) is served, a reward Ri is earned.
So, provided that there are customers of type i in the system, under action i a reward Ri is
received with rate µ. The goal is to prove the following theorem.

Theorem (priority-rule for the reward model). Suppose we have the reward model as de-
scribed above. If R1 ≥ R2 and β1 ≥ β2, then the optimal policy is a priority-rule: always serve
station 1, except to avoid unforced idling.

To prove this theorem we will use the monotonicity properties of the relative value function. We
will apply the SRT-principle to get the desired properties. Fix N ∈ N and let N = N1. Let
N2 ∈ N be such that N1/λ1 ≥ N2/λ2 and limN→∞N2 =∞. The arrival rates λ1 and λ2 are the
only rates that need to be smoothed, for these are the only transitions that lead the system to
a larger state. Define the new arrival rates:

λN1 (x) = λ1(1− x

N1
)+,

λN2 (y) = λ2(1− y

N2
)+.

Then automatically the closed recurrent class of the new system becomes finite: XN = {0, . . . , N1}×
{0, . . . , N2} ⊂ X . On XN we have bounded rates. The transition rates are bounded from above
by D(N), with

D(N) = λ1 + λ2 +N1β1 +N2β2 + µ.

Without loss of generality we assume that D(N) = 1. On XN we are able to compute V N with
the successive approximations scheme. Let Vn : XN → R as follows. Let V0 ≡ 0. Given Vn,
define Vn+1 as

Vn+1(x, y) = λ1(1− x

N1
)Vn(x+ 1, y) + λ2(1− y

N2
)Vn(x, y + 1)

+xβ1Vn(x− 1, y) + yβ2Vn(x, y − 1)

+


µmax{R1 + Vn(x− 1, y), R2 + Vn(x, y − 1)} x > 0, y > 0,
µ(R1 + Vn(x− 1, y)) x > 0, y = 0,
µ(R2 + Vn(x, y − 1)) x = 0, y > 0,
µVn(x, y) (x, y) = (0, 0),

+[λ1
x

N1
+ λ2

y

N2
+ (N1 − x)β1 + (N2 − y)β2)]Vn(x, y).
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This inductive definition may look ambiguous, since it is composed of terms that are not in XN .
This is not the case, since all transitions directing outwards XN naturally have rate 0.

To show that the priority-rule for station 1 is optimal, by the optimality equation we need that
for x > 0, y > 0, max{R1 + V (x− 1, y), R2 + V (x, y − 1)} = R1 + V (x− 1, y). Or equivalently
that

V (x, y − 1)− V (x− 1, y) ≤ R1 −R2.

We will prove this using the successive approximations scheme. To this end we need the following
theorem.

Theorem (monotonicity for the reward model). Let R1 ≥ R2 and β1 ≥ β2. Then it holds
for all n and (x, y) ∈ XN

1) Vn(x+ 1, y)− Vn(x, y) ≥ 0 for x ≤ N1 − 1,

2) Vn(x, y + 1)− Vn(x, y) ≥ 0 for y ≤ N2 − 1,

3) Vn(x+ 1, y)− Vn(x, y + 1) ≤ R1 −R2, for x ≤ N1 − 1, y ≤ N2 − 1.

Proof. For V0 ≡ 0, the claims 1), 2) and 3) hold trivially. Suppose now that 1), 2) and 3) hold for
Vn. Then we can make two remarks. First, by induction hypothesis 3), for x > 0, y > 0, (x, y) ∈
XN

max{R1 + Vn(x− 1, y), R2 + Vn(x, y − 1)} = R1 + Vn(x− 1, y).

And second, on the states y = 0, 0 < x ≤ N1 it is only possible to serve station 1, so we have
the following term corresponding to service completion: R1 + Vn(x− 1, 0). With this knowledge
it is possible to fill in the maximum and it is not necessary to make case distinctions.
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Hence for all 0 < x ≤ N1 − 1, (x, y) ∈ XN we get:

Vn+1(x+ 1, y)− Vn+1(x, y)

= λ1(1− x+ 1
N1

)Vn(x+ 2, y)− λ1(1− x

N1
)Vn(x+ 1, y)

+λ2(1− y

N2
)Vn(x+ 1, y + 1)− λ2(1− y

N2
)Vn(x, y + 1)

+β1(x+ 1)Vn(x, y)− β1xVn(x− 1, y)
+β2yVn(x+ 1, y − 1)− β2yVn(x, y − 1)
+µ(R1 + Vn(x, y))− µ(R1 + Vn(x− 1, y))

+
(
λ1
x+ 1
N1

+ λ2
y

N2
+ (N1 − x− 1)β1 + (N2 − y)β2

)
Vn(x+ 1, y)

−
(
λ1

x

N1
+ λ2

y

N2
+ (N1 − x)β1 + (N2 − y)β2

)
Vn(x, y)

≥ λ1(1− x+ 1
N1

)
[
Vn(x+ 2, y)− Vn(x+ 1, y)

]
− λ1

N1
Vn(x+ 1, y)

+β1x
[
Vn(x, y)− Vn(x− 1, y)

]
+ β1Vn(x, y)

+λ1
x

N1

[
Vn(x+ 1, y)− Vn(x, y)

]
+
λ1

N1
Vn(x+ 1, y)

+β1(N1 − x− 1)
[
Vn(x+ 1, y)− Vn(x, y)

]
− β1Vn(x, y)

≥ 0.

The maxima are attained because of induction hypothesis 3). Both inequalities are a result of
induction hypothesis 1).
To complete the argument we will have a closer look at the remaining boundaries. On (0, y), 0 <
y ≤ N2 it is only possible to serve type 2 customers, hence for a service completion we get
the following difference term: R1 + Vn(0, y) − (R2 + Vn(0, y − 1)). This is greater than zero,
because of induction hypothesis 2) and R1 − R2 ≥ 0. If we look at the difference in state
(0, 0) : Vn+1(1, 0)−Vn+1(0, 0), then we will get the factor R1, which is clearly greater than zero.
We do not have to look at other states on the boundary, because of the smoothed truncation, we
have a very natural boundary with no transitions outwards XN . We can conclude that 1) also
holds for Vn+1.

Analogously to the reasoning above, we can derive that Vn+1(x, y+ 1)−Vn+1(x+ 1, y) ≥ 0. The
proof of 3) is a bit more complex, so we will do this next.
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For 0 < x < N1, 0 ≤ y < N2 we have

Vn+1(x+ 1, y)− Vn+1(x, y + 1)

= λ1(1− x+ 1
N1

)Vn(x+ 2, y)− λ1(1− x

N1
)Vn(x+ 1, y + 1)

+λ2(1− y

N2
)Vn(x+ 1, y + 1)− λ2(1− y + 1

N2
)Vn(x, y + 2)

+(x+ 1)β1Vn(x, y)− xβ1Vn(x− 1, y + 1)
+yβ2Vn(x+ 1, y − 1)− (y + 1)β2Vn(x, y)
+µ(R1 + Vn(x, y))− µ(R1 + Vn(x− 1, y + 1))

+
(
λ1
x+ 1
N1

+ λ2
y

N2
+ (N1 − x− 1)β1 + (N2 − y)β2

)
Vn(x+ 1, y)

−
(
λ1

x

N1
+ λ2

y + 1
N2

+ (N1 − x)β1 + (N2 − y − 1)β2

)
Vn(x, y + 1)

= λ1(1− x+ 1
N1

)
[
Vn(x+ 2, y)− Vn(x+ 1, y + 1)

]
− λ1

N1
Vn(x+ 1, y + 1)

+λ2(1− y + 1
N2

)
[
Vn(x+ 1, y + 1)− Vn(x, y + 2)

]
+
λ2

N2
Vn(x+ 1, y + 1)

+xβ1

[
Vn(x, y)− Vn(x− 1, y + 1)

]
+ β1Vn(x, y)

+yβ2

[
Vn(x+ 1, y − 1)− Vn(x, y)

]
− β2Vn(x, y)

+(N1 − x)β1

[
Vn(x+ 1, y)− Vn(x, y + 1)

]
− β1Vn(x+ 1, y)

+(N2 − y − 1)β2

[
Vn(x+ 1, y)− Vn(x, y + 1)

]
+ β2Vn(x+ 1, y)

+λ1
x

N1

[
Vn(x+ 1, y)− Vn(x, y + 1)

]
+
λ1

N1
Vn(x+ 1, y)

+λ2
y + 1
N2

[
Vn(x+ 1, y)− Vn(x, y + 1)

]
− λ2

N2
Vn(x+ 1, y)

+µ
[
Vn(x, y)− Vn(x− 1, y + 1)

]
≤

(
λ1

N1
− λ2

N2

)
︸ ︷︷ ︸

≥0

[
Vn(x+ 1, y)− Vn(x+ 1, y + 1)

]
︸ ︷︷ ︸

≤0

+ (β1 − β2)︸ ︷︷ ︸
≥0

[
Vn(x, y)− Vn(x+ 1, y)

]
︸ ︷︷ ︸

≤0

+D(N)(R1 −R2)

≤ R1 −R2.

Because of induction hypothesis 3) the maximization could be replaced by the maximizing term.
The first inequality is a result of induction hypothesis 3) applied to the terms between square
brackets, and adding up all rates in front of the square brackets to D(N) = 1. The second
inequality follows from induction hypotheses 1) and 2), combined with the ratio in N1 and N2,
and β1 ≥ β2. On the boundaries it is easy to check that the inequalities hold. On the states
where x = 0, 0 ≤ y ≤ N2, we get the terms µ(R1 + Vn(0, y) − (R2 + Vn(0, y))) = µ(R1 − R2).
We can conclude that Vn+1 satisfies condition 3).
Vn satisfies 1), 2) and 3) for all n.
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The following corollary finishes the proof of the priority-rule.

Corollary 3. The value function of the smoothed reward model has the following property

V N (x+ 1, y)− V N (x, y + 1) ≤ R1 −R2.

The value function of the original reward model has the following property

V (x+ 1, y)− V (x, y + 1) ≤ R1 −R2.

The first part of the corollary follows directly since limn→∞ V Nn (x, y) − V Nn (0, 0) = V N (x, y) −
V N (0, 0). The second claim follows by Corollary 1 of Section 3.2.

The priority-rule for the reward model follows from this last Corollary 3.

3.4.2 Cost model

In the cost model we have the same dynamics as in the reward model, but instead of maximizing
the reward, the costs are object of minimization. There is a class-dependent penalty Pi if a
customer leaves queue i. Further, there are holding costs hi for each customer. This gives per
time unit, independent of the policy, average costs of (h1+β1P1)x1+(h2+β2P2)x2. The theorem
we wish to prove for this model is the following.

Theorem (priority-rule for cost model). Suppose we have the cost model as described above,
if h1 + β1P1 ≥ h2 + β2P2 and β2 ≥ β1, then the optimal policy is a priority-rule: always serve
station 1, except to avoid unforced idling.

Again, we will prove this using properties of the relative value function, which we shall derive
with the SRT-principle. We will use a smoothed rate truncation that is slightly different as
before. We fix N and let N = N1 and N2 ∈ N be such that N1/λ1 ≤ N2/λ2. Further, we
introduce the smoothed arrival rates as before:

λN1 (x) = λ1(1− x

N1
)+,

λN2 (y) = λ2(1− y

N2
)+.

In the model induced by the smoothed rates, the transition rates are bounded from above by
D(N) on the closed recurrent class XN . Hence on XN we can write the successive approximations
scheme. Let V0 ≡ 0, and
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Vn+1(x, y) = x(h1 + β1P1) + y(h2 + β2P2)

+λ1(1− x

N1
)Vn(x+ 1, y) + λ2(1− y

N2
)Vn(x, y + 1)

+xβ1Vn(x− 1, y) + yβ2Vn(x, y − 1)

+


µmin{Vn(x− 1, y), Vn(x, y − 1)} x > 0, y > 0,
µVn(x− 1, y) x > 0, y = 0,
µVn(x, y − 1) x = 0, y > 0,
µVn(0, 0) (x, y) = (0, 0),

+[λ1
x

N1
+ λ2

y

N2
+ (N1 − x)β1 + (N2 − y)β2)]Vn(x, y).

If we can show that min{V (x − 1, y), V (x, y − 1)} = V (x − 1, y), for all x > 0, y > 0, then the
priority-rule for station 1 is optimal. So we must show that

V N (x+ 1, y)− V N (x, y + 1) ≥ 0.

Therefore we will prove the following theorem.

Theorem (monotonicity for the cost model). Let h1 + β1P1 ≥ h2 + β2P2 and β2 ≥ β1.
Then for all n and (x, y) ∈ XN

1) Vn(x+ 1, y)− Vn(x, y) ≥ 0, for x ≤ N1 − 1,

2) Vn(x, y + 1)− Vn(x, y) ≥ 0, for y ≤ N2 − 1,

3) Vn(x+ 1, y)− Vn(x, y + 1) ≥ 0, for x ≤ N1 − 1, y ≤ N2 − 1.

Proof. We will prove this similarly to the reward model. Suppose 1), 2) and 3) hold for n. We
will prove that 1) holds for n+1. First notice that if 3) holds for n, then the server gives priority
to station 1, i.e. min{Vn(x − 1, y), Vn(x, y − 1)} = Vn(x − 1, y). We can fill this in, and for
0 < x ≤ N1 − 1, 0 ≤ y ≤ N2 we obtain
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Vn+1(x+ 1, y)− Vn+1(x, y)
= h1 + β1P1

+λ1(1− x+ 1
N1

)Vn(x+ 2, y)− λ1(1− x

N1
)Vn(x+ 1, y)

+λ2(1− y

N2
)
[
Vn(x+ 1, y + 1)− Vn(x, y + 1)

]
+β1(x+ 1)Vn(x, y)− β1xVn(x− 1, y)

+β2y
[
Vn(x+ 1, y − 1)− Vn(x, y − 1)

]
+µ
(
Vn(x, y)− Vn(x− 1, y)

)
+
(
λ1
x+ 1
N1

+ λ2
y

N2
+ (N1 − x− 1))β1 + (N2 − y)β2)

)
Vn(x+ 1, y)

−
(
λ1

x

N1
+ λ2

y

N2
+ (N1 − x)β1 + (N2 − y)β2)

)
Vn(x, y)

≥ λ1(1− x+ 1
N1

)
[
Vn(x+ 2, y)− Vn(x+ 1, y)

]
− λ1

N1
Vn(x+ 1, y)

+β1x
[
Vn(x, y)− Vn(x− 1, y)

]
+ β1Vn(x, y)

+λ1
x

N1

[
Vn(x+ 1, y)− Vn(x, y)

]
+
λ1

N1
Vn(x+ 1, y)

+β1(N1 − x− 1)
[
Vn(x+ 1, y)− Vn(x, y)

]
− β1Vn(x, y)

≥ 0.

For all terms between the square brackets the inequality follows from induction hypothesis 1).
On the boundary states x = 0, 0 ≤ y ≤ N2 the inequality is trivial. So we conclude that 1) also
holds for n+ 1. Non-decreasingness in the second variable is similar and very straightforward, so
we skip this proof of 2) and continue with the proof of 3). For 0 < x ≤ N1 − 1, 0 ≤ y ≤ N2 − 1,
we get
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Vn+1(x+ 1, y)− Vn+1(x, y + 1)
= h1 + β1P1 − (h2 + β2P2)

+λ1(1− x+ 1
N1

)Vn(x+ 2, y)− λ1(1− x

N1
)Vn(x+ 1, y + 1)

+λ2(1− y

N2
)Vn(x+ 1, y + 1)− λ2(1− y + 1

N2
)Vn(x, y + 2)

+(x+ 1)β1Vn(x, y)− xβ1Vn(x− 1, y + 1)
+yβ2Vn(x+ 1, y − 1)− (y + 1)β2Vn(x, y)
+µVn(x, y)− µVn(x− 1, y + 1)

+
(
λ1
x+ 1
N1

+ λ2
y

N2
+ (N1 − x− 1))β1 + (N2 − y)β2)

)
Vn(x+ 1, y)

−
(
λ1

x

N1
+ λ2

y + 1
N2

+ (N1 − x)β1 + (N2 − y − 1)β2)
)
Vn(x, y + 1)

≥ λ1(1− x+ 1
N1

)
[
Vn(x+ 2, y)− Vn(x+ 1, y + 1)

]
− λ1

N1
Vn(x+ 1, y + 1)

+λ2(1− y + 1
N2

)
[
Vn(x+ 1, y + 1)− Vn(x, y + 2)

]
+
λ2

N2
Vn(x+ 1, y + 1)

+xβ1

[
Vn(x, y)− Vn(x− 1, y + 1)

]
+ β1Vn(x, y)

+yβ2

[
Vn(x+ 1, y − 1)− Vn(x, y)

]
− β2Vn(x, y)

+(N1 − x)β1

[
Vn(x+ 1, y)− Vn(x, y + 1)

]
− β1Vn(x+ 1, y)

+(N2 − y − 1)β2

[
Vn(x+ 1, y)− Vn(x, y + 1)

]
+ β2Vn(x+ 1, y)

+µ
[
Vn(x, y)− Vn(x− 1, y + 1)

]
+λ1

x

N1

[
Vn(x+ 1, y)− Vn(x, y + 1)

]
+
λ1

N1
Vn(x+ 1, y)

+λ2
y + 1
N2

[
Vn(x+ 1, y)− Vn(x, y + 1)

]
− λ2

N2
Vn(x+ 1, y)

≥
(
λ1

N1
− λ2

N2

)
︸ ︷︷ ︸

≤0

[
Vn(x+ 1, y)− Vn(x+ 1, y + 1)

]
︸ ︷︷ ︸

≤0

+
(
β1 − β2

)
︸ ︷︷ ︸

≤0

[
Vn(x, y)− Vn(x+ 1, y)

]
︸ ︷︷ ︸

≤0

≥ 0.

The first inequality follows from the assumption on the costs, h1 +β1P1 ≥ h2 +β2P2. The second
inequality is due to induction hypothesis 3). The third inequality follows from the ratio between
N1 and N2 and the departure rates, together with induction hypotheses 1) and 2) on the terms
between the square brackets. On the boundary states x = 0, 0 ≤ y ≤ N2 the inequality is
similar. This completes the proof of 3).

The following corollary finishes the proof of the priority-rule.
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Corollary 4. The value function of the smoothed cost model has the following property

V N (x+ 1, y)− V N (x, y + 1) ≥ 0.

The value function of the original cost model has the following property

V (x+ 1, y)− V (x, y + 1) ≥ 0.

The first claim of the corollary follows directly since limn→∞ V Nn (x, y)− V Nn (0, 0) = V N (x, y)−
V N (0, 0). The second claim follows by the limit theorems of Section 3.2.
The priority-rule for the cost model follows form this corollary.

Both in the reward model as in cost model we needed the same conditions on the input parameters
as in the original literature. So far the smoothed rate truncation principle has not helped us
in solving new problems. What we have seen is that regularly, the SRT method is not very
straightforward, sometimes we need strong conditions on the smoothing parameters N1 and N2.
But that did not stand in the way of obtaining the results relatively easy.
In the next chapter we will not look at a specific model, but will look at the method more
general.
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Chapter 4

Event-based dynamic
programming

4.1 Motivation and definition

In the previous chapter we proved for several models that the corresponding relative value func-
tions possess some structural properties, like increasingness and convexity in the state variable.
A crucial step in the proofs is to show that the desired properties are propagated in the successive
approximations scheme. This approach has some drawbacks; in the first place the formulas in
the induction step of the proof become very large. Secondly, in these large formulas, for different
models we have to repeat the same arguments over and over again.

In his monograph [8] Koole describes an approach where this repetition is not necessary. The
concept of event-based dynamic programming uses the following observation. When we prove
that an inequality propagates in the successive approximations scheme, we actually prove this
inequality for each event separately. When all terms corresponding to the events in the model
satisfy a certain inequality, then certainly the sum of all terms satisfies the inequality.

Event-based DP combines a number of events with a number of properties. Every event is rep-
resented by an event operator. For the framework of event-based DP there is a list developed
which tells if a particular operator propagates the property of interest. These operators form
the building blocks of the recursion in the successive approximations scheme. When all events
that occur in a model propagate that same property then a composition of the event operators
does also propagate this property. The formal set-up of event-based dynamic programming is as
follows.

The framework. Define the state space X = Nm0 , m ∈ N. Let V = {f : X → R} be the set
of real-valued functions on X . For some k ∈ N, there are k operators T0, . . . , Tk−1 defined as
follows

Ti : V li → V, li ∈ N for i = 0, . . . k − 1.
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The value function Vn for n ∈ N is then recursively defined by using V (0)
n , . . . , V

(k)
n

V (k)
n = Vn−1;

V (j)
n = Tj(V

(kj
1)

n , . . . , V

“
kj

lj

”
n ), j = 0, . . . , k − 1, for kj1, . . . , k

j
lj

such that j < kj1, . . . , k
j
lj
≤ k;

Vn = V (0)
n .

To illustrate this definition, let us look at the M |M |1-queue with holding costs. After uniformiza-
tion we get the following recursion in the successive approximations scheme

Vn+1(x) =
x

λ+ µ
+

λ

λ+ µ
Vn(x+ 1) +

µ

λ+ µ
Vn((x− 1)+).

We want to model this in the event-based DP setting. To this end, we let the dimension be
m = 1 and the number of operators be k = 4. Define the following operators. The operator that
represents the holding costs

T0f(x) =
x

λ+ µ
+ f(x).

The uniformization operator equals

T1(f1, f2)(x) =
λ

λ+ µ
f1(x) +

µ

λ+ µ
f2(x).

The operator that represents an arrival is given by

T2f(x) = f(x+ 1).

Finally, the operator that represents a departure by

T3f(x) = f((x− 1)+).

To give some insight in the quite technical definition of the framework, we will write down all
indices for this example. We give the composition of the above operators participating in it the
explicitly.

j lj kj1, . . . , k
j
lj

V
(j)
n

4 - - Vn−1 = V
(4)
n

3 1 k3
1 = 4 T3(V (4)

n ) = V
(3)
n

2 1 k2
1 = 4 T2(V (4)

n ) = V
(2)
n

1 2 k1
1 = 2, k1

2 = 3 T1(V (2)
n , V

(3)
n ) = V

(1)
n

0 1 k0
1 = 1 T0(V (1)

n )

For j = 0, . . . 4, V (j)
n is defined. Further we have that Vn = V

(0)
n . If we combine this then

the recursion of successive approximations scheme appears, and we see that we have chosen the
operators correctly

Vn(x) = T0(T1(T2(Vn−1(x)), T3(Vn−1(x)))) =
x

λ+ µ
+

λ

λ+ µ
Vn−1(x+ 1) +

µ

λ+ µ
Vn−1((x− 1)+).

The next theorem gives the central idea of the strength of the operators in relation to the relative
value function.
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Theorem. Let F be a class of functions from X to R, Vn as defined above and V0 ∈ F . If, for
all i, for fi, . . . , fli ∈ F it holds that Ti(fi, . . . , fli) ∈ F , then also Vn ∈ F for all n.

Suppose we take F to be the set of increasing and convex functions. Then it can be shown that
F propagates through the operators T0, . . . , T3 in the previous example. Hence by this theorem
we can conclude that the relative value function of the M |M |1-queue is increasing and convex.

[8] of Koole contains a comprehensive list of operators and properties that are propagated through
these operators. We have appended this list in Section 4.4.2. All event operators that are treated
have been uniformized. This means that models that have unbounded transition rates do not fit
in this framework. We will describe next how to deal with this problem.

4.2 New operators

Let a model with unbounded transition rates be given. When we apply smoothed rate truncation
to such a model the transition rates become bounded and thus uniformizable. Then the smoothed
model fits in the event-based DP framework, but we may have created events that are not treated
in the literature. These new smoothed events generate new operators, and so we need new
propagation results. Smoothing is only needed for events that make the state larger in one or
more directions. So we have set up a list of events, for which we derive a smoothed operator,
together with some propagation results. This list is everything but complete, but we believe that
it covers the most relevant cases. Furthermore, we think the events that are treated are typical
for other events.

1. Arrivals

2. Transfers

3. Increasing transfers

4. Double arrivals

5. Controlled arrivals

Before introducing the smoothed operators, recall the properties we are interested in. Notice
that it is sufficient to prove these properties on the closed class XN , for 1 ≤ i, j ≤ m.

f ∈ I(i) if f(x+ ei) ≥ f(x) xi ≤ Ni − 1;
f ∈ C(i) if f(x+ 2ei)− f(x+ ei) ≥ f(x+ ei)− f(x) xi ≤ Ni − 2;

f ∈ Super(i, j) if f(x) + f(x+ ei + ej) ≥ f(x+ ei) + f(x+ ej) xi ≤ Ni − 1, xj ≤ Nj − 1;
f ∈ DI(i, j) if f(x+ ei) ≥ f(x+ ej) xi ≤ Ni − 1.

4.2.1 Arrivals

Smoothed rate truncation w.r.t. arrivals is straightforward. Assume that customers arrive at
queue i with rate λ. In event-based DP, this rate λ shows up in the uniformization operator, not

36



in the arrivals operator. So the arrivals operator has a unit transition rate

TA(i)f(x) = f(x+ ei).

If we apply SRT we get the smoothed arrivals operator

TSA(i)f(x) :=
{

(1− xi

Ni
)f(x+ ei) + xi

Ni
f(x) xi ≤ Ni,

f(x) else.

Theorem (propagation results for the smoothed arrivals operator). The following prop-
agation results hold for TSA(i), for i, j ∈ {1 . . .m}:

I. I(i)→ I(i);

II. C(i)→ C(i);

III. Super(i, j)→ Super(i, j);

IV. DI(j, i) ∩ I(j)→ DI(j, i).

We start with the proof of propagation of non-decreasingness through the operator: TSA(i) :
I(i)→ I(i).

Proof. I. Suppose f ∈ I(i). Then we need to show that TSA(i)f(x + ei) − TSA(i)f(x) ≥ 0. For
convenience we multiply this by Ni. We get for xi ≤ Ni − 1

Ni(TSA(i)f(x+ ei)− TSA(i)f(x))
= (Ni − xi − 1)f(x+ 2ei) + (xi + 1)f(x+ ei)
−(Ni − xi)f(x+ ei)− xif(x)

= (Ni − xi − 1)[f(x+ 2ei)− f(x+ ei)]− f(x+ ei)
+xi[f(x+ ei)− f(x)] + f(x+ ei)

≥ 0.

Inside the square brackets we gather all similar terms, but they have slightly different rates.
Hence we have to compensate these terms. We can choose the rates in the right way, such that
the compensation terms cancel. The terms inside the brackets are non-negative because f ∈ I(i).
In the boundary states xi = Ni − 1, we have (Ni − xi − 1)[f(x + 2ei) − f(x + ei)] = 0, so the
inequality holds as well. This reasoning for the boundary states holds for every proof from now
on, and so we will omit this in the following proofs.
This completes the proof.

Next we will prove the propagation of convexity through the operator, i.e. TSA(i) : C(i) →
C(i).

Proof. II. Assume f ∈ C(i). Then we need to show for 0 ≤ xi ≤ Ni − 1 that Ni(TSA(i)f(x +
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2ei)− 2TSA(i)f(x+ ei) + TSA(i)f(x)) ≥ 0. For xi ≤ Ni − 2 we get

Ni(TSA(i)f(x+ 2ei)− 2TSA(i)f(x+ ei) + TSA(i)f(x))
= (Ni − xi − 2)f(x+ 3ei) + (xi + 2)f(x+ 2ei)
−2(Ni − xi − 1)f(x+ 2ei)− 2(xi + 1)f(x+ ei)
+(Ni − xi)f(x+ ei) + xif(x)

= (Ni − xi − 2)[f(x+ 3ei)− 2f(x+ 2ei) + f(x+ ei)]− 2f(x+ 2ei) + 2f(x+ ei)
+xi[f(x+ 2ei)− 2f(x+ ei) + f(x)] + 2f(x+ 2ei)− 2f(x+ ei)

≥ 0.

We use a similar method of ordering the terms as before. The inequality follows from convexity
of f . This finishes the proof.

We continue with the proof of supermodularity. We would like to prove that TSA(i) : Super(i, j)→
Super(i, j).

Proof. III. Assume that f ∈ Super(i, j), then we have for xi ≤ Ni − 1 that

Ni(TSA(i)f(x) + TSA(i)f(x+ ei + ej)− TSA(i)f(x+ ei)− TSA(i)f(x+ ej))
= (Ni − xi)f(x+ ei) + xif(x)

+(Ni − xi − 1)f(x+ 2ei + ej) + (xi + 1)f(x+ ei + ej)
−(Ni − xi − 1)f(x+ 2ei)− (xi + 1)f(x+ ei)
−(Ni − xi)f(x+ ei + ej)− xif(x+ ej)

= (Ni − xi − 1)[f(x+ ei) + f(x+ 2ei + ej)− f(x+ 2ei)− f(x+ ei + ej)]
+f(x+ ei)− f(x+ ei + ej)
+xi[f(x) + f(x+ ei + ej)− f(x+ ei)− f(x+ ej)]
+f(x+ ei + ej)− f(x+ ei)

≥ 0.

The compensation terms cancel each other nicely. The inequality follows from the assumption
on f .

The last propagation property that we prove for the smoothed arrivals operator is directional
increasingness. In other words, we will prove that TSA(i) : DI(j, i) ∩ I(j)→ DI(j, i).

Proof. IV. Suppose that f ∈ DI(j, i) ∩ I(j). Then for xi ≤ Ni − 1 it holds that

Ni(TSA(i)f(x+ ej)− TSA(i)f(x+ ei))
= (Ni − xi)f(x+ ei + ej) + xif(x+ ej)
−(Ni − xi − 1)f(x+ 2ei)− (xi + 1)f(x+ ei)

= (Ni − xi − 1)[f(x+ ei + ej)− f(x+ 2ei)]
+xi[f(x+ ej)− f(x+ ei)]
+f(x+ ei + ej)− f(x+ ei)

≥ 0.

The inequality follows because f ∈ DI(j, i) ∩ I(j).
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4.2.2 Transfers

The second event for we which we develop a smoothed event operator is a transfer. A transfer
is an event where a customer moves form queue i to queue j. The transfer operator is

TT (i,j)f(x) = f(x− ei + ej).

We need to smooth the rates in the direction of the j-th variable, for that is the variable in which
the state increases when a transition occurs. We get the following smoothed event operator

TST (i,j)f(x) :=
{

(1− xj

Nj
)f(x− ei + ej) + xj

Nj
f(x) xi > 0, xj ≤ Nj ,

f(x) else.

Theorem (propagation results for the smoothed transfers operator). For the operator
TST (i,j), for i 6= j ∈ {1 . . .m} we derived the following results:

I. I(i) ∩ I(j)→ I(i) ∩ I(j);

II. C(j) ∩ Super(i, j)→ C(j);

III. C(i) ∩ Super(i, j) ∩DI(i, j)→ C(i);

IV. C(i) ∩ Super(i, j) ∩DI(i, j)→ Super(i, j);

V. DI(i, j)→ DI(i, j) and DI(j, i)→ DI(j, i).

We start with the proof of TST (i,j) : I(i) ∩ I(j)→ I(i) ∩ I(j).

Proof. I. Assume that f ∈ I(i)∩I(j), first we prove that TST (i,j)f ∈ I(j). For xi > 0, xj ≤ Nj−1
we have

Nj(TST (i,j)f(x+ ej)− TST (i,j)f(x))
= (Nj − xj − 1)f(x− ei + 2ej) + (xj + 1)f(x+ ej)
−(Nj − xj)f(x− ei + ej)− xjf(x)

= (Nj − xj − 1)[f(x− ei + 2ej)− f(x− ei + ej)]− f(x− ei + ej)
+xj [f(x+ ej)− f(x)] + f(x+ ej)

≥ 0.

The inequality follows from the assumption on f that it is increasing in variable i and j. For the
proof of I(i), the only non-trivial case is when xi = 0, then we have:

Nj(TST (i,j)f(x+ ei)− TST (i,j)f(x))
= (Nj − xj)f(x+ ej) + xjf(x+ ei)
−Njf(x)

= (Nj − xj)[f(x+ ej)− f(x)]
+xj [f(x+ ei)− f(x)]

≥ 0.

The inequality follows from f ∈ I(i) ∩ I(j).
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We continue with the proof of TST (i,j) : C(j) ∩ Super(i, j)→ C(j).

Proof. II. Assume f ∈ C(j) ∩ Super(i, j), then for xj ≤ Nj − 2 we get

Nj(TST (i,j)f(x+ 2ej)− 2TST (i,j)f(x+ ej) + TST (i,j)f(x))
= (Nj − xj − 2)f(x− ei + 3ej) + (xj + 2)f(x+ 2ej)
−2(Nj − xj − 1)f(x− ei + 2ej)− 2(xj + 1)f(x+ ej)
+(Nj − xj)f(x− ei + ej) + xjf(x)

= (Nj − xj − 2)[f(x− ei + 3ej)− 2f(x− ei + 2ej) + f(x− ei + ej)]
−2f(x− ei + 2ej) + 2f(x− ei + ej)
+xj [f(x+ 2ej)− 2f(x+ ej) + f(x)] + 2f(x+ 2ej)− 2f(x+ ej)

≥ 2[f(x− ei + ej) + f(x+ 2ej)− f(x− ei + 2ej)− f(x+ ej)]
≥ 0.

The first inequality follows from convexity of f , the second inequality from supermodularity.

Next the proof of TST (i,j) : C(i) ∩ Super(i, j) ∩DI(i, j)→ C(i).

Proof. III. Assume f ∈ C(i) ∩ Super(i, j) ∩DI(i, j). The proof of C(i) is only complicated on
the boundary states, when xi = 0. When xi > 0 propagation follows trivial. For xi = 0 we have

Nj(TST (i,j)f(x+ 2ei)− 2TST (i,j)f(x+ ei) + TST (i,j)f(x))
= (Nj − xj)f(x+ ei + ej) + xjf(x+ 2ei)
−2(Nj − xj)f(x+ ej)− 2xjf(x+ ei)
+Njf(x)

= (Nj − xj)(f(x+ ei + ej)− 2f(x+ ej) + f(x))
+xj [f(x+ 2ei)− 2f(x+ ei) + f(x)]

≥ (Nj − xj)[f(x+ ei + ej)− f(x+ ej)− f(x+ ei) + f(x)]
≥ 0.

The first inequality follows by DI(i, j and C(i). The second inequality follows from Super(i, j).

Next we prove that TST (i,j) : C(i) ∩ Super(i, j) ∩DI(i, j)→ Super(i, j).

Proof. IV. Suppose f ∈ C(i)∩Super(i, j). Then for xi > 0, xj ≤ Nj −1 we obtain the following
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inequality

Nj(TST (i,j)f(x) + TST (i,j)f(x+ ei + ej)− TST (i,j)f(x+ ei)− TST (i,j)f(x+ ej))
= (Nj − xj) f(x− ei + ej) + xjf(x)

+ (Nj − xj − 1) f(x+ 2ej) + (xj + 1)f(x+ ei + ej)
− (Nj − xj) f(x+ ej)− xjf(x+ ei)
− (Nj − xj − 1) f(x− ei + 2ej)− (xj + 1)f(x+ ej)

= (Nj − xj − 1) [f(x− ei + ej) + f(x+ 2ej)− f(x+ ej)− f(x− ei + 2ej)]
+xj [f(x) + f(x+ ei + ej)− f(x+ ei)− f(x+ ej)]
+f(x− ei + ej)− f(x+ ej) + f(x+ ei + ej)− f(x+ ej)

≥ 0.

The inequality follows by the assumption that f is both C(i) and Super(i, j). We have to look
at the boundary states, when xi = 0. Then the following inequality holds

Nj(TST (i,j)f(x) + TST (i,j)f(x+ ei + ej)− TST (i,j)f(x+ ei)− TST (i,j)f(x+ ej))
= Njf(x)

+ (Nj − xj − 1) f(x+ 2ej) + (xj + 1)f(x+ ei + ej)
− (Nj − xj) f(x+ ej)− xjf(x+ ei)
−Njf(x+ ej)

= (Nj − xj) [f(x) + f(x+ 2ej)− 2f(x+ ej)]
+xj [f(x) + f(x+ ei + ej)− f(x+ ei)− f(x+ ej)]
+f(x− ei + ej)− f(x+ 2ej)

≥ 0.

The inequality follows from f ∈ C(i) ∩ Super(i, j) ∩DI(i, j).

As a final propagation result for this operator we prove that: TST (i,j) : DI(i, j) → DI(i, j) and
DI(j, i)→ DI(j, i).

Proof. V. Let us prove TST (i,j) : DI(i, j) → DI(i, j) first. Suppose f ∈ DI(i, j), then for
xi > 0, xj ≤ Nj − 1 we have

Nj(TST (i,j)f(x+ ei)− TST (i,j)f(x+ ej))
= (Nj − xj)f(x+ ej) + xjf(x+ ei)
−(Nj − xj − 1)f(x− ei + 2ej)− (xj + 1)f(x+ ej)

= (Nj − xj − 1)[f(x+ ej)− f(x− ei + 2ej)]− f(x+ ej)
+xj [f(x+ ej)− f(x− ei)] + f(x+ ej)

≥ 0.

We get the inequality since f ∈ DI(i, j). For xi = 0 we obtain

Nj(TST (i,j)f(x+ ei)− TST (i,j)f(x+ ej))
= (Nj − xj)f(x+ ej) + xjf(x+ ei)
−Njf(x+ ej)

= xj [f(x+ ej)− f(x− ei)]
≥ 0.
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The inequality follows from DI(i, j).
The proof of TST (i,j) : DI(j, i)→ DI(j, i) follows by symmetry.

4.2.3 Increasing transfers

In the processor sharing retrial queue as described in Bhulai et al. [2] transfer events arise that
increase proportionally to the size of the queue that customers come from. We investigate
whether it is possible to incorporate such an event into the event-based DP framework.
The initial event operator should be this. Since this operator is not uniformized, it does not fit
in the event-based dp framework

βxif(x− ei + ej). (4.1)

The SRT principle provides that on the essential states xi ≤ Ni, and so βxi ≤ βNi. Hence we
can divide (4.1) by βNi and add a uniformization term to obtain the following

xi
Ni
f(x− ei + ej) +

(
1− xi

Ni

)
f(x) xi ≤ Ni.

Since the SRT method requires a truncation in the j-th variable, we get the following opera-
tor

xi
Ni

(
1− xj

Nj

)
f(x− ei + ej) +

(
1− xi

Ni

(
1− xj

Nj

))
f(x) xi ≤ Ni, xj ≤ Nj .

Unfortunately, this operator does not propagate the supermodularity property. For the proces-
sor sharing queue, where the same problem arises, Bhulai et al. [2] have been able to solve this
problem by using the fact that there are also increasing transfers in the opposite direction. A
useful observation here is that the relative size of the rates of these opposite transfers does not
matter. This gives us the idea of adding small artificial transfers in the opposite direction of
the transfers. When SRT is applied with the right proportions of Ni and Nj , these transitions
compensate enough to preserve the supermodularity property through the operator.

Hence we add artificial transfers in the opposite direction with a small rate εxj . To get the
desired propagation results we demand that 0 < ε < 1 and Ni = εNj , Ni, Nj ∈ N. Define the
increasing transfers operator on XN as

TSIT (i,j)f(x) :=
xi
Ni

(
1− xj

Nj

)
f(x− ei + ej) +

εxj
Ni

(
1− xi

Ni

)
f(x+ ei − ej)

+
(

1− xi
Ni

(
1− xj

Nj

)
− εxj
Ni

(
1− xi

Ni

))
f(x).

Let TSIT (i,j)f(x) = f(x), for x not in XN . We will need to show two things. The first one that if
we take the limit of ε→ 0, that we have convergence to the original event of increasing transfers.
The second thing is that the operator has nice propagation properties.
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If we take the limit ε→ 0, then we get the following operator.

TSIT (i,j)f(x) =
xi
Ni

(
1− xj

Nj

)
f(x− ei + ej) +

εxj
Ni

(
1− xi

Ni

)
f(x+ ei − ej)

+
(

1− xi
Ni

(
1− xj

Nj

)
− εxj
Ni

(
1− xi

Ni

))
f(x)

−→
ε→0

xi
Ni

(
1− xj

Nj

)
f(x− ei + ej) +

(
1− xi

Ni

(
1− xj

Nj

))
f(x)

Then we have that, just as for all event operators, by the limit theorems of Section 3.2 this
smoothed event operator converges to the original increasing transfers.

Theorem (propagation results for the smoothed increasing transfers operator). The
following propagation results hold for TSIT (i,j), for i, j ∈ {1, . . . ,m}

I. I(i) ∩ I(j)→ I(i) ∩ I(j);

II. C(i) ∩ C(j) ∩ Super(i, j)→ C(i) ∩ C(j) ∩ Super(i, j);

III. DI(i, j)→ DI(i, j) and DI(j, i)→ DI(j, i).

The proof of TSIT (i,j) : I(i) ∩ I(j)→ I(i) ∩ I(j) is as follows.

Proof. I. Suppose f ∈ I(i) ∩ I(j). Then TSIT (i,j)f ∈ I(i) because for xi ≤ Ni − 1 we have

NiNj
(
TSIT (i,j)f(x+ ei)− TSIT (i,j)f(x)

)
= (Nj − xj)(xi + 1)f(x+ ej) + (Ni − xi − 1)xjf(x+ 2ei − ej)

+
(
NiNj − (Nj − xj)(xi + 1)− (Ni − xi − 1)xj

)
f(x+ ei)

−(Nj − xj)xif(x− ei + ej)− (Ni − xi)xjf(x+ ei − ej)
−
(
NiNj − (Nj − xj)xi − (Ni − xi)xj

)
f(x)

= (Nj − xj)xi[f(x+ ej)− f(x− ei + ej)]
+(Ni − xi − 1)xj [f(x+ 2ei − ej)− f(x+ ei − ej)]
+
(
NiNj − (Nj − xj)(xi + 1)− (Ni − xi)xj

)
[f(x+ ei)− f(x)]

+(Nj − xj)[f(x+ ej)− f(x)]
+xj [f(x+ ei)− f(x+ ei − ej)]

≥ 0.

The inequality follows from increasingness of f in both variables. Further, since the operator is
symmetric in i and j, we can also conclude that TSIT (i,j)f ∈ I(j).

Now we have arrived to the proof of the most difficult propagation result. The difficulty is in the
ordering of organizing of the terms, especially in the proof of supermodularity, to get the desired
inequality. As said before the propagation only works if we combine the transfers in opposite
directions. We want to prove

TSIT (i,j) : C(i) ∩ C(j) ∩ Super(i, j)→ C(i) ∩ C(j) ∩ Super(i, j).

43



Proof. II. Suppose f ∈ C(i)∩C(j)∩Super(i, j). First we prove TSIT (i,j)f ∈ C(i). For xi ≤ Ni−2
we have

NiNj
(
TSIT (i,j)f(x+ 2ei)− 2TSIT (i,j)f(x+ ei) + TSIT (i,j)f(x)

)
= (Nj − xj)(xi + 2)f(x+ ei + ej) + (Ni − xi − 2)xjf(x+ 3ei − ej)

+
(
NiNj − (Nj − xj)(xi + 2)− (Ni − xi − 2)xj

)
f(x+ 2ei)

−2(Nj − xj)(xi + 1)f(x+ ej)− 2(Ni − xi − 1)xjf(x+ 2ei − ej)
−2
(
NiNj − (Nj − xj)(xi + 1)− (Ni − xi − 1)xj

)
f(x+ ei)

+(Nj − xj)xif(x− ei + ej) + (Ni − xi)xjf(x+ ei − ej)
+
(
NiNj − (Nj − xj)xi − (Ni − xi)xj

)
f(x)

= (Nj − xj)xi[f(x+ ei + ej)− 2f(x+ ej) + f(x− ei + ej)]
+(Ni − xi − 2)xj [f(x+ 3ei − ej)− 2f(x+ 2ei − ej) + f(x+ ei − ej)]
+
(
NiNj − (Nj − xj)(xi + 2)− (Ni − xi)xj

)
[f(x+ 2ei)− 2f(x+ ei) + f(x)]

+2(Nj − xj)[f(x) + f(x+ ei + ej)− f(x+ ei)− f(x+ ej)]
+2xj [f(x+ 2ei) + f(x+ ei − ej)− f(x+ 2ei − ej)− f(x+ ei)]

≥ 0.

The inequality follows by convexity in i and supermodularity. The proof of TSIT (i,j)f ∈ C(j)
follows from symmetry. We will continue with proving that TSIT (i,j)f ∈ Super(i, j). For xi ≤
Ni − 1, xj ≤ Nj − 1 we get
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NiNj
(
TSIT (i,j)f(x) + TSIT (i,j)f(x+ ei + ej)− TSIT (i,j)f(x+ ei)− TSIT (i,j)f(x+ ej)

)
= xi (Nj − xj) f(x− ei + ej) + xj (Ni − xi) f(x+ ei − ej)

+
(
NiNj − xi (Nj − xj)− xj (Ni − xi)

)
f(x)

+(xi + 1) (Nj − xj − 1) f(x+ 2ej) + (xj + 1) (Ni − xi − 1) f(x+ 2ei)
+
(
NiNj − (xi + 1) (Nj − xj − 1)− (xj + 1) (Ni − xi − 1)

)
f(x+ ei + ej)

−(xi + 1) (Nj − xj) f(x+ ej)− xj (Ni − xi − 1) f(x+ 2ei − ej)
−
(
NiNj − (xi + 1) (Nj − xj)− xj (Ni − xi − 1)

)
f(x+ ei)

−xi (Nj − xj − 1) f(x− ei + 2ej)− (xj + 1) (Ni − xi) f(x+ ei)
−
(
NiNj − xi (Nj − xj − 1)− (xj + 1) (Ni − xi)

)
f(x+ ej)

= xi (Nj − xj − 1) [f(x− ei + ej) + f(x+ 2ej)− f(x+ ej)− f(x− ei + 2ej)]
+xj (Ni − xi − 1) [f(x+ ei − ej) + f(x+ 2ei)− f(x+ 2ei − ej)− f(x+ ei)]
+
(
NiNj − (xi + 1) (Nj − xj)− (xj + 1) (Ni − xi)

)
[f(x) + f(x+ ei + ej)− f(x+ ei)− f(x+ ej)]

+xif(x− ei + ej) + (Nj − xj − 1)f(x+ 2ej)− (Nj + xi − xj)f(x+ ej)
+xjf(x+ ei − ej) + (Ni − xi − 1)f(x+ 2ei)− (Nj − xi + xj)f(x+ ei)
+(Nj − xj)f(x) + (xi + 1)f(x+ ei + ej)− (Nj + xi − xj)f(x+ ej)
+(Ni − xi)f(x) + (xj + 1)f(x+ ei + ej)− (Nj − xi + xj)f(x+ ei)

≥ xj [f(x− ei + ej)− 2f(x+ ej) + f(x+ ei + ej)]
+xi[f(x+ ei − ej)− 2f(x+ ei) + f(x+ ei + ej)]
+(Ni − xi − 1)[f(x)− 2f(x+ ei) + f(x+ 2ei)]
+(Nj − xj − 1)[f(x)− 2f(x+ ej) + f(x+ 2ej)]
+2[f(x) + f(x+ ei + ej)− f(x+ ei)− f(x+ ej)]

≥ 0.

The first inequality follows from supermodularity, the second inequality follows from convexity
in the components i and j, and again supermodularity. This completes the proof.

Next we continue with the proof of TSIT (i,j) : DI(i, j)→ DI(i, j) and DI(j, i)→ DI(j, i).

Proof. III. We only prove TSIT (i,j) : DI(i, j) → DI(i, j), the other result follows by symmetry.
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Suppose f ∈ DI(i, j), then for xi ≤ Ni − 1, xj ≤ Nj − 1 we have

NiNj
(
TSIT (i,j)f(x+ ei)− TSIT (i,j)f(x+ ej)

)
= (Nj − xj)(xi + 1)f(x+ ej) + (Ni − xi − 1)xjf(x+ 2ei − ej)

+
(
NiNj − (Nj − xj)(xi + 1)− (Ni − xi − 1)xj

)
f(x+ ei)

−(Nj − xj − 1)xif(x− ei + 2ej)− (Ni − xi)(xj + 1)f(x+ ei)
−
(
NiNj − (Nj − xj − 1)xi − (Ni − xi)(xj + 1)

)
f(x+ ej)

= (Nj − xj − 1)xi[f(x+ ej)− f(x− ei + 2ej)]
+(Ni − xi − 1)xj [f(x+ 2ei − ej)− f(x+ ei)]
+
(
NiNj − (Nj − xj)(xi + 1)− (Ni − xi)(xj + 1)

)
[f(x+ ei)− f(x+ ej)]

+(Nj − xj)[f(x+ ej)− f(x)]
+xj [f(x+ ei)− f(x+ ei − ej)]
+(Nj − xj − 1)f(x+ ej) + (xi + 1)f(x+ ej)
−(Nj − xj − 1)f(x+ ej)− (xi + 1)f(x+ ej)
+(Ni − xi − 1)f(x+ ei) + (xj + 1)f(x+ ei)
−(Ni − xi − 1)f(x+ ei)− (xj + 1)f(x+ ei)

≥ 0.

All compensation terms cancel. The inequality follows since f ∈ DI(i, j), hence the propagation
result is proved.

4.2.4 Double arrivals

Another event where the SRT method is not very straightforward is when 2 customers arrive
simultaneously in queue i and j. The event operator of double arrivals is

TDA(i,j)f(x) := f(x+ ei + ej).

We need to smooth this event in two variables, i and j, the transition rates are decreased
proportional to the sum of both variables. The first idea is to do is it like this

(
1− xi + xj

N

)
f(x+ ei + ej) +

xi + xj
N

f(x) if xi + xj ≤ N.

Unfortunately, this operator does not propagate any of the properties that we are interested in.
Therefore, just as in the case of the increasing transfers, we try to add extra artificial transitions.
We add increasing arrivals in the i-th and the j-th variable and get

(
1− xi + xj

N

)
f(x+ ei + ej) +

xj
N
f(x+ ei) +

xi
N
f(x+ ej) if xi + xj ≤ N.

Now there are still transitions moving outside the area xi+xj ≤ N , these transition rates need to
be smoothed too. These transitions rates are smoothed such that no transitions move outwards
the square xi, xj ≤ N . The smoothed version of the double arrivals operator becomes
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TSDA(i,j)f(x) :=


(

1− xi+xj

N

)
f(x+ ei + ej) + xj

N f(x+ ei) + xi

N f(x+ ej) if xi + xj ≤ N,(
1−

(
1− xi

N

)+ − (1− xj

N

)+)
f(x)

+
(
1− xi

N

)+
f(x+ ei) +

(
1− xj

N

)+
f(x+ ej) if xi + xj > N.

Theorem (propagation results for the smoothed double arrivals operator). The prop-
agation results for TSDA(i,j), for i 6= j ∈ {1, . . .m}

I. I(i)→ I(i);

II. C(i) ∩ Super(i, j)→ C(i);

III. Super(i, j)→ Super(i, j);

IV. DI(i, j)→ DI(i, j).

First the proof of TSDA(i,j) : I(i)→ I(i).

Proof. I. Suppose f ∈ I(i), then for xi + xj ≤ N − 1 we have

N
(
TSDA(i,j)f(x+ ei)− TSDA(i,j)f(x)

)
= (N − xi − xj − 1)f(x+ 2ei + ej) + xjf(x+ 2ei) + (xi + 1)f(x+ ei + ej)
−(N − xi − xj)f(x+ ei + ej)− xjf(x+ ei)− xif(x+ ej)

= (N − xi − xj − 1)[f(x+ 2ei + ej)− f(x+ ei + ej)]− f(x+ ei + ej)
+xj [f(x+ 2ei)− f(x+ ei)]
+xi[f(x+ ei + ej)− f(x+ ej)] + f(x+ ei + ej)

≥ 0.

The inequality follows from f ∈ I(i). For xi + xj ≥ N, xi ≤ N − 1, xj ≤ N we get

N
(
TSDA(i,j)f(x+ ei)− TSDA(i,j)f(x)

)
= (N − xi − 1)f(x+ 2ei) + (N − xj)f(x+ ei + ej) + (xi + xj −N + 1)f(x+ ei)
−(N − xi)f(x+ ei)− (N − xj)f(x+ ej)− (xi + xj −N)f(x)

= (N − xi − 1)[f(x+ 2ei)− f(x+ ei)]− f(x+ ei)
+(N − xj)[f(x+ ei + ej)− f(x+ ej)]
(xi + xj −N)[f(x+ ei)− f(x)] + f(x+ ei)

≥ 0.

The inequality follows by increasingness of f .

Next the proof of TSDA(i,j) : C(i) ∩ Super(i, j)→ C(i).
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Proof. II.Suppose f ∈ C(i) ∩ Super(i, j). Then for xi + xj ≤ N − 2, we have

N
(
TSDA(i,j)f(x+ 2ei)− 2TSDA(i,j)f(x+ ei) + TSDA(i,j)f(x)

)
= (N − xi − xj − 2)f(x+ 3ei + ej) + xjf(x+ 3ei) + (xi + 2)f(x+ 2ei + ej)
−2(N − xi − xj − 1)f(x+ 2ei + ej)− 2xjf(x+ 2ei)− 2(xi + 1)f(x+ ei + ej)
+(N − xi − xj)f(x+ ei + ej) + xjf(x+ ei) + xif(x+ ej)

= (N − xi − xj − 2)[f(x+ 3ei + ej)− 2f(x+ 2ei + ej) + f(x+ ei + ej)]
+xj [f(x+ 3ei)− 2f(x+ 2ei) + f(x+ ei)]
+xi[f(x+ 2ei + ej)− 2f(x+ ei + ej) + f(x+ ej)]
−2f(x+ 2ei + ej) + 2f(x+ ei + ej)
+2f(x+ 2ei + ej)− 2f(x+ ei + ej)

≥ 0.

The inequality follows from C(i). For xi + xj = N − 1, xi ≤ N − 2 we have

N
(
TSDA(i,j)f(x+ 2ei)− 2TSDA(i,j)f(x+ ei) + TSDA(i,j)f(x)

)
= (xj − 1)f(x+ 3ei) + (N − xj)f(x+ 2ei + ej) + f(x+ 2ei)
−2xjf(x+ 2ei)− 2(N − xj)f(x+ ei + ej)
+f(x+ ei + ej) + xjf(x+ ei) + (N − xj − 1)f(x+ ej)

= (xj − 1)[f(x+ 3ei)− 2f(x+ 2ei) + f(x+ ei)]
+(N − xj − 1)[f(x+ 2ei + ej)− 2f(x+ ei + ej) + f(x+ ej)]
+f(x+ 2ei + ej)− 2f(x+ ei + ej)
−2f(x+ 2ei) + f(x+ ei)
+f(x+ 2ei) + f(x+ ei + ej)

≥ f(x+ ei) + f(x+ 2ei + ej)− f(x+ 2ei)− f(x+ ei + ej)
≥ 0.

The first inequality comes from convexity of f , the second inequality follows from supermodu-
larity.

For xi + xj ≥ N, xi ≤ N − 1, xj ≤ N we get

N
(
TSDA(i,j)f(x+ 2ei)− 2TSDA(i,j)f(x+ ei) + TSDA(i,j)f(x)

)
= (N − xi − 2)f(x+ 3ei) + (N − xj)f(x+ 2ei + ej) + (xi + xj −N + 2)f(x+ 2ei)
−2(N − xi − 1)f(x+ 2ei)− 2(N − xj)f(x+ ei + ej)− 2(xi + xj −N + 1)f(x+ ei)
+(N − xi)f(x+ ei) + (N − xj)f(x+ ej) + (xi + xj −N)f(x)

= (N − xi − 2)[f(x+ 3ei)− 2f(x+ 2ei) + f(x+ ei)]
+(N − xj)[f(x+ 2ei + ej)− 2f(x+ ei + ej) + f(x+ ej)]
+(xi + xj −N)[f(x+ 2ei)− 2f(x+ ei) + f(x)]
−2f(x+ 2ei) + 2f(x+ ei)
+2f(x+ 2ei)− 2f(x+ ei)

≥ 0.
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The inequality follows from convexity of f .

The proof of Super(i, j)

Proof. III. Suppose f ∈ Super(i, j): For xi + xj ≤ N − 2 we have

N
(
TSDA(i,j)f(x) + TSDA(i,j)f(x+ ei + ej)− TSDA(i,j)f(x+ ei)− TSDA(i,j)f(x+ ej)

)
= (Nj − xi − xj)f(x+ ei + ej) + xjf(x+ ei) + xif(x+ ej)

+(N − xi − xj − 2)f(x+ 2ei + 2ej) + (xj + 1)f(x+ 2ei + ej) + (xi + 1)f(x+ ei + 2ej)
−(N − xi − xj − 1)f(x+ 2ei + ej)− xjf(x+ 2ei)− (xi + 1)f(x+ ei + ej)
−(N − xi − xj − 1)f(x+ ei + 2ej)− (xj + 1)f(x+ ei + ej)− xif(x+ 2ej)

= (N − xi − xj − 2)[f(x+ ei + ej) + f(x+ 2ei + 2ej)− f(x+ 2ei + ej)− f(x+ ei + 2ej)]
+xj [f(x+ ei) + f(x+ 2ei + ej)− f(x+ 2ei)− f(x+ ei + ej)]
+xi[f(x+ ej) + f(x+ ei + 2ej)− f(x+ ei + ej)− f(x+ 2ej)]
+2f(x+ ei + ej)− f(x+ 2ei + ej)− f(x+ ei + 2ej)
+f(x+ 2ei + ej)− f(x+ ei + ej) + f(x+ ei + 2ej)− f(x+ ei + ej)

≥ 0.

The compensation terms cancel, the inequality follows from supermodularity. If xi +xj = N − 1
then we get

N
(
TSDA(i,j)f(x) + TSDA(i,j)f(x+ ei + ej)− TSDA(i,j)f(x+ ei)− TSDA(i,j)f(x+ ej)

)
= f(x+ ei + ej) + xjf(x+ ei) + (N − xj − 1)f(x+ ej)

xjf(x+ 2ei + ej) + (N − xj − 1)f(x+ ei + 2ej) + f(x+ ei + ej)
−xjf(x+ 2ei)− (N − xj)f(x+ ei + ej)
−(xj + 1)f(x+ ei + ej) + (N − xj − 1)f(x+ 2ej)

= xj [f(x+ ei) + f(x+ 2ei + ej)− f(x+ 2ei)− f(x+ ei + ej)]
+(N − xj − 1)[f(x+ ej) + f(x+ ei + 2ej)− f(x+ ei + ej)− f(x+ 2ej)]

≥ 0.

The inequality follows from supermodularity.
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For xi + xj ≥ N, xi ≤ N − 1, xj ≤ N − 1 we get

N
(
TSDA(i,j)f(x) + TSDA(i,j)f(x+ ei + ej)− TSDA(i,j)f(x+ ei)− TSDA(i,j)f(x+ ej)

)
= (N − xi)f(x+ ei) + (N − xj)f(x+ ej) + (xi + xj −N)f(x)

(N − xi − 1)f(x+ 2ei + ej) + (N − xj − 1)f(x+ ei + 2ej) + (xi + xj −N + 2)f(x+ ei + ej)
−(N − xi − 1)f(x+ 2ei)− (N − xj)f(x+ ei + ej)− (xi + xj −N + 1)f(x+ ei)
−(N − xi)f(x+ ei + ej) + (N − xj − 1)f(x+ 2ej)− (xi + xj −N + 1)f(x+ ej)

= (N − xi − 1)[f(x+ ei) + f(x+ 2ei + ej)− f(x+ 2ei)− f(x+ ei + ej)]
+(N − xj − 1)[f(x+ ej) + f(x+ ei + 2ej)− f(x+ ei + ej)− f(x+ 2ej)]
+(xi + xj −N)[f(x) + f(x+ ei + ej)− f(x+ ei)− f(x+ ej)]
+f(x+ ei)− f(x+ ei + ej)
+f(x+ ej)− f(x+ ei + ej)
+2f(x+ ei + ej)− f(x+ ei)− f(x+ ej)

≥ 0.

The inequality follows from supermodularity.

The proof of directional increasingness TSDA(i,j) : DI(i, j)→ DI(i, j) andDI(j, i)→ DI(j, i).

Proof. IV. Suppose f ∈ DI(i, j), then for xi + xj ≤ N − 1

N
(
TSDA(i,j)f(x+ ei)− TSDA(i,j)f(x+ ej)

)
= (N − xi − xj − 1)f(x+ 2ei + ej) + xjf(x+ 2ei) + (xi + 1)f(x+ ei + ej)
−(N − xi − xj − 1)f(x+ ei + 2ej)− (xj + 1)f(x+ ei + ej)− xif(x+ 2ej)

= (N − xi − xj − 1)[f(x+ 2ei + ej)− f(x+ ei + ej)]
+xj [f(x+ 2ei)− f(x+ ei + ej)]− f(x+ ei + ej)
+xi[f(x+ ei + ej)− f(x+ 2ej)] + f(x+ ei + ej)

≥ 0.

And for xi + xj ≥ N, xi, xj ≤ N − 1

N
(
TSDA(i,j)f(x+ ei)− TSDA(i,j)f(x+ ej)

)
= (N − xi − 1)f(x+ 2ei) + (N − xj)f(x+ ei + ej) + (xi + xj −N + 1)f(x+ ei)
−(N − xi)f(x+ ei + ej)− (N − xj − 1)f(x+ 2ej)− (xi + xj −N + 1)f(x+ ej)

= (N − xi − 1)[f(x+ 2ei)− f(x+ ei + ej)]− f(x+ ei + ej)
+(N − xj − 1)[f(x+ ei + ej)− f(x+ 2ej)] + f(x+ ei + ej)
(xi + xj −N + 1)[f(x+ ei)− f(x+ ej)]

≥ 0.

The inequalities in both formulas follow directly from the directional increasingness of f . The
proof of DI(j, i) follows by symmetry.
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4.2.5 Controlled arrivals

We also investigate events where control plays a role. An important form of control is admission
control. When a customer arrives in queue i, we can accept or reject with associated costs c and
c′ respectively. The controlled arrival operator is

TCAf(x) = min{c+ f(x), c′ + f(x+ ei)}.

We want the smoothed operator to propagate the properties we are interested in. Therefore it
turns out to be necessary to take as a uniformization term c+ f(x), instead of f(x). Hence we
introduce the following operator

TSCA(i)f(x) :=
(

1− xi
Ni

)+

min{c+ f(x), c′ + f(x+ ei)}+

(
1−

(
1− xi

Ni

)+
)

(c+ f(x)).

Theorem (propagation results for the smoothed controlled arrivals operator). For
the operator TSCA(i), the propagation results are, for i 6= j ∈ {1, . . . ,m}:

I. I(i)→ I(i);

II. C(i)→ C(i);

III. Super(i, j)→ Super(i, j);

IV. DI(i, j)→ DI(i, j).

Proof of TSCA(i) : I(i)→ I(i).

Proof. I. Suppose f ∈ I(i). Then for xi ≤ Ni − 1 it holds that

Ni(TSCA(i)f(x+ ei)− TSCA(i)f(x))

= (Ni − xi − 1) min{c+ f(x+ ei), c′ + f(x+ 2ei)}+ (xi + 1)(c+ f(x+ ei))
−(Ni − xi) min{c+ f(x), c′ + f(x+ ei)} − xi(c+ f(x))

= (Ni − xi − 1)[min{c+ f(x+ ei), c′ + f(x+ 2ei)}︸ ︷︷ ︸
(1)

−min{c+ f(x), c′ + f(x+ ei)}︸ ︷︷ ︸
(2)

]

−min{c+ f(x), c′ + f(x+ ei)}︸ ︷︷ ︸
(3)

+xi[f(x+ ei)− f(x)] + (c+ f(x+ ei))
≥ 0.

To prove that this is greater or equal than zero, we have to make some case distinctions. This is
due to the terms with a minimization. First note the following. Minus the minimum is always
greater or equal than minus any term inside the minimization (i.e. −minb∈B(b) ≥ −b, ∀b ∈ B).
This means that we have a certain freedom of choice for the terms with a minus sign in front of it.

If the minimum of (1) is c + f(x + ei) (reject), then for (2) we also choose reject (this only
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makes the expression smaller), then the terms inside the square brackets are greater or equal
than 0 by increasingness in the i-th component.
If the minimum of (1) is accept, then for (2) choose accept and the inequality between the square
brackets also follows by increasingness of f .
For (3) choose reject, the inequality of the compensation terms follows by increasingness in
xi.

Proof of TSCA(i) : C(i)→ C(i).

Proof. II. Suppose f ∈ C(i), then for xi ≤ Ni − 2 we obtain

Ni(TSCA(i)f(x+ 2ei)− 2TSCA(i)f(x+ ei) + TSCA(i)f(x))

= (Ni − xi − 2) min{c+ f(x+ 2ei), c′ + f(x+ 3ei)}+ (xi + 2)(c+ f(x+ 2ei))
−2(Ni − xi − 1) min{c+ f(x+ ei), c′ + f(x+ 2ei)} − 2(xi + 1)(c+ f(x+ ei))
+(Ni − xi) min{c+ f(x), c′ + f(x+ ei)}+ xi(c+ f(x))

= (Ni − xi − 2)[min{c+ f(x+ 2ei), c′ + f(x+ 3ei)}︸ ︷︷ ︸
(1)

−2 min{c+ f(x+ ei), c′ + f(x+ 2ei)}︸ ︷︷ ︸
(2)

+ min{c+ f(x), c′ + f(x+ ei)}︸ ︷︷ ︸
(3)

]

−2 min{c+ f(x+ ei), c′ + f(x+ 2ei)}︸ ︷︷ ︸
(4)

+2 min{c+ f(x), c′ + f(x+ ei)}︸ ︷︷ ︸
(5)

+xi[f(x+ 2ei)− 2f(x+ ei) + f(x)] + 2f(x+ 2ei)− 2f(x+ ei)
≥ 0.

If the minimum of (1) and (3) is accept, then for (2) choose accept two times, the inequality
between the square brackets follows from convexity of f .
If the minimums of both (1) and (3) are reject, then in (2) we choose two times reject and the
inequality follows by convexity.
If the minimum of (1) is accept and (3) is reject, then in (2) we choose one time accept and once
reject, the inequality follows by convexity.
If the minimum of (1) is reject and (3) is accept, then in (2) we choose one time accept and once
reject, the terms between the square brackets are 0.
If the minimum of (5) is accept, choose for (4) accept, the compensation terms cancel.
If the minimum of (5) is reject, choose for (4) reject, the inequality follows by convexity on the
compensation terms.

Proof of TSCA(i) : Super(i, j)→ Super(i, j).
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Proof. III. Suppose f ∈ Super(i, j), then for xi ≤ Ni − 1

Ni(TSCA(i)f(x) + TSCA(i)f(x+ ei + ej)− TSCA(i)f(x+ ei)− TSCA(i)f(x+ ej))

= (Ni − xi) min{c+ f(x), c′ + f(x+ ei)}+ xi(c+ f(x))
+(Ni − xi − 1) min{c+ f(x+ ei + ej), c′ + f(x+ 2ei + ej)}+ (xi + 1)(c+ f(x+ ei + ej))
−(Ni − xi − 1) min{c+ f(x+ ei), c′ + f(x+ 2ei)} − (xi + 1)(c+ f(x+ ei))
−(Ni − xi) min{c+ f(x+ ej), c′ + f(x+ ei + ej)} − xi(c+ f(x+ ej))

= (Ni − xi − 1)[min{c+ f(x), c′ + f(x+ ei)}︸ ︷︷ ︸
(1)

+ min{c+ f(x+ ei + ej), c′ + f(x+ 2ei + ej)}︸ ︷︷ ︸
(2)

−min{c+ f(x+ ei), c′ + f(x+ 2ei)}︸ ︷︷ ︸
(3)

−min{c+ f(x+ ej), c′ + f(x+ ei + ej)}︸ ︷︷ ︸
(4)

]

−min{c+ f(x), c′ + f(x+ ei)}︸ ︷︷ ︸
(5)

−min{c+ f(x+ ej), c′ + f(x+ ei + ej)}︸ ︷︷ ︸
(6)

+xi[f(x) + f(x+ ei + ej)− f(x+ ei)− f(x+ ej)]
+f(x+ ei + ej)− f(x+ ei)

≥ 0.

For (3) copy the minimum of (2), for (4) copy the minimum of (1) and for (6) copy the minimum
of (5). Then the inequality follows by supermodularity of f .

Proof of TSCA(i) : DI(i, j)→ DI(i, j).

Proof. IV. Suppose f ∈ DI(i, j). Then for xi ≤ Ni − 1 it holds that

Ni(TSCA(i)f(x+ ei)− TSCA(i)f(x+ ej))

= (Ni − xi − 1) min{c+ f(x+ ei), c′ + f(x+ 2ei)}+ (xi + 1)(c+ f(x+ ei))
−(Ni − xi) min{c+ f(x+ ej), c′ + f(x+ ei + ej)} − xi(c+ f(x+ ej))

= (Ni − xi − 1)[min{c+ f(x+ ei), c′ + f(x+ 2ei)}︸ ︷︷ ︸
(1)

−min{c+ f(x+ ej), c′ + f(x+ ei + ej)}︸ ︷︷ ︸
(2)

]

−min{c+ f(x+ ej), c′ + f(x+ ei + ej)}︸ ︷︷ ︸
(3)

+xi[f(x+ ei)− f(x+ ej)] + (c+ f(x+ ei))
≥ 0.

Choose for (2) the same action as (1), for (3) choose reject. Then the inequality follows by
directional increasingness.
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4.3 Convergence and composition of the new operators

The composition of the new operators works similarly as for the existing operators, though some-
times some extra caution is necessary. For some operators extra conditions are necessary on the
rates of Ni and Nj . When many new operators are used at the same time, these extra conditions
may conflict and the results can not be copied automatically to the model that is studied. This
is not very likely to happen.

For the convergence of the new operators to the events that they are representing we need the
conditions described in Theorem 1 of Section 3.2. When these conditions are satisfied, then the
theorems of that section imply that the properties derived for the value function associated to
the smoothed events, also hold for the value function of the original events.

4.4 Propagation results

We will give an overview of the new operators, together with the propagation results that have
been derived. After that a comprehensive list of operators and properties with their propagation
results follows. This list is made by Koole [8].

4.4.1 New results

We have introduced the following new operators. The smoothed arrivals operator

TSA(i)f(x) =
(

1− xi
Ni

)+

f(x+ ei) +

(
1−

(
1− xi

Ni

)+
)
f(x).

The smoothed transfers operator

TST (i,j)f(x) =
{

(1− xj

Nj
)f(x− ei + ej) + xj

Nj
f(x) xi > 0, xj ≤ Nj ,

f(x) else.

The smoothed increasing transfers operator, for 0 < ε < 1 and Ni = εNj , the operator is

TSIT (i,j)f(x) =


xi

Ni

(
1− xj

Nj

)
f(x− ei + ej) + εxj

Ni

(
1− xi

Ni

)
f(x+ ei − ej)

+
(

1− xi

Ni

(
1− xj

Nj

)
− εxj

Ni

(
1− xi

Ni

))
f(x) if xi ≤ Ni, xj ≤ Nj ,

f(x) else.

The smoothed double arrivals operator

TSDA(i,j)f(x) =


(

1− xi+xj

N

)
f(x+ ei + ej) + xj

N f(x+ ei) + xi

N f(x+ ej) if xi + xj ≤ N,(
1−

(
1− xi

N

)+ − (1− xj

N

)+)
f(x)

+
(
1− xi

N

)+
f(x+ ei) +

(
1− xj

N

)+
f(x+ ej) if xi + xj > N.

The smoothed controlled arrivals operator

TSCA(i)f(x) =
(

1− xi
N

)+

min{c+ f(x), c′ + f(x+ ei)}+
(

1−
(

1− xi
N

)+
)

(c+ f(x)).
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The following results have been derived for these operators, for i 6= j ∈ {1 . . .m} we have

TSA(i) : I(i)→ I(i), C(i)→ C(i), Super(i, j)→ Super(i, j), DI(j, i) ∩ I(j)→ DI(j, i);

TST (i,j) : I(i) ∩ I(j)→ I(i) ∩ I(j), C(j) ∩ Super(i, j)→ C(j), C(i) ∩ Super(i, j) ∩DI(i, j)→
C(i) ∩ Super(i, j), DI(i, j)→ DI(i, j), DI(j, i)→ DI(j, i);

TSIT (i,j) : I(i) ∩ I(j)→ I(i) ∩ I(j), C(i) ∩ C(j) ∩ Super(i, j)→ C(i) ∩ C(j) ∩ Super(i, j),

DI(i, j)→ DI(i, j), DI(j, i)→ DI(j, i);

TSDA(i,j) : I(i)→ I(i), C(i) ∩ Super(i, j)→ C(i), Super(i, j)→ Super(i, j), DI(i, j)→ DI(i, j);

TSCA(i) : I(i)→ I(i), C(i)→ C(i), Super(i, j)→ Super(i, j), DI(i, j)→ DI(i, j).

4.4.2 Known results

First we define a list of operators, grouped in different categories.

Environmental operators:

Tdiscf(x) = C(x) + αf(x) for some real-valued function C;

Tenv(f1, . . . , fl)(x) =
∑
y∈N0

λ(x0, y)
l∑

j=1

qj(x0, y)fj(x∗);

Tmin(f1, . . . , fl)(x) = min
a

∑
y∈N0

λ(x0, a, y)
l∑

j=1

qj(x0, a, y)fj(x∗)

 ;

Tmax(f1, . . . , fl)(x) = max
a

∑
y∈N0

λ(x0, a, y)
l∑

j=1

qj(x0, a, y)fj(x∗)

 ;

Tunif (f1, . . . , fl)(x) =
∑
j

p(j)fj(x) with p(j) > 0 for all j.
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Arrival operator:

TA(i)f(x) = f(x+ ei);

TCA(i)f(x) = min{c+ f(x), c′ + f(x+ ei)}, c, c′ ∈ R;

TFS(i)f(x) =
{

(1− xi

B )f(x+ ei) + xi

B f(x) xi ≤ B
f(x) else;

TCAF f(x) = min{c+ f(x), f(x+
m∑
i=1

ei)};

TRf(x) = min
1≤i≤m

f(x+ ei).

Departure operators:

TD1(i)f(x) = f((x− ei)+);

TD(i)f(x) = µ(xi)f((x− ei)+) + (1− µ(xi))f(x) with 0 ≤ µ(x) ≤ 1 for all x ∈ N and µ(0) = 0;

TPDf(x) =
∑

1≤i≤m

µ(i)f((x− ei)+) with
∑

1≤i≤m

µ(i) = 1;

TCD(i)f(x) =
{

minµ∈[0,1]{c(µ) + µf(x− ei) + (1− µ)f(x)} if xi > 0,
c(0) + f(x) otherwise,

with c(µ) ∈ R for all µ ∈ [0, 1], assuming that the minimum always exists;

TMSf(x) =
{

minj∈I:xj>0{µ(j)f(x− ej) + (1− µ(j))f(x)} if
∑
j∈I xj > 0,

f(x) otherwise,

for µ(j) ≤ 1;

TMMSf(x) =


1
s mini1,...,is∈I:

P
k∈I I{ik=j}≤xj

{
∑s
k=1(µ(ik)f(x− eik) + (1− µ(ik))f(x))}

if
∑
j∈I xj ≥ s,

1
s

∑
j∈I xj(µ(j)f(x− ej) + (1µ(j))f(x)) +

s−
P

j∈I xj

s f(x)
otherwise ,

for µ(j) ≤ 1.
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Tandem operators:

TTD1(i)f(x) =
{
f(x− ei + ei+1(mod m)) if xi > 0,
f(x) otherwise;

TCTD(i)f(x) =
{

minµ∈[0,1]{c(µ) + µf(x− ei + ei+1(mod m)) + (1− µ)f(x)} if xi > 0,
c(0) + f(x) otherwise;

TTD(i)f(x) =
{

xi

S f(x− ei + ei+1(mod m)) + S−xi

S f(x) if xi < S,
f(x− ei + ei+1(mod m)) otherwise;

TMTSf(x) =
{

minj∈I:xj>0 {
∑m
k=0 µ(i, k)f(x− ei + ek)} if

∑
j∈I xj > 0,

f(x) otherwise,

where
m∑
k=0

µ(i, k) = 1 for all i, µ(i, j) = 0 for all i and 0 < j < i− 1 and e0 = 0.
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Properties

Next, define the properties of interest.

First order properties:

f ∈ I(i) if f(x) ≤ f(x+ ei) for 1 ≤ i ≤ m;

I =
⋂

1≤i≤m

I(i);

f ∈ UI(i) if f(x+ ei+1) ≥ f(x+ ei) for 1 ≤ i ≤ m;

UI =
⋂

1≤i≤m−1

UI(i);

f ∈ wUI(i) if µ(i)f(x+ ei+1) + (1− µ(i))f(x+ ei + ei+1)
≤ µ(i+ 1)f(x+ ei) + (1− µ(i+ 1))f(x+ ei + ei+1)

for 1 ≤ i ≤ m, for given constants 0 < µ(j) ≤ 1, 1 ≤ j ≤ m;

wUI =
⋂

1≤i≤m−1

wUI(i);

f ∈ gUI(i) if
m∑
k=0

µ(i, k)f(x+ ei+1 + ek) ≤
m∑
k=0

µ(i+ 1, k)f(x+ ei + ek)

for 1 ≤ i ≤ m, e0 = 0, constants µ(j, k), such that
m∑
k=1

µ(j, k) = 1, 1 ≤ j ≤ m;

gUI =
⋂

1≤i≤m−1

gUI(i).
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Schur convexity:

f ∈ SC if
f(x+ ei) ≤ f(x+ ej)

for all x and i, j with i 6= j and xi ≤ xj and
f(x+ kei) = f(x+ kej)

for all x and i, j with i 6= j,xi = xj and k > 0;

f ∈ ASC if
f(x+ ei) ≤ f(x+ ej)

for all x and i, j with i < j and xi ≤ xj and
f(x+ kei) = f(x+ kej)

for all x and i, j with i < j,xi = xj and k > 0.

Convexity:

f ∈ Cx(i) if
2f(x+ ei) ≤ f(x) + f(x+ 2ei)

for all x and 1 ≤ i ≤ m;

Cx =
⋂

1≤i≤m

Cx(i);

f ∈ Cv(i) if
f(x) + f(x+ 2ei) ≤ 2f(x+ ei)

for all x and 1 ≤ i ≤ m;

Cv =
⋂

1≤i≤m

Cv(i);

f ∈ Super(i, j) if
f(x+ ei) + f(x+ ej) ≤ f(x) + f(x+ ei + ej)

for all x and 1 ≤ i < j ≤ m;

Super =
⋂

1≤i<j≤m

Super(i, j);
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f ∈ Sub(i, j) if
f(x) + f(x+ ei + ej) ≤ f(x+ ei) + f(x+ ej)

for all x and 1 ≤ i < j ≤ m;

Sub =
⋂

1≤i<j≤m

Sub(i, j);

f ∈ SuperC(i, j) if
f(x+ ei) + f(x+ ej + ej) ≤ f(x+ ej) + f(x+ 2ei)

for all x and 1 ≤ i, j ≤ m, i 6= j;

SuperC =
⋂

1≤i,j≤m, i 6=j

SuperC(i, j);

f ∈MM(i, j) if
f(x) + f(x+ di + dj) ≤ f(x+ di) + f(x+ dj)

for all x and 1 ≤ i < j ≤ m, such that x+ di, x+ dj ∈ Nd+1
0 , with

d0 = e1, dk = −ek + ek+1, k = 1, . . . ,m− 1, and dm = −em;

MM =
⋂

1≤i<j≤m

MM(i, j);
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Combination of operators and properties:

The following propagation results hold for environmental operators:

Tdisc, Tenv : I → I, UI → UI, wUI → wUI, gUI → gUI, SC → SC, ASC → ASC,

Cx→ Cx, Super → Super, Sub→ Sub, SuperC → SuperC, Sub→ Sub, MM →MM ;

Tmin : I → I, UI → UI, wUI → wUI when µ(1) ≤ . . . ≤ µ(m), SC → SC, ASC → ASC;

Tmax : I → I, UI → UI, wUI → wUI when µ(1) ≤ . . . ≤ µ(m), SC → SC, ASC → ASC,

Cx→ Cx.

The following results hold for the arrival operators, 1 ≤ i, j ≤ m, i 6= j:

TA(i) : I → I, UI → UI, wUI → wUI, gUI → gUI, Cx→ Cx, Super → Super, Sub→ Sub,

SuperC → SuperC, Sub→ Sub, MM →MM ;

TCA(i) : I → I, UI → UI, wUI → wUI when µ(1) ≤ . . . ≤ µ(m), Cx(i)→ Cx(i),
Super(i, j)→ Super(i, j), Sub→ Sub, Super(i, j) ∩ SuperC(i, j)→ SuperC(i, j),
Super(i, j) ∩ SuperC(j, i)→ SuperC(j, i), Sub(i, j) ∩ SubC(i, j)→ SubC(i, j),
Sub(i, j) ∩ SubC(j, i)→ SubC(j, i), MM →MM for i = 1;

TFS(i) : I → I, Cx→ Cx, Super → Super, Sub→ Sub;

TCAF : I → I, Sub(i, j) ∩ SubC(i, j)→ Sub(i, j) if m = 2, SubC(i, j)→ SubC(i, j) if m = 2;

TR : I → I, SC → SC, Super(i, j) ∩ SuperC(i, j) ∩ SuperC(j, i)→ Super(i, j) if m = 2,
ASC → ASC, Super(i, j) ∩ SuperC(i, j)→ SuperC(i, j) if m = 2.
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For departure operators the following progation results hold, for 1 ≤ i, j ≤ m :

TD(i) : I → I, I ∩ UI → UI for i = m, I(i) ∩ Cx(i)→ Cx(i) if µ(x) ∈ I ∩ Cv,
Cx(j)→ Cx(j) for j 6= i, Super → Super, Sub→ Sub;

TD1(i) : I → I, I ∩ UI → UI for i = m, I(i) ∩ Cx(i)→ Cx(i),
Cx(j)→ Cx(j) for j 6= i, Super → Super, Sub→ Sub, SuperC(j, k)→ SuperC(j, k) (j, k 6= i),
I(i) ∩ SuperC(i, j)→ SuperC(i, j) (j 6= i), Cx(j) ∩ SuperC(j, i)→ SuperC(j, i),
SubC(j, k)→ SubC(j, k) (j, k 6= i), I(i) ∩ SubC(i, j)→ SubC(i, j) (j 6= i),
Cx(j) ∩ SubC(j, i)→ SubC(j, i), UI ∩MM →MM for i = m;

TPD : I → I, UI → UI, I ∩ SC → SC for µ(i) = µ(j),
I ∩ASC → ASC if µ(i) ≥ µ(j) if i < j, I(i) ∩ Cx(i)→ Cx(i), Cx(j)→ Cx(j) for j 6= i,

Super → Super, Sub→ Sub, SuperC(j, k)→ SuperC(j, k) (j, k 6= i),
I(i) ∩ SuperC(i, j)→ SuperC(i, j) (j 6= i), Cx(j) ∩ SuperC(j, i)→ SuperC(j, i),
SubC(j, k)→ SubC(j, k) (j, k 6= i), I(i) ∩ SubC(i, j)→ SubC(i, j) (j 6= i),
Cx(j) ∩ SubC(j, i)→ SubC(j, i), UI ∩MM →MM for i = m;

TCD(i) : I → I if c(0) = min
µ∈[0,1]

c(µ), I ∩ UI → UI for i = m if c(0) = min
µ∈[0,1]

c(µ),

Cx(i)→ Cx(i), Super(i, j)→ Super(i, j), Sub→ Sub if c(0) = min
µ∈[0,1]

c(µ),

Cx(i) ∩ SuperC(i, j)→ SuperC(i, j), Super(i, j) ∩ SuperC(j, i)→ SuperC(j, i),
Cx(i) ∩ SubC(i, j)→ SubC(i, j), Sub(i, j) ∩ SubC(j, i)→ SubC(j, i), MM →MM for i = m;

TMS : I → I, wUI → wUI for µ as in TMS,

Super ∩ SuperC → Super for m = 2 and µ(1) = µ(2),
SuperC → SuperC for m = 2 and µ(1) = µ(2);

TMMS : I → I, I ∩ wUI → wUI for µ as in TMMS and µ(i) ≤ µ(j), i < j ∈ I.
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For transfer operators the following propagation results hold, 1 ≤ i ≤ m:

TTD1(i) : I → I, UI → UI for i < m, UI ∩MM →MM for i < m,

UI ∩ Cx ∩ Super → Cx for i < m, UI ∩ Cx ∩ Super → Super for i < m;

TCTD(i) : I → I if c(0) = min
µ∈[0,1]

c(µ), UI → UI for i < m, MM →MM ;

TTD(i) : I → I, UI → UI for i < m, UI ∩ Cx ∩ Super → Cx for i < m,

UI ∩ Cx ∩ Super → Super for i < m;

TMTS : I → I, gUI → gUI for µ as in TMTS.
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Chapter 5

Conclusion and further
research

The smoothed rate truncation can be applied on the single server queue. For both the cost as the
reward model it is possible to prove properties of the value function. In the available literature
it was pretty hard work to give a priority-rule for this model, with the newly developed SRT
principle it is a relatively straightforward result.
The propagation results for the new operators in event-based dynamic programming are hopeful.
It is nice to see that for the smoothed operators the same results can be acomplished as for
the normal operators. The results for analyzed operators can be used to study models with
unbounded transition rates.
A lot more work can be done here. There is a large number of operators and properties that can
be studied. The methods used in the propagation proofs may be used to try on other problems
in this field.
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