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Summary

Today’s mobile networks provide full coverage in both densely populated
and rural areas, and consequently, any given location is typically covered by
multiple mobile networks, while at the same time the use of multi-antenna
devices is gaining momentum. This phenomenon of so-called concurrent
access opens up many possibilities for splitting traffic streams over different
mobile networks in order to increase capacity and to improve performance.

We analyse two types of models with parallel processor sharing servers. In
the first model, arriving jobs have access to only one of the processor
sharing servers with a certain probability (the server selection model). In
the second model, each job is split into parts and distributed over parallel
processor sharing servers (the job split model). First, we analyse the
optimal server selection probability and then the optimal job-split factor.
We compare the models to each other. We thereby use analytical
mathematical results and validate the model using simulation.
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Chapter 1

Introduction

1.1 About the Institute

The Center for Mathematics and Computer Science (CWI), or “Centrum
voor Wiskunde en Informatica” in Dutch, is the national research institute
for mathematics and computer science in the Netherlands, located at the
Science Park in Amsterdam. The CWI performs frontier research in
mathematics and computer science and transfers new knowledge in these
fields to society in general, and trade and industry in particular. It is one of
the founding members of the European Research Consortium for
Informatics and Mathematics (ERCIM). The ERCIM comprises research
institutes in 17 different European countries with altogether more than
10,000 active researchers in the fields of computer science and applied
mathematics.

The CWI was founded in 1946. It was originally called the Mathematical
Center, or “Mathematisch Centrum” in Dutch, but it changed in 1983 to its
current name due to the strong computer science component in its research.

1.2 Motivation for Concurrent Access

Today, there are multiple mobile networks commercially available, namely
General Packet Radio Service (GPRS), Enhanced Data Rates for GSM
Evolution (EDGE), Universal Mobile Telecommunications System (UMTS)
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and High-Speed Downlink Packet Access (HSDPA) 1 and mobile devices
that support multiple networks. However, they are only capable of utilising
a single network at the time. Moreover, it is often the case that these
networks overlap each other in terms of coverage, especially in densely
populated areas. Since wireless networks usually provide limited bandwidth
and are subject to significant interference, the user-perceived performance
of these networks is less than acceptable in many cases. To overcome this
problem, a promising new technique, called Concurrent Access (CA), allows
end-user terminals to utilise multiple networks simultaneously, thereby
increasing the available amount of bandwidth and providing robustness of
the application to the end user.

(a) Samsung SGH-i600. (b) Palm Treo
750.

(c) E-Ten X800 Glofiish.

Figure 1.1: Examples of mobile devices that support multiple networks
(HSDPA, UMTS, EDGE and GPRS).

The main objective is to devise and evaluate simple but effective methods
to realise the potential benefits of CA in wireless communication networks.
These methods strive for optimal distribution and re-assembly of the traffic
streams along the different paths between the distribution server and the
terminal. The method that we consider in this thesis is the study of
mathematical models that represent these networks, Processor Sharing
servers in particular. We model the download requests as foreground jobs,
we consider the required service time as a representation for the requested
download time and we let the sojourn time be a model for the actual
download time. We also introduce dummy download requests, in order to
model the fact that the capacity of the networks is not always fully

1Interesting articles on wireless networks, UMTS and HSDPA in particular, are [2, 4,
5, 10, 11, 12, 13, 14, 15].
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available. We refer to these requests as background jobs.

1.3 Structure of the Thesis

We consider models with two Processor Sharing servers and three traffic
streams. One stream has access to both servers, while the other two have
access to one server only. Jobs that may use both servers are called
foreground jobs, as opposed to background jobs. We have two types of
models. The server selection models let each foreground job go to one of
the servers. The job split models, on the other hand, divide each job in two
parts and then let each part go to one of the servers. The first objectives
are to find an optimal server selection probability in the server selection
model and an optimal split factor in the job split model. The other
objective is to show which type of model is the better one by looking at the
mean sojourn time of these jobs. Next to these static models, there is an
additional dynamic model of the server selection strategy, constructed by
means of Markov Decision chains and we compare this to its static
counterpart by the mean sojourn times of the jobs.

We perform the analyses by means of mathematical theory, accompanied
with simulation results. The simulations are done by means of a software
program called Extend. Extend gives a unique identification number for
each block and lets the corresponding seed parameter be equal to this
number, which justifies the randomness of the model. We also use a
self-made application in order to transform the raw output data.
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Chapter 2

Preliminaries

The models that we are going to develop, require mathematical knowledge
at university level, queueing theory in particular. This theory is partly
summarised in this chapter.

2.1 Probability Theory

We mainly consider continuous stochastic variables X that possess a
cumulative distribution function FX and a probability density function fX
on the probability space (Ω,A, P ). The cumulative distribution function FX
is defined as:

FX(x) := P (X ≤ x) = P ({y : X(y) ≤ x}) =

∫ x

−∞
dFX(y), x ∈ R,

where P is the probability measure. The cumulative distribution function
possesses this property: ∫ ∞

−∞
dFX(x) = 1.

The probability density function fX , is a function that is related to the
cumulative distribution function as follows:

FX(x) =

∫ x

−∞
fX(t) dt.

The n-th moment is defined as:

E[Xn] :=

∫
XndP =

∫ ∞
−∞

xn dFX(x).
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The first moment is also called the expectation, or the mean. The variance
is defined as:

Var[X] := E[X2]− (E[X])2.

and the squared coefficient of variation is defined as:

c2X :=
Var[X]

(E[X])2
.

2.1.1 Exponential Distribution

A stochastic variable X is exponentially distributed with rate µ, denoted by
Exp(µ), if its probability density is:

fX(x) = µe−µx, x ≥ 0.

Its mean, variance and squared coefficient of variation are:

E[X] =
1

µ
, Var[X] =

1

µ2
, c2X = 1.

An important property of an exponentially distributed random variable X is
the memoryless property. This property states that for all x ≥ 0 and t ≥ 0:

P (X > t+ x|X > t) = P (X > x) = e−µx.

Suppose that X1 and X2 are independent exponentially distributed with
rate µ1, µ2. Then the maximum Y := max{X1, X2} has the following mean:

E[Y ] =
1

µ1

+
1

µ2

− 1

µ1 + µ2

.

Proof:

FY (x) := P (Y < x) = P (X1 < x,X2 < x)
indep
= P (X1 < x1)P (X2 < x2)

= (1− e−µ1x)(1− e−µ2x) = 1− e−µ1x − e−µ2x + e−(µ1+µ2)x

fY (x) = F ′Y (x) = µ1e
−µ1x + µ2e

−µ2x − (µ1 + µ2)e
−(µ1+µ2)x.

The proof can be completed by means of the definition of the
expectation.

If X1, X2, ..., Xn are independent exponentially distributed with rate
µ1, µ2, ..., µn, then the probability that Xi is the smallest is as follows (cf.
Boxma [6]):

P (Xi = min
j=1,2,...,n

{Xj}) =
µi

µ1 + µ2 + ...+ µn
.
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2.1.2 Hyperexponential Distribution

A stochastic variable X has a hyperexponential distribution if it is
exponential with rate µi with probability pi, for i = 1, . . . , k. This is
denoted by Hk(p1, . . . , pk;µ1, . . . , µk). Obviously,

∑k
i=1 pi = 1. Its

probability density is:

fX(x) =
k∑
i=1

piµie
−µix, x ≥ 0,

and its mean and second moment are:

E[X] =
k∑
i=1

pi
µi
, E[X2] =

k∑
i=1

2pi
µ2
i

.

For k = 2, we define p := p1 = 1− p2. Its probability density then reduces
to:

fX(x) = pµ1e
−µ1x + (1− p)µ2e

−µ2x, x > 0,

with mean and second moment:

E[X] =
p

µ1

+
1− p
µ2

, E[X2] =
2p

µ2
1

+
2(1− p)
µ2

2

.

It is common to add another condition, known as the balanced means:

p

µ1

=
1− p
µ2

.

Then its mean and second moment reduce to:

E[X] =
2p

µ1

=
2(1− p)
µ2

,

E[X2] =
2p

µ2
1

+
2p2

1− p
1

µ2
1

=
2(1− p)
µ2

2

+
2(1− p)2

p

1

µ2
2

, (2.1)

and its squared coefficient of variation is:

c2X =
1− 2p(1− p)

2p(1− p)
≥ 1. (2.2)

Equivalently:

p =
1

2
± 1

2

√
c2X − 1

c2X + 1
. (2.3)
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Proof of Equation (2.1):

p

µ1

=
1− p
µ2

⇔ µ2 =
1− p
p

µ1

E[X2] =
2p

µ2
1

+
2(1− p)
µ2

2

=
2p

µ2
1

+ 2(1− p) p2

(1− p)2

1

µ2
1

=
2p

µ2
1

+
2p2

1− p
1

µ2
1

.

This can be proven in terms of µ2 in a similar way.

Proof of Equation (2.2):

c2X =
E[X2]− (E[X])2

(E[X])2
=

2p
µ2

1
+ 2p2

1−p
1
µ2

1
− 4p2

µ2
1

4p2

µ2
1

=
2p+ 2p2

1−p − 4p2

4p2
=

1 + p
1−p − 2p

2p

=
(1− p) + p− 2p(1− p)

2p(1− p)
=

1− 2p(1− p)
2p(1− p)

.

It can be similarly shown in terms of µ2.

Proof of Equation (2.3):

c2X =
1− 2p(1− p)

2p(1− p)
1− 2p(1− p) = 2p(1− p)c2X
1− 2p+ 2p2 = (2p− 2p2)c2X
2(1 + c2X)p2 − 2(1 + c2X)p+ 1 = 0

p =
2(1 + c2X)±

√
4(1 + c2X)2 − 4 ∗ 2(1 + c2X)

4(1 + c2X)

p =
1

2
±

2
√

(1 + c2X)2 − 2(1 + c2X)

4(1 + c2X)

p =
1

2
± 1

2

√
1− 2

1 + c2X
=

1

2
± 1

2

√
c2X − 1

c2X + 1
.
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Figure 2.1: Phase diagram for the Ek(µ) distribution.

Consequently, c2X ≥ 1. Note that X is exponentially distributed with rate
µ1 = µ2 if p = 1

2
.

Sometimes the parameter p is substituted for the parameter s, which
satisfies 0 ≤ s ≤ 1

2
. They are related as follows:

s :=

{
p, p ≤ 1

2
,

1− p, p > 1
2
.

2.1.3 Erlang Distribution

A stochastic variable X is Erlang-k distributed if it is the sum of k
variables that are independent exponentially distributed with rate µ. This
is denoted by Ek(µ), or briefly Ek. Its probability density is:

µ
(µx)k−1

(k − 1)!
e−µx, x ≥ 0,

and its mean, variance and squared coefficient of variation are:

E[X] =
k

µ
, Var[X] =

k

µ2
, c2X =

1

k
.

The parameter µ is called the scale parameter and k is the shape
parameter. A phase diagram of the Ek(µ) distribution is shown in
Figure 2.1. Note that X is exponentially distributed with rate µ if k = 1.

2.2 Poisson Process

A stochastic process is a collection of stochastic variables {N(t) : t ≥ 0}. A
counting process is a stochastic process, where N(t) is the number of events
up to time t for t ≥ 0. A counting process where the events are arrivals is
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typically called an arrival process. A counting process is a homogeneous
Poisson process, or simply Poisson process, with rate λ if N(t) has a
Poisson distribution with rate λt for t ≥ 0 (cf. Bhulai and Koole [3]):

P (N(t) = n) =
(λt)n

n!
e−λt, t ≥ 0, n = 0, 1, 2, . . .

Equivalently, if X1, X2, . . . is the corresponding sequence of inter-event
times, then its elements are independent and identically exponentially
distributed with rate λ:

fXi
(x) = λe−λx, x ≥ 0, i = 1, 2, . . .

A Poisson process {N(t) : t ≥ 0} is inhomogeneous if its rate λ(t) is time
dependent. Obviously, the inter-event times are not independent in general,
since:

P (Xi+1 > t|Xi = s) = e−
∫ s+t

s λ(x) dx, s < t.

In practice, the rates are constant in certain intervals.

2.3 Markov Decision Chain

A Markov process is a stochastic process {N(t) : t ≥ 0} that possesses the
Markov property, i.e., for all t, h ≥ 0

P (N(t+ h) = y|N(u) = x(u),∀u ≤ t) = P (N(t+ h) = y|N(t) = x(t)).

An example of a Markov process is the Poisson process. A Markov process
{N(t) : t ≥ 0} where t ∈ Z+ is called a Markov chain.

A Markov decision chain X0, X1, X2, . . . is a Markov chain that possesses a
value function Vn(Xn) with the following property:

Vn+1(x) = min
a
{c(x, a) +

∑
y

p(x, a, y)Vn(y)},

where c(x, a) is some cost function and p(x, a, y) is a transition probability
for action a. We condition this with V0(x) = 0 for all x. Now, we let V (x)
be related to Vn(x) as follows:

lim
n→∞

(Vn(x)− Vn(y)) = V (x)− V (y).
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Then V (x) can also be written iteratively:

V (x) + g = min
a
{c(x, a) +

∑
y

p(x, a, y)V (y)},

where g is the following:

g = lim
n→∞

(Vn+1(x)− Vn(x)), ∀x.

The value function V can be determined by means of an application that
implements the following pseudo code:

Let x ∈ {0, 1, . . . , N}, E(x) ⊃ {y|p(x, y) > 0}, and ε some small number
(e.g., 10−6).

Vector V [0, 1, . . . , N ], V ′[0, 1, . . . , N ]
Float min, max
V = 0
do {

V ′ = V
for(x ∈ {0, 1, . . . , N}) { % iterate
V (x) = r(x)
for(y ∈ E(x)) V (x) = V (x) + p(x, y)V ′(y) }

max = −1010

min = 1010

for(x ∈ {0, 1, . . . , N}) { % compute span(V − V ′)
if(V (x)− V ′(x) < min) min = V (x)− V ′(x)
if(V (x)− V ′(x) > max) max = V (x)− V ′(x) } }

while(max−min > ε)

The optimal policy R∗ is defined as follows:

R∗(x) = arg min
a
{c(x, a) +

∑
y

p(x, a, y)V (y)}.

Bhulai and Koole [3] discuss Markov decision chains in more detail.

2.4 Queueing Systems

Queueing systems are mathematical systems in which entities like
customers or jobs wait in a queue before one or more servers, where each
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one can only serve one entity at the time. The servers are independent from
each other. These queueing systems are classified as X/Y/c, known as the
Kendall notation. X and Y represent the distribution of the interarrival
times and the service times, e.g., exponential (M), deterministic (D) and
general (G), and c is the number of servers. Suppose that λ is the arrival
rate and β is the mean service time. Then ρ := λβ is called the occupation
rate, which must be less than one in order to keep the system stable. The
occupation rate is the fraction of time the server is busy. Boxma [6]
describes some of these models in great detail.

2.5 Processor Sharing Systems

A Processor Sharing system, or PS system, is a queueing system where
arriving entities do not wait in a queue, but they go straight to the server.
Each entity thereby gets an equal amount of server capacity. We consider
jobs in an M/G/1 PS system. In this model we let jobs arrive according to
a Poisson process with rate λ. They have a required service time B that is
generally distributed with mean β. Then the occupation rate is ρ := λβ.
The sojourn time S has the following mean:

E[S] =
β

1− ρ
. (2.4)

Note here that the sojourn time does not depend on the distribution of the
service time, but only on its mean β. The second moment of the sojourn
time is related to the second moment of the service time as follows (cf. Van
den Berg [1]):

(1− ρ)2E[S2] ∼ (1 + ρ)E[B2], ρ→ 1. (2.5)

Consequently, for ρ ≈ 1:

c2S =
V ar[S]

(E[S])2
=

E[S2]

(E[S])2
− 1 ≈

(1 + ρ) E[B2]
(1−ρ)2(

E[B]
1−ρ

)2 − 1 =
(1 + ρ)E[B2]

(E[B])2
− 1

= (1 + ρ)(c2B + 1)− 1 ≈ 2(c2B + 1)− 1 = 2c2B + 1. (2.6)

Suppose now that there are two Poisson arrival streams where the k-th
stream has rate λk and has jobs with mean service time of βk. Then the
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occupation rate of the k-th stream is ρk := λkβk. The condition
ρ := ρ1 + ρ2 < 1 holds, in order to keep the system stable.

The sojourn time Sk of jobs from the k-th arrival stream has mean

E[Sk] =
βk

1− ρ
, k = 1, 2.

Proof. Let Nk denote the number of jobs from the k-th stream. Then the
joint number of jobs (N1, N2) has the following distribution (cf. Cheung [7]):

pN1,N2(n1, n2) := P (N1 = n1, N2 = n2) = (1− ρ)

(
n1 + n2

n2

)
ρn1

1 ρ
n2
2 .

The marginal number of jobs Nk has a geometric distribution

pNk
(i) := P (nk = i) = (1− pk)pik, i = 0, 1, 2, . . . ; k = 1, 2,

with success probabilities

p1 :=
ρ1

1− ρ2

, p2 :=
ρ2

1− ρ1

.

The number of jobs Nk from the first arrival stream has the following mean:

E[N1] =
ρ1

1− ρ
,

since:

E[N1] =
p1

1− p1

=

ρ1
1−ρ2

1− ρ1
1−ρ2

=

ρ1
1−ρ2
1−ρ
1−ρ2

=
ρ1

1− ρ
.

It can be similarly shown that the number of jobs N2 from the second
arrival stream has the following mean:

E[N2] =
ρ2

1− ρ
.

Then the sojourn time Sk of jobs from the k-th arrival stream can be
obtained by applying Little’s formula.

Coffman, Muntz and Trotter [8] provide more information on M/M/1
Processor Sharing servers. Detailed analysis of M/G/1 Processor Sharing
servers can be found in Van den Berg’s thesis [1]. Cohen [9] describes a
generalised version of the Processor Sharing server.
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Chapter 3

Server Selection Model

3.1 Static Model

We consider a queueing model with two procesor sharing servers and three
traffic streams. Jobs that have access to both servers are called foreground
jobs, or type 0 jobs. Type i background jobs, or simply type i jobs, only
have access to server i. We let the foreground jobs go to server i with
probability qi, where q1 = q = 1− q2. q is the selection parameter, which is
symmetrical if:

qi(ρ1, ρ2) = 1− qi(ρ2, ρ1).

A symmetrical selection parameter q has the following property:

qi(ρ, ρ) =
1

2
.

Type j jobs arrive according to a Poisson process with rate λj > 0 and the
service time Bj has a general distribution with mean βj > 0, for j = 0, 1, 2.
The occupation rate ρj of type j jobs is ρj := λjβj. The occupation rate ρSi

at server i is:
ρSi

:= qiρ0 + ρi, i = 1, 2. (3.1)

We add the condition
ρSi

< 1, i = 1, 2, (3.2)

in order to keep the system stable. In other words:

qρ0 + ρ1 < 1,

(1− q)ρ0 + ρ2 < 1,
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Figure 3.1: Server Selection: Foreground job uses PS server i only with
probability qi. Each server has one background traffic stream.

or equivalently:

q <
1− ρ1

ρ0

=: U (3.3)

q > 1− 1− ρ2

ρ0

=: L, (3.4)

A selection parameter q is stable if q ∈ (L,U). It is feasible if it is both
symmetrical and stable. The system is stable if both servers are, which is
the case if:

ρ0 < (1− ρ1) + (1− ρ2),

Proof:

1− ρ1

ρ0

> 1− 1− ρ2

ρ0

1− ρ1 > ρ0 − (1− ρ2)

ρ0 < (1− ρ1) + (1− ρ2).

We let Sj be the sojourn time of type j jobs. The sojourn time Si of type i
background jobs has the following mean:

E[Si] =
βi

1− qiρ0 − ρi
,

If Z is the server a foreground job goes to, then the sojourn time Si of
foreground jobs given Z = i, has the following mean:

E[S0|Z = i] =
β0

1− ρSi
.
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q ∈ lim(L,U)
L→ U

���

q ∈ [0, 1]

q ∈ [0, 1]

��	

@@I

q ∈ (L, 1]

q ∈ (L, 1]
@@I

q ∈ [0, U)

q ∈ [0, U)

��	

unstable

(a) 0 < ρ0 ≤ 1. (b) 0 < ρ0 ≤ 1.

@
@
@
@
@
@
@
@
@0

0 1

1

ρ1 →

ρ2
↑
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2− ρ0
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q ∈ lim(L,U)
L→ U

��	

unstable

(c) 1 ≤ ρ0 < 2. (d) 1 ≤ ρ0 < 2.

Figure 3.2: Stable selection parameter q.
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In general, the mean sojourn time of foreground jobs is:

E[S0]select =
2∑
i=1

E[S0|Z = i]P (Z = i)

=
2∑
i=1

qi
β0

1− qiρ0 − ρi
.

We let f be the mean sojourn time E[S0] of foreground jobs as a function of
the selection parameter q. The optimal selection probability q∗ is the one
where f is minimal with respect to q.

(a) ρ0 = 0.1. (b) ρ0 = 0.9.

Figure 3.3: Mean sojourn time E[S0]select of foreground jobs as a function
of the selection parameter q.

Then:

f ′(q) =
β0(1− qρ0 − ρ1) + qβ0ρ0

(1− qρ0 − ρ1)2
+
−β0(1− (1− q)ρ0 − ρ2)− (1− q)β0ρ0

(1− (1− q)ρ0 − ρ2)2

=
β0(1− ρ1)

(1− qρ0 − ρ1)2
+

−β0(1− ρ2)

(1− (1− q)ρ0 − ρ2)2

= β0
(1− ρ1)(1− (1− q)ρ0 − ρ2)

2 − (1− ρ2)(1− qρ0 − ρ1)
2

(1− qρ0 − ρ1)2(1− (1− q)ρ0 − ρ2)2
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f ′(q) = 0⇔ (1− ρ1)(1− (1− q)ρ0 − ρ2)
2 = (1− ρ2)(1− qρ0 − ρ1)

2

(1− ρ1)
{

(1− ρ2)
2 − 2(1− q)(1− ρ2)ρ0 + (1− q)2ρ2

0

}
= (1− ρ2)

{
(1− ρ1)

2 − 2q(1− ρ1)ρ0 + q2ρ2
0

}
2q(1− ρ1)(1− ρ2)ρ0 + (1− q)2ρ2

0(1− ρ1) + 2q(1− ρ1)(1− ρ2)ρ0

− q2ρ2
0(1− ρ2) + (1− ρ1)(1− ρ2)

2 − 2(1− ρ2)ρ0(1− ρ1)

− (1− ρ2)(1− ρ1)
2 = 0

2q(1− ρ1)(1− ρ2)ρ0 + (−2q + q2)ρ2
0(1− ρ1) + 2q(1− ρ1)(1− ρ2)ρ0

− q2ρ2
0(1− ρ2) + (1− ρ1)(1− ρ2)

2 − 2(1− ρ2)ρ0(1− ρ1)

+ ρ2
0(1− ρ1)− (1− ρ2)(1− ρ1)

2 = 0.

Thus, f ′(q) = 0 if and only if:

aq2 + bq + c = 0, (3.5)

where
a = ρ2

0((1− ρ1)− (1− ρ2)),

b = 4(1− ρ1)(1− ρ2)ρ0 − 2ρ2
0(1− ρ1),

c = (1− ρ1)(1− ρ2)
2 − (1− ρ2)(1− ρ1)

2 − 2(1− ρ1)(1− ρ2)ρ0 + ρ2
0(1− ρ1).

If ρ1 = ρ2, then Equation (3.5) has only one solution, namely

q =
1

2
, (3.6)

because:

(4(1− ρ1)
2ρ0 − 2ρ2

0(1− ρ1))q + (1− ρ1)
3 − (1− ρ1)

3 − 2(1− ρ1)
2ρ0

+ ρ2
0(1− ρ1) = 0

(2(2(1− ρ1)
2 − (1− ρ1)ρ0)q = 2(1− ρ1)

2 − (1− ρ1)ρ0).

which is a minimum. Moreover:

f ′(q) =
β0(1− ρ1)

(1− qρ0 − ρ1)2
− β0(1− ρ1)

(1− (1− q)ρ0 − ρ1)2

lim
q→0

f ′(q) =
β0

1− ρ1

− β0(1− ρ1)

((1− ρ1)− ρ0)2
= β0

((1− ρ1)− ρ0)
2 − (1− ρ1)

2

(1− ρ1)((1− ρ1)− ρ0)2

= β0
ρ2

0 − 2ρ0(1− ρ1)

(1− ρ1)((1− ρ1)− ρ0)2
= β0ρ0

ρ0 − (1− ρ1)− (1− ρ2)

(1− ρ1)((1− ρ1)− ρ0)2
< 0,
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since the stability condition ρ0 < (1− ρ1) + (1− ρ2) holds. It can be
similarly proven that:

lim
q→1

f ′(q) > 0.

Thus q∗ = 1
2

is a minimum. If ρ1 6= ρ2, then f has two extrema:

q± =
−b±

√
D

2a
,

where D is the discriminant. Now:

D = 16ρ2
0(1− ρ1)

2(1− ρ2)
2 − 16ρ3

0(1− ρ1)
2(1− ρ2) + 4ρ4

0(1− ρ1)
2

− 4ρ2
0((1− ρ1)− (1− ρ2))((1− ρ1)(1− ρ2)

2 − (1− ρ2)(1− ρ1)
2)

+ 8ρ3
0((1− ρ1)− (1− ρ2))(1− ρ1)(1− ρ2)− 4ρ4

0((1− ρ1)− (1− ρ2))(1− ρ1)

= 16ρ2
0(1− ρ1)

2(1− ρ2)
2 − 16ρ3

0(1− ρ1)
2(1− ρ2) + 4ρ4

0(1− ρ1)
2

− 4ρ2
0(1− ρ1)

2(1− ρ2)
2 + 4ρ2

0(1− ρ1)(1− ρ2)
3 + 4ρ2

0(1− ρ1)
3(1− ρ2)

− 4ρ2
0(1− ρ1)

2(1− ρ2)
2 + 8ρ3

0(1− ρ1)
2(1− ρ2)− 8ρ3

0(1− ρ1)(1− ρ2)
2

− 4ρ4
0(1− ρ1)

2 + 4ρ4
0(1− ρ1)(1− ρ2)

= 8ρ2
0(1− ρ1)

2(1− ρ2)
2 − 8ρ3

0(1− ρ1)
2(1− ρ2) + 4ρ2

0(1− ρ1)(1− ρ2)
3

+ 4ρ2
0(1− ρ1)

3(1− ρ2)− 8ρ3
0(1− ρ1)(1− ρ2)

2 + 4ρ4
0(1− ρ1)(1− ρ2)

= 4ρ2
0(1− ρ1)(1− ρ2)(2(1− ρ1)(1− ρ2)− 2ρ0((1− ρ1) + (1− ρ2))

+ (1− ρ2)
2 + (1− ρ1)

2 + ρ2
0)

= 4ρ2
0(1− ρ1)(1− ρ2)(((1− ρ1) + (1− ρ2))

2 − 2ρ0((1− ρ1) + (1− ρ2)) + ρ2
0)

= 4ρ2
0(1− ρ1)(1− ρ2)((1− ρ1) + (1− ρ2)− ρ0)

2.

Thus the two extrema are:

q+ =
(1− ρ1)(ρ0 − 2(1− ρ2)) + ((1− ρ1) + (1− ρ2)− ρ0)

√
(1− ρ1)(1− ρ2)

ρ0((1− ρ1)− (1− ρ2))
.

(3.7)

and

q− =
(1− ρ1)(ρ0 − 2(1− ρ2))− ((1− ρ1) + (1− ρ2)− ρ0)

√
(1− ρ1)(1− ρ2)

ρ0((1− ρ1)− (1− ρ2))
.
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Now, q+ < U , because:

q+ <
(1− ρ1)(ρ0 − 2(1− ρ2)) + ((1− ρ1) + (1− ρ2)− ρ0)

√
(1− ρ1)2

ρ0((1− ρ1)− (1− ρ2))

=
(1− ρ1)((1− ρ1)− (1− ρ2))

ρ0((1− ρ1)− (1− ρ2))
= U.

Note that the inequality holds for both (1− ρ1) < (1− ρ2) and
(1− ρ1) > (1− ρ2). Moreover, it can be similarly shown that q+ > L, thus
q+ is stable. q− > U if (1− ρ1) < (1− ρ2), since:

q− >
(1− ρ1)(ρ0 − 2(1− ρ2))− ((1− ρ1) + (1− ρ2)− ρ0)

√
(1− ρ1)2

ρ0((1− ρ1)− (1− ρ2))

>
(1− ρ1)(ρ0 − 2(1− ρ2)) + ((1− ρ1) + (1− ρ2)− ρ0)

√
(1− ρ1)2

ρ0((1− ρ1)− (1− ρ2))
= U,

It can be similarly shown that q− < L if (1− ρ1) > (1− ρ2). Thus q− is
unstable. Hence q+ is the only stable extremum. Moreover:

lim
q→L

f ′(q) = −∞ < 0, lim
q→U

f ′(q) = +∞ > 0.

Thus q+ is a minimum in (L,U). Thus:

q∗ =


0, q+ < 0,

q+, q+ ∈ [0, 1],

1, q+ > 1,

since q∗ ∈ [0, 1].

The optimal selection parameter q∗ as a function of ρ2 is continuous in
ρ2 = ρ1, since:

lim
ρ2→ρ1

q∗ = lim
ρ2→ρ1

(1− ρ1)(ρ0 − 2(1− ρ2)) + ((1− ρ1) + (1− ρ2)− ρ0)
√

(1− ρ1)(1− ρ2)

ρ0((1− ρ1)− (1− ρ2))

L’Hôpital
= lim

ρ2→ρ1

2(1− ρ1)−
√

(1− ρ1)(1− ρ2) + ((1− ρ1) + (1− ρ2)− ρ0)
−(1−ρ1)

2
√

(1−ρ1)(1−ρ2)

ρ0

=
2(1− ρ1)− (1− ρ1) + (2(1− ρ1)− ρ0)

−(1−ρ1)
2(1−ρ1)

ρ0

=
(1− ρ1) + (−(1− ρ1) + 1

2
ρ0)

ρ0

=
1

2
.
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Note that the opimtal selection parameter q∗ does not depend on the
distribution of the service time B0. It is obvious that q∗ is stable if
q+ ∈ [0, 1]. It is also stable for q+ < 0, since:

q∗ = 0 <
1− ρ1

ρ0

,

q∗ = 0 > q+ > 1− 1− ρ2

ρ0

.

and it can be similarly shown that it is also stable for q+ > 1. It is also
obvious that q∗ is symmetrical. Hence q∗ is feasible. Figure 3.4 and
table 3.1 show plots and numerical values of q∗ for different values of the
occupation rates ρj, for j = 0, 1, 2.

3.2 Markov Decision Model

We can improve the above model by deciding for each foreground job which
server it goes to, based on the number xi of jobs upon arrival by modelling
the joint number of jobs xij with characterisation j in server i as a Markov
decision chain. The model is service time distribution specific. From this
we can deduce optimal policies R∗(x) of this model, telling us which server
each arriving foreground job goes to, depending on the number of jobs xi in
server i upon arrival and the occupation rates ρj of each job type. We can
determine value functions V by implementing the pseudo code mentioned
in Section 2.3 for finite state spaces. Our model, however, has an infinite
state space. So we have to approximate our model by a model where server
i can only handle at most m jobs simultaneously, where m is large.
Arriving foreground jobs that find only one of the servers full, go to the
server that is not full. If they find both servers full, then they are blocked.
Arriving type i background jobs that find server i full, are also blocked.

3.2.1 Exponential Service Times

Suppose that the service times Bj are independent exponentially distributed
with rate µ, for j = 0, 1, 2. Then we choose each arriving foreground job to
go to the server that leads to the smallest number of jobs in the long run.
So if the total number of jobs in server i is xi, then the state of the system
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(a) ρ0 = 0.1. (b) ρ0 = 0.1.

(c) ρ0 = 0.5. (d) ρ0 = 0.5.

(e) ρ0 = 0.9. (f) ρ0 = 0.9.

Figure 3.4: Plots of the optimal selection q∗.
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ρ2
HH

H
ρ1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0 0.5 0.763 1 1 1 1 1 1 1 1 1
0.1 0.237 0.5 0.7645 1 1 1 1 1 1 1 1
0.2 0 0.2355 0.5 0.7664 1 1 1 1 1 1 1
0.3 0 0 0.2336 0.5 0.7689 1 1 1 1 1 1
0.4 0 0 0 0.2311 0.5 0.7723 1 1 1 1 1
0.5 0 0 0 0 0.2277 0.5 0.7771 1 1 1 1
0.6 0 0 0 0 0 0.2229 0.5 0.7846 1 1 1
0.7 0 0 0 0 0 0 0.2154 0.5 0.798 1 1
0.8 0 0 0 0 0 0 0 0.202 0.5 0.8284 1
0.9 0 0 0 0 0 0 0 0 0.1716 0.5 1
1 0 0 0 0 0 0 0 0 0 0 -

(a) ρ0 = 0.1

ρ2
HH

H
ρ1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0 0.5 0.5631 0.6276 0.6933 0.7603 0.8284 0.8974 0.9662 1 1 1
0.1 0.4369 0.5 0.5647 0.631 0.699 0.7687 0.84 0.9124 0.9845 1 1
0.2 0.3724 0.4353 0.5 0.5666 0.6354 0.7064 0.7799 0.8558 0.9333 1 1
0.3 0.3067 0.369 0.4334 0.5 0.5692 0.6413 0.7166 0.7956 0.8787 0.9646 1
0.4 0.2397 0.301 0.3646 0.4308 0.5 0.5727 0.6495 0.7314 0.8196 0.916 1
0.5 0.1716 0.2313 0.2936 0.3587 0.4273 0.5 0.5777 0.6619 0.755 0.8618 -
0.6 0.1026 0.16 0.2201 0.2834 0.3505 0.4223 0.5 0.5856 0.6828 - -
0.7 0.0338 0.0876 0.1442 0.2044 0.2686 0.3381 0.4144 0.5 - - -
0.8 0 0.0155 0.0667 0.1213 0.1804 0.245 0.3172 - - - -
0.9 0 0 0 0.0354 0.084 0.1382 - - - - -
1 0 0 0 0 0 - - - - - -

(b) ρ0 = 0.5

ρ2
H
HHρ1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0 0.5 0.5409 0.5832 0.6271 0.6728 0.7206 0.7708 0.824 0.8808 0.9423 1

0.1 0.4591 0.5 0.5425 0.5867 0.633 0.6817 0.7333 0.7887 0.849 0.9167 -
0.2 0.4168 0.4575 0.5 0.5444 0.5912 0.6407 0.6936 0.7511 0.8148 - -
0.3 0.3729 0.4133 0.4556 0.5 0.547 0.5971 0.6512 0.7106 - - -
0.4 0.3272 0.367 0.4088 0.453 0.5 0.5505 0.6055 - - - -
0.5 0.2794 0.3183 0.3593 0.4029 0.4495 0.5 - - - - -
0.6 0.2292 0.2667 0.3064 0.3488 0.3945 - - - - - -
0.7 0.176 0.2113 0.2489 0.2894 - - - - - - -
0.8 0.1192 0.151 0.1852 - - - - - - - -
0.9 0.0577 0.0833 - - - - - - - - -
1 0 - - - - - - - - - -

(c) ρ0 = 0.9

Table 3.1: Numerical values of the optimal selection q∗.
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(g) ρ0 = 1.5. (h) ρ0 = 1.5.

Figure 3.4: Plots of the optimal selection q∗.

ρ2
HH

H
ρ1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0 0.5 0.5298 0.5611 0.5941 0.6291 - - - - - -
0.1 0.4702 0.5 0.5314 0.5646 - - - - - - -
0.2 0.4389 0.4686 0.5 - - - - - - - -
0.3 0.4059 0.4354 - - - - - - - - -
0.4 0.3709 - - - - - - - - - -
0.5 - - - - - - - - - - -
0.6 - - - - - - - - - - -
0.7 - - - - - - - - - - -
0.8 - - - - - - - - - - -
0.9 - - - - - - - - - - -
1 - - - - - - - - - - -

(d) ρ0 = 1.5

Table 3.1: Numerical values of the optimal selection q∗.
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is the joint number of jobs x = (x1, x2) in each server. The cost c(x) is a
scaled sum of the jobs in the servers after the event occurs:

c(x) =
1

γ
(x1 + x2).

where

γ =
2∑
j=0

λj + 2µ.

Now, we let the system start in some state s with zero cost, i.e.,

V0(s) = 0.

Then we write the value function iteratively as follows:

Vn+1(x) = c(x) + min
i

∑
y

Vn(y)p(x, i,y),

where p(x, i,y) is the transition probability from state x to state y if either
a job goes to server i or leaves it.

Now, the residual service time of a job in server i is exponentially
distributed with rate µ/xi, since the server capacity is equally shared
among the jobs. The minimum of xi residual service times in server i,
which are all exponentially distributed with rate µ/xi, is exponentially
distributed with rate µ. As a consequence, the transition rate due to a
departing job is also µ. It is obvious that the transition rate due to the
arrival of a type j job is λj, for j = 0, 1, 2. The transition probability due to
some kind of event is the probability that some event comes before all other
possible events. Since the residual event times are all exponential, this
transition probability is the rate of this event, divided by the sum of the
rates of all possible kind of events.

Recall that ei is a standard basis vector, i.e., a unit vector where the i-th
entry is one and all other entries are zero. Then we can write the value
function iteratively as follows, if both servers are not empty:

Vn+1(x) =
x1 + x2

γ
+
λ0

γ
min
i=1,2
{Vn(x + ei)}

+
2∑
i=1

(
λi
γ
Vn(x + ei) +

µ

γ
Vn(x− ei)

)
. (3.8)
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The optimal policy is then:

R∗(x) = arg min
i=1,2
{V (x + ei)} .

3.2.2 Hyperexponential Service Times

Suppose now that the service times Bj are independent hyperexponentially
distributed, for j = 0, 1, 2. More precisely, they are exponentially
distributed with rate µj with probability pj, for j = 1, 2. Jobs with service
rate µj are typically called service type j jobs. We choose the service type
of jobs to be unknown upon arrival. We let X be a 2× 2 matrix, where the
(i, j)-th entry xij is the number of jobs of service type j in server i, for
i, j = 1, 2. The cost c(X) is a scaled sum of the jobs in the servers after the
event occurs:

c(X) =
1

γ

2∑
i=1

2∑
j=1

xij,

where

γ =
2∑
j=0

λj + 2µ1 + 2µ2.

Now, we let the system start in some state S with zero cost, i.e.,

V0(S) = 0.

If we let Eij be a matrix where the (i, j)-th entry is one and all other
entries are zero, then we can write the value function iteratively as follows,
if jobs of all service types are present in both servers:

Vn+1(X) =
1

γ

2∑
i=1

2∑
j=1

xij +
λ0

γ
min
i=1,2

{
2∑
j=1

pjVn(X + Eij)

}

+
2∑
i=1

2∑
j=1

(
pjλi
γ
Vn(X + Eij) +

xij
xi1 + xi2

µj
γ
Vn(X − Eij)

)

+
1

γ

(
γ −

2∑
j=0

λj −
2∑
i=1

2∑
j=1

xij
xi1 + xi2

µj

)
Vn(X). (3.9)
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The value function V can be written iteratively in a similar manner in case
at least one of the job types is absent or at least one of the servers is empty.

If xi is the number of jobs in server i, then xi = xi1 + xi2. The optimal
policy is then:

R∗(x) = arg min
i=1,2

{
2∑
j=1

pjV (X + Eij)

}
.

3.2.3 Erlang Service Times

Now, we let the service times Bj be Erlang-2 distributed with rate µ/2, for
j = 0, 1, 2. Jobs that have this property go through two phases in series,
where each phase is exponentially distributed with rate µ. We therefore
consider a four-dimensional Markov chain, where we let X be a 2× 2
matrix, where the (i, j)-th entry xij is the number of jobs in the j-th phase
of server i, for i, j = 1, 2. The cost c(X) is again a scaled sum of the jobs in
the servers after the event occurs:

c(X) =
1

γ

2∑
i=1

2∑
j=1

xij,

where

γ =
2∑
j=0

λj + 2µ.

We again let the system start in some state S with zero cost, i.e.,

V0(S) = 0.

Then we can write the value function iteratively as follows, if jobs are
present in both phases of both servers:

Vn+1(X) =
1

γ

2∑
i=1

2∑
j=1

xij +
λ0

γ
min
i=1,2
{Vn(X + Ei1)}+

2∑
i=1

λi
γ
Vn(X + Ei1)

+
2∑
i=1

(
xi1

xi1 + xi2

µ

γ
Vn(X − Ei1 + Ei2) +

xi2
xi1 + xi2

µ

γ
Vn(X − Ei2)

)
.
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The value function V can be written iteratively in a similar manner in case
at least one of the job types is absent or at least one of the servers is empty.

The optimal policy is then:

R∗(x) = arg min
i=1,2

V (X + Ei1).

3.2.4 Optimal Policies

We obtain the numerical values of the optimal policies by means of
implementing the pseudo-code mentioned in section 2.3. If we let M be
defined as the fraction of possible states x, in which the optimal policy
R∗(x) is the server with the least number of jobs, i.e.:

M := lim
N→∞

1

N
#{x : R∗(x) = arg min

i=1,2
{xi}|#{x} = N},

then it appears that for fixed occupation rates ρ0, ρ1 and ρ2, M increases if
exponential service times are substituted for hyperexponential service
times, because there is a possibility that a job with a hyperexponential
service time has a higher service rate than a job with an exponential service
time has. The higher the squared coefficient of variation c2Bj

of the service
time is for j = 0, 1, 2, the higher it becomes. On the other hand, for fixed
occupation rates ρ0, ρ1 and ρ2, M decreases if exponential service times are
substituted for Erlang-2 service times, because there is a possibility that a
job with an Erlang-2 service time has a smaller residual service rate than a
job with an exponential service rate has. This occurs when the first job is
in phase 2. Table 3.2 shows these observations.

3.3 Comparison of the Models

We compare the mean sojourn times E[S0] of foreground jobs in the static
model with the optimal selection parameter q∗ to the Markov Decision
model with optimal policies for exponential, Erlang-2 and hyperexponential
service times with mean βj = 10 seconds and the latter has coefficient of
variation c2Bj

∈ {2, 4, 16} for j = 0, 1, 2. We perform this for each
combination of the occupation rates

(ρ0, ρ1, ρ2) ∈ {0.1, 0.5, 0.9} × {0, 0.1, . . . , 0.9}2
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by means of their relative difference:

E[S0]static(q∗)− E[S0]Markov
E[S0]static(q∗)

· 100%.

We thereby use a simulation program called Extend by building some
models and run them for all mentioned values of ρj for j = 0, 1, 2 in order
to determine the mean sojourn times E[S0]Markov of foreground jobs in the
Markov decision model with optimal policies, which we then smoothen by
means of regression. It appears that it is positive in all cases, meaning that
the mean sojourn time E[S0] of foreground jobs decreases when we
substitute the static model by the Markov decision model. The higher the
occupation rates ρi differ from each other, for i = 1, 2, the smaller the
relative difference becomes. This is, because if ρi → 1, for some i = 1, 2,
then q∗ → i− 1, while R∗(x)→ i− 1. In other words, all jobs go to server
i− 1 in both cases, thus proving the increasing resemblance between the
models. So their relative difference goes to zero. Also, the higher the
occupation rate ρ0, the higher the relative difference becomes. This is,
because a higher ρ0 means more foreground jobs in the system that
influence the mean sojourn time E[S0]. Appendix Tables A.1 - A.5 show
these observations.
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x2
@@x1 0 1 2 3 4 5 6 7 8 9
0 - 1 1 1 1 1 1 1 1 1
1 2 - 1 1 1 1 1 1 1 1
2 2 2 - 1 1 1 1 1 1 1
3 2 2 2 - 1 1 1 1 1 1
4 2 2 2 2 - 1 1 1 1 1
5 2 2 2 2 2 - 1 1 1 1
6 2 2 2 2 2 2 - 1 1 1
7 2 2 2 2 2 2 2 - 1 1
8 2 2 2 2 2 2 2 2 - 1
9 2 2 2 2 2 2 2 2 2 -

(a) ρ0 = 0.1, ρ1 = 0.1, ρ2 = 0.1,
Bj ∼ exp,H2, E2, j = 0, 1, 2

x2
@@x1 0 1 2 3 4 5 6 7 8 9
0 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1
2 1 1 1 1 1 1 1 1 1 1
3 2 1 1 1 1 1 1 1 1 1
4 2 1 1 1 1 1 1 1 1 1
5 2 1 1 1 1 1 1 1 1 1
6 2 1 1 1 1 1 1 1 1 1
7 2 1 1 1 1 1 1 1 1 1
8 2 2 1 1 1 1 1 1 1 1
9 2 2 1 1 1 1 1 1 1 1

(b) ρ0 = 0.1, ρ1 = 0.1, ρ2 = 0.5,
Bj ∼ E2, c

2
Bj

= 0.5, j = 0, 1, 2

x2
@@x1 0 1 2 3 4 5 6 7 8 9
0 1 1 1 1 1 1 1 1 1 1
1 2 1 1 1 1 1 1 1 1 1
2 2 1 1 1 1 1 1 1 1 1
3 2 2 1 1 1 1 1 1 1 1
4 2 2 1 1 1 1 1 1 1 1
5 2 2 2 1 1 1 1 1 1 1
6 2 2 2 1 1 1 1 1 1 1
7 2 2 2 2 1 1 1 1 1 1
8 2 2 2 2 2 1 1 1 1 1
9 2 2 2 2 2 1 1 1 1 1

(c) ρ0 = 0.1, ρ1 = 0.1, ρ2 = 0.5,
Bj ∼ exp, c2Bj

= 1, j = 0, 1, 2

x2
@@x1 0 1 2 3 4 5 6 7 8 9
0 1 1 1 1 1 1 1 1 1 1
1 2 1 1 1 1 1 1 1 1 1
2 2 2 1 1 1 1 1 1 1 1
3 2 2 1 1 1 1 1 1 1 1
4 2 2 2 1 1 1 1 1 1 1
5 2 2 2 1 1 1 1 1 1 1
6 2 2 2 2 1 1 1 1 1 1
7 2 2 2 2 2 1 1 1 1 1
8 2 2 2 2 2 1 1 1 1 1
9 2 2 2 2 2 2 1 1 1 1

(d) ρ0 = 0.1, ρ1 = 0.1, ρ2 = 0.5,
Bj ∼ H2, c

2
Bj

= 2, j = 0, 1, 2

x2
@@x1 0 1 2 3 4 5 6 7 8 9
0 1 1 1 1 1 1 1 1 1 1
1 2 1 1 1 1 1 1 1 1 1
2 2 2 1 1 1 1 1 1 1 1
3 2 2 1 1 1 1 1 1 1 1
4 2 2 2 1 1 1 1 1 1 1
5 2 2 2 2 1 1 1 1 1 1
6 2 2 2 2 1 1 1 1 1 1
7 2 2 2 2 2 1 1 1 1 1
8 2 2 2 2 2 2 1 1 1 1
9 2 2 2 2 2 2 2 1 1 1

(e) ρ0 = 0.1, ρ1 = 0.1, ρ2 = 0.5,
Bj ∼ H2, c

2
Bj

= 4, j = 0, 1, 2

x2
@@x1 0 1 2 3 4 5 6 7 8 9
0 1 1 1 1 1 1 1 1 1 1
1 2 1 1 1 1 1 1 1 1 1
2 2 2 1 1 1 1 1 1 1 1
3 2 2 1 1 1 1 1 1 1 1
4 2 2 2 1 1 1 1 1 1 1
5 2 2 2 2 1 1 1 1 1 1
6 2 2 2 2 2 1 1 1 1 1
7 2 2 2 2 2 2 1 1 1 1
8 2 2 2 2 2 2 1 1 1 1
9 2 2 2 2 2 2 2 1 1 1

(f) ρ0 = 0.1, ρ1 = 0.1, ρ2 = 0.5,
Bj ∼ H2, c

2
Bj

= 16, j = 0, 1, 2

Table 3.2: Examples of optimal policies R∗(x).
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Chapter 4

Job Split Model

4.1 Static Model

We consider a queueing model with two processor sharing servers, as
before. However, the foreground jobs do not go to one of the servers only.
Instead, they use both servers simultaneously, in the sense that a fraction
αi of the service time goes to server i, where α1 = α = 1− α2. α is the split
parameter, which is symmetrical if:

αi(ρ1, ρ2) = 1− αi(ρ2, ρ1).

A symmetrical split parameter α has the following property:

αi(ρ, ρ) =
1

2
.

We again let type j jobs arrive according to a Poisson process with rate
λj > 0, each having a generally distributed service time Bj with mean
βj > 0, for j = 0, 1, 2. The occupation rate ρj of type j jobs is ρj := λjβj,
for j = 0, 1, 2. Then the service time B0,i of the partial foreground job that
goes to server i has mean β0,i, where

β0,i := αiβ0, i = 1, 2. (4.1)

The occupation rate ρ0,i of the partial foreground job that goes to server i is

ρ0,i := αiρ0, i = 1, 2,

where ρ0 = λ0β0 for i = 1, 2. Equivalently, ρ0,i := λ0β0,i.
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Figure 4.1: Job Split: Foreground job requiring x service time uses both
PS servers simultaneously. Each server has one background traffic stream.

The occupation rate ρSi
in server i is then

ρSi
:= αiρ0 + ρi, i = 1, 2. (4.2)

which has to be smaller than one in order to keep the system stable. As we
similarly have seen in the server selection models:

α <
1− ρ1

ρ0

=: U

α > 1− 1− ρ2

ρ0

=: L,

A split parameter α is stable if α ∈ (L,U). It is feasible if it is symmetrical
and stable. The system is stable if both servers are, which is the case if:

ρ0 < (1− ρ1) + (1− ρ2),

as we have similarly seen in the server selection model.
The sojourn time Si of type i background jobs has the following mean:

E[Si] =
βi

1− αiρ0 − ρi
, i = 1, 2. (4.3)

Note that it depends on the split parameter α.
The sojourn time S0,i of the partial foreground job that goes to server i has
the following mean:

E[S0,i] =
β0,i

1− ρSi
=

αiβ0

1− αiρ0 − ρi
. i = 1, 2
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(a) 0 < ρ0 ≤ 1. (b) 0 < ρ0 ≤ 1.
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��	

unstable

(c) 1 ≤ ρ0 < 2. (d) 1 ≤ ρ0 < 2.

Figure 4.2: Stable split parameter α.
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and the sojourn time of a whole foreground job then has the following mean:

E[S0] = E[S0](α) = E[max
i=1,2
{S0,i}].

α∗ is the one that minimizes the expected sojourn time of a job:

α∗ = min
α
{E[S0](α)}.

Finding the optimal split α∗ analytically is rather difficult, because there is
no simple expression available for the expected sojourn time of a job. We
can solve this by approximating this by other expressions that are
analytically available and where an optimal split, say α̂∗, can be calculated
easily. Then we simulate the original model to find an optimal split α and
we compare the approximated model to the simulated model.

4.2 Light Traffic Approximation

When the occupation rates ρSi
in server i are close to zero for all i, we can

approximate the sojourn times S0,i of each part of the foreground job by
their respective service times B0,i. Consequently, we can approximate the
mean sojourn time E[S0] of a whole foreground job as follows:

E[S0] = E[max
i=1,2
{S0,i}] ≈ E[max

i=1,2
{B0,i}] = E[max

i=1,2
{αiB0}] = E[max

i=1,2
{αi}B0]

= max
i=1,2
{αi}E[B0] = max

i=1,2
{αiE[B0]} = max

i=1,2
{E[αiB0]} = max

i=1,2
{E[B0,i]}

≈ max
i=1,2
{E[S0,i]} = E[S0]LT .

Computing α∗LT , i.e. the split parameter that minimizes E[S0]LT , is
somewhat easier, because it has an exact expression.

Now, we let f be the LT approximation of the mean sojourn time E[S0]LT
of a foreground job and we let fi be the mean sojourn time E[S0,3−i] of the
part of the foreground job that goes to server 3− i as a function of the split
parameter α. Then f(α) = f1(α) if f2(α) ≤ f1(α). We can rewrite this as



Chapter 4 • Job Split Model 37

(a) ρ0 = 0.1. (b) ρ0 = 0.9.

Figure 4.3: The light traffic approximated mean sojourn time E[S0]LT of
foreground jobs as a function of the split parameter α.

follows:

f2(α) ≤ f1(α)

αβ0

1− αρ0 − ρ1

≤ (1− α)β0

1− (1− α)ρ0 − ρ2

αβ0

1− αρ0 − ρ1

− (1− α)β0

1− (1− α)ρ0 − ρ2

≤ 0

αβ0(1− (1− α)ρ0 − ρ2)− (1− α)β0(1− αρ0 − ρ1)

(1− αρ0 − ρ1)(1− (1− α)ρ0 − ρ2)
≤ 0

αβ0(1− (1− α)ρ0 − ρ2)− (1− α)β0(1− αρ0 − ρ1) ≤ 0

α(1− (1− α)ρ0 − ρ2)− (1− α)(1− αρ0 − ρ1) ≤ 0

α(1− ρ2)− (1− α)(1− ρ1) ≤ 0

α((1− ρ1) + (1− ρ2))− (1− ρ1) ≤ 0

α ≤ 1− ρ1

(1− ρ1) + (1− ρ2)
.

Thus we define f as:

f(α) = max
i
{fi(α)} =

{
f1(α), α ≤ α0,

f2(α), α > α0.
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where

α0 =
1− ρ1

(1− ρ1) + (1− ρ2)
.

Now,

f1(α) =
(1− α)β0

1− ρS2

=
(1− α)β0

1− (1− α)ρ0 − ρ2

f ′1(α) =
−β0(1− (1− α)ρ0 − ρ2)− (1− α)β0ρ0

(1− (1− α)ρ0 − ρ2)2
=

−β0(1− ρ2)

(1− (1− α)ρ0 − ρ2)2
< 0,

so f1 is decreasing and

f2(α) =
αβ0

1− ρS1

=
αβ0

1− αρ0 − ρ1

f ′2(α) =
β0(1− αρ0 − ρ1) + αβ0ρ0

(1− αρ0 − ρ1)2
=

β0(1− ρ1)

(1− αρ0 − ρ1)2
> 0,

so f2 is increasing. Both functions have α0 as its edge minimum. Thus it
appears that the optimal split α∗LT of the LT approximation is:

α∗LT =
1− ρ1

(1− ρ1) + (1− ρ2)
.

Note here that it does not depend on the distribution of the service time
B0, nor does it depend on ρ0. It is trivial that it is symmetrical. It is
stable, because:

α∗LT =
1− ρ1

(1− ρ1) + (1− ρ2)
< U,

since ρ0 < (1− ρ1) + (1− ρ2) and it can be similarly shown that α∗LT > L.
Hence α∗LT is feasible. Figure 4.4 and table 4.1 show plots and numerical
values of α∗LT for different values of the occupation rates ρj, for j = 0, 1, 2.

4.3 Heavy Traffic Approximation

When the occupation rates ρSi
in server i are close to one for all i, we can

approximate the squared coefficient of variation c2S0,i
of the sojourn time of

part i of a foreground job as follows (cf. Equation (2.6)):

c2S0,i
≈ 2c2B0,i

+ 1 = 2c2αiB0
+ 1 = 2c2B0

+ 1.
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(a) ρ0 = 0.1. (b) ρ0 = 0.1.

(c) ρ0 = 0.5. (d) ρ0 = 0.5.

(e) ρ0 = 0.9. (f) ρ0 = 0.9.

Figure 4.4: Plots of the light traffic optimal split α∗LT .
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(g) ρ0 = 1.5. (h) ρ0 = 1.5.

Figure 4.4: Plots of the light traffic optimal split α∗LT .

ρ2
HH

H
ρ1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0 0.5 0.5263 0.5556 0.5882 0.625 0.6667 0.7143 0.7692 0.8333 0.9091 1
0.1 0.4737 0.5 0.5294 0.5625 0.6 0.6429 0.6923 0.75 0.8182 0.9 1
0.2 0.4444 0.4706 0.5 0.5333 0.5714 0.6154 0.6667 0.7273 0.8 0.8889 1
0.3 0.4118 0.4375 0.4667 0.5 0.5385 0.5833 0.6364 0.7 0.7778 0.875 1
0.4 0.375 0.4 0.4286 0.4615 0.5 0.5455 0.6 0.6667 0.75 0.8571 1
0.5 0.3333 0.3571 0.3846 0.4167 0.4545 0.5 0.5556 0.625 0.7143 0.8333 1
0.6 0.2857 0.3077 0.3333 0.3636 0.4 0.4444 0.5 0.5714 0.6667 0.8 1
0.7 0.2308 0.25 0.2727 0.3 0.3333 0.375 0.4286 0.5 0.6 0.75 1
0.8 0.1667 0.1818 0.2 0.2222 0.25 0.2857 0.3333 0.4 0.5 0.6667 1
0.9 0.0909 0.1 0.1111 0.125 0.1429 0.1667 0.2 0.25 0.3333 0.5 1
1 0 0 0 0 0 0 0 0 0 0 -

Table 4.1: Numerical values of the light traffic optimal split α∗LT .
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(a) ρ0 = 0.1. (b) ρ0 = 0.9.

Figure 4.5: The heavy traffic approximated mean sojourn time E[S0]HT of
foreground jobs as a function of the split parameter α for exponential service
times Bj, j = 0, 1, 2.

Note that it is greater or equal to one. Thus for all service time
distributions, we can approximate the distribution of the sojourn time S0,i

of part i of a foreground job by a H2(pi;µi1, µi2) distribution, where the
parts are independent from each other. We thereby determine µij as follows:

E[S0,i] =
αiβ0

1− αiρ0 − ρi
=

2pij
µij

µij = 2pij
1− αiρ0 − ρi

αiβ0

,

where pi1 = pi = 1− pi2. Hence we approximate the mean sojourn time
E[S0] of foreground jobs as follows:

E[S0]HT = E[max
i=1,2
{S0,i}]HT =

2∑
i=1

2∑
j=1

p1ip2j

(
1

µ1i

+
1

µ2j

− 1

µ1i + µ2j

)

=
2∑
i=1

2∑
j=1

p1ip2j

(
αβ0

2p1i(1− αρ0 − ρ1)
+

(1− α)β0

2p2j(1− (1− α)ρ0 − ρ2)

− 1
2p1i(1−αρ0−ρ1)

αβ0
+

2p2j(1−(1−α)ρ0−ρ2)

(1−α)β0

)
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=
β0

2

2∑
i=1

2∑
j=1

(
αp2j

1− αρ0 − ρ1

+
(1− α)p1i

1− (1− α)ρ0 − ρ2

− 1
1−αρ0−ρ1

αp2j
+ 1−(1−α)ρ0−ρ2

(1−α)p1i

)
.

Note that the mean sojourn time E[S0]HT depends on the distribution of
the service time. This also holds for its optimal split α∗HT , which we cannot
determine explicitly. However, we can determine it numerically by means of
a mathematical software program, such as Maple. Figure 4.6 and Table 4.2
show plots and numerical values of α∗HT for exponential service times Bj

and different values of the occupation rates ρj, for j = 0, 1, 2. However,
they are similar for Erlang-2, deterministic and hyperexponential service
times Bj, where the latter one has squared coefficient of variation
c2Bj
∈ {2, 4, 16}, for j = 0, 1, 2.
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(a) ρ0 = 0.1. (b) ρ0 = 0.1.

(c) ρ0 = 0.5. (d) ρ0 = 0.5.

(e) ρ0 = 0.9. (f) ρ0 = 0.9.

Figure 4.6: Plots of the heavy traffic optimal split α∗HT for exponential
service times Bj, j = 0, 1, 2.
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ρ2
HH

H
ρ1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0 0.5 0.5767 0.6572 0.7379 0.8141 0.8803 0.9318 0.9669 0.9875 0.9973 1
0.1 0.4233 0.5 0.5839 0.6721 0.7598 0.8408 0.9076 0.9551 0.9833 0.9965 1
0.2 0.3428 0.4161 0.5 0.5926 0.6901 0.7861 0.8715 0.9367 0.9766 0.9953 1
0.3 0.2621 0.3279 0.4074 0.5 0.6034 0.7123 0.8179 0.9066 0.9654 0.9932 1
0.4 0.1859 0.2402 0.3099 0.3966 0.5 0.617 0.7405 0.857 0.9449 0.9894 1
0.5 0.1197 0.1592 0.2139 0.2877 0.383 0.5 0.6349 0.7776 0.9052 0.9814 1
0.6 0.0682 0.0924 0.1285 0.1821 0.2595 0.3651 0.5 0.6598 0.8289 0.9618 1
0.7 0.0331 0.0449 0.0633 0.0934 0.143 0.2224 0.3402 0.5 0.6972 0.9052 1
0.8 0.0125 0.0167 0.0234 0.0346 0.0551 0.0948 0.1711 0.3028 0.5 0.7638 1
0.9 0.0027 0.0035 0.0047 0.0068 0.0106 0.0186 0.0382 0.0948 0.2362 0.5 1
1 0 0 0 0 0 0 0 0 0 0 -

(a) ρ0 = 0.1

ρ2
HH

H
ρ1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0 0.5 0.5476 0.5978 0.6507 0.7061 0.7638 0.8232 0.8829 0.9396 0.984 1
0.1 0.4524 0.5 0.5507 0.6046 0.6617 0.7219 0.7851 0.8505 0.916 0.9742 1
0.2 0.4022 0.4493 0.5 0.5544 0.6127 0.6749 0.7413 0.8117 0.8854 0.9579 1
0.3 0.3493 0.3954 0.4456 0.5 0.5589 0.6226 0.6916 0.7663 0.8472 0.9332 1
0.4 0.2939 0.3383 0.3873 0.4411 0.5 0.5645 0.6354 0.7137 0.8009 0.8991 1
0.5 0.2362 0.2781 0.3251 0.3774 0.4355 0.5 0.572 0.6529 0.7456 0.8552 -
0.6 0.1768 0.2149 0.2587 0.3084 0.3646 0.428 0.5 0.5826 0.6797 - -
0.7 0.1171 0.1495 0.1883 0.2337 0.2863 0.3471 0.4174 0.5 - - -
0.8 0.0604 0.084 0.1146 0.1528 0.1991 0.2544 0.3203 - - - -
0.9 0.016 0.0258 0.0421 0.0668 0.1009 0.1448 - - - - -
1 0 0 0 0 0 - - - - - -

(b) ρ0 = 0.5

ρ2
H
HHρ1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0 0.5 0.5367 0.5755 0.6166 0.6602 0.7067 0.7565 0.8102 0.8685 0.9329 1

0.1 0.4633 0.5 0.539 0.5805 0.6248 0.6724 0.7238 0.7798 0.8419 0.9126 -
0.2 0.4245 0.461 0.5 0.5417 0.5866 0.635 0.6879 0.7461 0.8118 - -
0.3 0.3834 0.4195 0.4583 0.5 0.5451 0.5943 0.6483 0.7086 - - -
0.4 0.3398 0.3752 0.4134 0.4549 0.5 0.5495 0.6045 - - - -
0.5 0.2933 0.3276 0.365 0.4057 0.4505 0.5 - - - - -
0.6 0.2435 0.2762 0.3121 0.3517 0.3955 - - - - - -
0.7 0.1898 0.2202 0.2539 0.2914 - - - - - - -
0.8 0.1315 0.1581 0.1882 - - - - - - - -
0.9 0.0671 0.0874 - - - - - - - - -
1 0 - - - - - - - - - -

(c) ρ0 = 0.9

Table 4.2: Numerical values of the heavy traffic optimal split α∗HT for expo-
nential service times Bj, j = 0, 1, 2.
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(g) ρ0 = 1.5. (h) ρ0 = 1.5.

Figure 4.6: Plots of the heavy traffic optimal split α∗HT for exponential
service times.

ρ2
HH

H
ρ1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0 0.5 0.5291 0.5601 0.593 0.6284 - - - - - -
0.1 0.4709 0.5 0.531 0.5642 - - - - - - -
0.2 0.4399 0.469 0.5 - - - - - - - -
0.3 0.407 0.4358 - - - - - - - - -
0.4 0.3716 - - - - - - - - - -
0.5 - - - - - - - - - - -
0.6 - - - - - - - - - - -
0.7 - - - - - - - - - - -
0.8 - - - - - - - - - - -
0.9 - - - - - - - - - - -
1 - - - - - - - - - - -

(d) ρ0 = 1.5

Table 4.2: Numerical values of the heavy traffic optimal split α∗HT for expo-
nential service times Bj, j = 0, 1, 2.
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4.4 Composed Optimal Split

The actual optimal split α∗ of our model must have the following properties:

α∗ →

{
α∗LT , ρSi

→ 0, i = 1, 2,

α∗HT , ρSi
→ 1, i = 1, 2.

This composed optimal split possesses these properties:

α∗CP = (1− ρS1 + ρS2

2
)α∗LT +

ρS1 + ρS2

2
α∗HT

= (1− ρ0 + ρ1 + ρ2

2
)α∗LT +

ρ0 + ρ1 + ρ2

2
α∗HT .

Note that it depends on the distribution of the service time. Figure 4.7 and
Table 4.3 show plots and numerical values of α∗CP for exponential service
times Bj and different values of the occupation rates ρj, for j = 0, 1, 2.
However, they are similar for Erlang-2, deterministic and hyperexponential
service times Bj, where the latter one has squared coefficient of variation
c2Bj
∈ {2, 4, 16}, for j = 0, 1, 2.

4.5 Comparison of the Optimal Splits

We want to verify the accuracy of the mentioned analytical optimal splits.
Therefore, we simulate the mean sojourn times, we smoothen them by
means of regression and extract the optimal split from these outcomes. We
thereby use Extend again. We build some models in Extend and run them
for different values of α and ρi for i = 1, 2 and fixed values of βi for i = 1, 2.
More precisely, α ∈ {0, 0.01, 0.02, . . . , 1}, ρ0 ∈ {0.1, 0.5, 0.9},
ρi ∈ {0, 0.1, 0.2, . . . , 0.9} for i = 1, 2 and βj = 10 seconds for j = 0, 1, 2. We
consider six distributions of the service times Bj for j = 0, 1, 2: exponential,
hyperexponential with squared coefficient of variation c2Bj

∈ {2, 4, 16},
Erlang-2 and deterministic for j = 0, 1, 2. We then smoothen the simulated
mean sojourn times by means of regression and compare them in case the
split α is an analytic optimal split to the case where the split α is an
analytic optimal split. We perform this for exponential, Erlang-2 and
hyperexponential service times with c2 ∈ {2, 4, 16} and with mean βj = 10
for j = 0, 1, 2 for each combination of the occupation rates

(ρ0, ρ1, ρ2) ∈ {0.1, 0.5, 0.9} × {0, 0.1, . . . , 0.9}2
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(a) ρ0 = 0.1. (b) ρ0 = 0.1.

(c) ρ0 = 0.5. (d) ρ0 = 0.5.

(e) ρ0 = 0.9. (f) ρ0 = 0.9.

Figure 4.7: Plots of the composed optimal split α∗CP for exponential service
times.
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ρ2
HH

H
ρ1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0 0.5 0.5314 0.5708 0.6182 0.6723 0.7307 0.7904 0.8483 0.9027 0.9532 1
0.1 0.4686 0.5 0.5403 0.5899 0.648 0.7121 0.7784 0.8423 0.9007 0.9531 1
0.2 0.4292 0.4597 0.5 0.5511 0.613 0.6837 0.7589 0.832 0.8972 0.9527 1
0.3 0.3818 0.4101 0.4489 0.5 0.5644 0.6414 0.7271 0.8136 0.8904 0.9518 1
0.4 0.3277 0.352 0.387 0.4356 0.5 0.5812 0.6773 0.7808 0.8767 0.9497 1
0.5 0.2693 0.2879 0.3163 0.3586 0.4188 0.5 0.6032 0.7242 0.848 0.9444 1
0.6 0.2096 0.2216 0.2411 0.2729 0.3227 0.3968 0.5 0.6333 0.7884 0.9294 1
0.7 0.1517 0.1577 0.168 0.1864 0.2192 0.2758 0.3667 0.5 0.6777 0.8819 1
0.8 0.0973 0.0993 0.1028 0.1096 0.1233 0.152 0.2116 0.3223 0.5 0.7541 1
0.9 0.0468 0.0469 0.0473 0.0482 0.0503 0.0556 0.0706 0.1181 0.2459 0.5 1
1 0 0 0 0 0 0 0 0 0 0 -

(a) ρ0 = 0.1

ρ2
HH

H
ρ1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0 0.5 0.5327 0.5703 0.6132 0.6615 0.7152 0.7742 0.8374 0.9024 0.9615 1
0.1 0.4673 0.5 0.5379 0.5814 0.6308 0.6863 0.748 0.8153 0.8867 0.9557 1
0.2 0.4297 0.4621 0.5 0.5439 0.5941 0.6511 0.7152 0.7864 0.864 0.9441 1
0.3 0.3868 0.4186 0.4561 0.5 0.5507 0.6089 0.675 0.7497 0.8333 0.9244 1
0.4 0.3385 0.3692 0.4059 0.4493 0.5 0.5588 0.6266 0.7043 0.7932 0.8949 1
0.5 0.2848 0.3137 0.3489 0.3911 0.4412 0.5 0.5687 0.6488 0.7424 0.8541 -
0.6 0.2258 0.252 0.2848 0.325 0.3734 0.4313 0.5 0.5815 0.679 - -
0.7 0.1626 0.1847 0.2136 0.2503 0.2957 0.3512 0.4185 0.5 - - -
0.8 0.0976 0.1133 0.136 0.1667 0.2068 0.2576 0.321 - - - -
0.9 0.0385 0.0443 0.0559 0.0756 0.1051 0.1459 - - - - -
1 0 0 0 0 0 - - - - - -

(b) ρ0 = 0.5

ρ2
H
HHρ1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0 0.5 0.5315 0.5665 0.6053 0.6479 0.6947 0.746 0.802 0.8633 0.9305 1

0.1 0.4685 0.5 0.5352 0.5742 0.6174 0.665 0.7175 0.7754 0.8395 0.912 -
0.2 0.4335 0.4648 0.5 0.5392 0.5828 0.6311 0.6847 0.7443 0.8112 - -
0.3 0.3947 0.4258 0.4608 0.5 0.5438 0.5926 0.6471 0.7082 - - -
0.4 0.3521 0.3826 0.4172 0.4562 0.5 0.5491 0.6043 - - - -
0.5 0.3053 0.335 0.3689 0.4074 0.4509 0.5 - - - - -
0.6 0.254 0.2825 0.3153 0.3529 0.3957 - - - - - -
0.7 0.198 0.2246 0.2557 0.2918 - - - - - - -
0.8 0.1367 0.1605 0.1888 - - - - - - - -
0.9 0.0695 0.088 - - - - - - - - -
1 0 - - - - - - - - - -

(c) ρ0 = 0.9

Table 4.3: Numerical values of the composed optimal split α∗CP for expo-
nential service times.



Chapter 4 • Job Split Model 49

(g) ρ0 = 1.5. (h) ρ0 = 1.5.

Figure 4.7: Plots of the composed optimal split α∗CP for exponential service
times.

ρ2
HH

H
ρ1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0 0.5 0.5286 0.5594 0.5925 0.6282 - - - - - -
0.1 0.4714 0.5 0.5309 0.5641 - - - - - - -
0.2 0.4406 0.4691 0.5 - - - - - - - -
0.3 0.4075 0.4359 - - - - - - - - -
0.4 0.3718 - - - - - - - - - -
0.5 - - - - - - - - - - -
0.6 - - - - - - - - - - -
0.7 - - - - - - - - - - -
0.8 - - - - - - - - - - -
0.9 - - - - - - - - - - -
1 - - - - - - - - - - -

(d) ρ0 = 1.5

Table 4.3: Numerical values of the composed optimal split α∗CP for expo-
nential service times.
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by means of their relative difference:

E[S0](α
∗
analytic)− E[S0](α

∗
actual)

E[S0](α∗actual)
· 100%.

We thereby consider these analytic optimal splits: the light traffic optimal
split α∗LT , the heavy traffic optimal split α∗HT and the composed optimal
split α∗CP .

(a) Light traffic optimal split α∗LT . (b) Heavy traffic optimal split α∗HT .

Figure 4.8: Comparison of the analytic optimal splits α∗LT and α∗HT with
the actual optimal split α∗ for exponential service times Bj, j = 0, 1, 2.

It appears that the light traffic optimal split α∗LT is indeed closest to the
actual optimal split for small occupation rates ρSi

in each server i. It is also
apparent that the heavy traffic optimal split α∗LT is indeed closest to the
actual optimal split for large occupation rates ρSi

in each server i.
Moreover, we find that the relative difference between the latter optimal
split and the approximate actual optimal split is less than 1% for all
occupation rates ρj for j = 0, 1, 2, in contrast to the other analytic optimal
splits. Thus the composed optimal split approximates the actual optimal
split very well. Note that the relative differences must go to zero in case
ρ2 → ρ1, because of the symmetry of the optimal splits or
ρ0 → (1− ρ1) + (1− ρ2), because of the stability of the optimal splits.
Appendix Tables A.6 - A.23 show these observations.



Chapter 5

Assessment of the Models

5.1 Comparison of the Static Models

We compare the static job split model to the static server selection model
by means of their mean sojourn times E[S0] of foreground jobs to each other
with respect to their optimal parameters, which we already simulated and
smoothened for the job split model and we have them analytically available
in the server selection model. We perform this for exponential, Erlang-2,
deterministic and hyperexponential service times with c2 ∈ {2, 4, 16} and
with mean β0 = 10 seconds for each combination of the occupation rates

(ρ0, ρ1, ρ2) ∈ {0.1, 0.5, 0.9} × {0, 0.1, . . . , 0.9}2

by means of their relative difference:

E[S0]select(q
∗)− E[S0]split(α

∗)

E[S0]select(q
∗)

· 100%.

It appears that it is positive in all cases, meaning that the mean sojourn
time E[S0] of foreground jobs decreases when we substitute the server
selection model by the job split model. The higher the occupation rates ρi
for i = 1, 2 differ from each other, the smaller the relative difference
becomes. Also, the higher the occupation rate ρ0, the higher the relative
difference becomes. The reason for the latter one is, because a higher ρ0

means more foreground jobs in the system that influence the mean sojourn
time E[S0]. Note also that if the occupation rates ρSi

go to zero for some
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i = 1, 2, then:

E[S0,i]select →
2∑
i=1

qiE[B0],

E[S0,i]split → max
i=1,2
{αi}E[B0].

Consequently, if both go to zero, then ρ2 → ρ1 and so qi, αi → 1
2
, in which

case:

E[S0,i]split →
1

2
E[S0,i]select.

In other words, the relative difference goes to 50%. Appendix Tables
A.24 - A.29 show these observations.

5.2 Conclusions

We found in our research that the composed optimal split is the one that
approximates the actual optimal split very well. We also found that we can
improve the static server selection model by the dynamic server selection
model constructed by Markov Decision chains. We discovered that the
largest improvement occurs when the occupation rate ρ0 is large and the
occupation rates ρi do not differ much from each other, for i = 1, 2. And
finally, we have seen that the mean sojourn time decreases if we substitute
the server selection model for the job split model. We again found that the
largest improvement occurs when the occupation rate ρ0 is large and the
occupation rates ρi do not differ much from each other, for i = 1, 2.
Although this last finding is based on static models, it already shows the
potential benefits of Concurrent Access for mobile operators, where they
can utilise their current network capacity in a much more efficient way. It is
a relatively small adjustment in their systems for a relatively high gain.
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5.3 Topics of Further Research

In order to make the models more realistic, we can elaborate this research
with the following models:

• models where the occupation rates ρj are estimated per foreground
job arrival based on some time interval in the past,

• job split model where each foreground job is split according to the
number of jobs in each server, which is modelled as a Markov decision
chain,

• Markov decision models for both server selection models and job split
models, whose optimal policy depend on the job characterisation,
which are service types for hyperexponential service times and phases
for Erlang distributions,

• models with inhomogeneous Poisson arrivals and non-Poisson arrivals,

• models with more than two Processor Sharing servers.
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Appendix A

Relative Differences

The appendix contains tables of relative differences. Section A.1 shows
relative differences between these server selection models: the static and the
Markov decision model, i.e.:

E[S0]static(q∗)− E[S0]Markov
E[S0]static(q∗)

· 100%,

Section A.2 displays relative differences between the actual optimal split
and an analytic optimal split, i.e.:

E[S0](α
∗
analytic)− E[S0](α

∗
actual)

E[S0](α∗actual)
· 100%,

and Section A.3 shows relative differences between these static models: the
server selection model and the job split model, i.e.:

E[S0]select(q
∗)− E[S0]split(α

∗)

E[S0]select(q
∗)

· 100%.
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A.1 Server Selection Models

ρ2
H

HHρ1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0 4.4% 3.9% 1.9% 0.9% 0.4% 0.1% 0.0% 0.0% 0.0% 0.0%

0.1 3.9% 4.6% 4.0% 2.3% 1.2% 0.5% 0.1% 0.0% 0.0% 0.0%
0.2 1.9% 4.0% 4.8% 4.2% 2.5% 1.3% 0.5% 0.1% 0.0% 0.0%
0.3 0.9% 2.3% 4.2% 5.1% 4.4% 2.6% 1.2% 0.4% 0.1% 0.0%
0.4 0.4% 1.2% 2.5% 4.4% 5.6% 4.8% 2.6% 1.1% 0.3% 0.0%
0.5 0.1% 0.5% 1.3% 2.6% 4.8% 6.3% 5.3% 2.6% 0.8% 0.1%
0.6 0.0% 0.1% 0.5% 1.2% 2.6% 5.3% 7.4% 6.1% 2.4% 0.3%
0.7 0.0% 0.0% 0.1% 0.4% 1.1% 2.6% 6.1% 9.4% 7.4% 1.7%
0.8 0.0% 0.0% 0.0% 0.1% 0.3% 0.8% 2.4% 7.4% 13.3% 9.8%
0.9 0.0% 0.0% 0.0% 0.0% 0.0% 0.1% 0.3% 1.7% 9.8% 23.4%

(a) ρ0 = 0.1

ρ2
HH

H
ρ1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0 17.4% 18.6% 18.5% 17.2% 14.6% 10.4% 5.7% 2.4% 0.6% 0.0%
0.1 18.6% 18.2% 19.2% 18.5% 17.9% 15.3% 10.9% 5.4% 1.9% 0.2%
0.2 18.5% 19.2% 19.4% 20.4% 20.4% 19.3% 16.7% 11.5% 4.8% 0.8%
0.3 17.2% 19.2% 20.4% 21.1% 22.2% 22.4% 21.5% 19.0% 12.4% 3.1%
0.4 14.6% 17.9% 20.4% 22.2% 23.4% 24.9% 25.5% 25.3% 23.2% 22.5%
0.5 10.4% 15.3% 19.3% 22.4% 24.9% 26.9% 29.1% 30.8% 32.4% 32.7%
0.6 5.7% 10.9% 16.7% 21.5% 25.5% 29.1% 32.3% 36.1% 39.8% -
0.7 2.4% 5.4% 11.5% 19.0% 25.3% 30.8% 36.1% 40.9% - -
0.8 0.6% 1.9% 4.8% 12.4% 23.2% 32.4% 39.8% - - -
0.9 0.0% 0.2% 0.8% 3.1% 22.5% 32.7% - - - -

(b) ρ0 = 0.5

ρ2
HH

H
ρ1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0 26.6% 27.9% 28.8% 29.2% 29.3% 29.1% 28.6% 27.5% 24.7% 14.8%
0.1 27.9% 28.3% 29.8% 30.8% 31.6% 32.2% 32.8% 33.5% 34.2% 34.1%
0.2 28.8% 29.8% 30.6% 32.4% 33.8% 35.2% 36.8% 38.9% 41.6% -
0.3 29.2% 30.8% 32.4% 33.8% 36.0% 38.2% 40.8% 43.7% - -
0.4 29.3% 31.6% 33.8% 36.0% 38.3% 41.5% 44.4% - - -
0.5 29.1% 32.2% 35.2% 38.2% 41.5% 44.5% - - - -
0.6 28.6% 32.8% 36.8% 40.8% 44.4% - - - - -
0.7 27.5% 33.5% 38.9% 43.7% - - - - - -
0.8 24.7% 34.2% 41.6% - - - - - - -
0.9 14.8% 34.1% - - - - - - - -

(c) ρ0 = 0.9

Table A.1: Relative differences between E[S0]static(q∗) and E[S0]Markov for
exponential service times Bj, j = 0, 1, 2.
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ρ2
HH

H
ρ1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0 4.3% 4.1% 1.8% 1.1% 0.4% 0.1% 0.0% 0.0% 0.0% 0.0%
0.1 4.1% 4.7% 3.9% 2.2% 1.0% 0.4% 0.1% 0.0% 0.0% 0.0%
0.2 1.8% 3.9% 4.8% 4.2% 2.6% 1.4% 0.4% 0.1% 0.0% 0.0%
0.3 1.1% 2.2% 4.2% 5.2% 4.5% 2.7% 1.0% 0.4% 0.1% 0.0%
0.4 0.4% 1.0% 2.6% 4.5% 5.6% 4.9% 2.6% 0.9% 0.4% 0.0%
0.5 0.1% 0.4% 1.4% 2.7% 4.9% 6.2% 5.2% 2.8% 0.7% 0.2%
0.6 0.0% 0.1% 0.4% 1.0% 2.6% 5.2% 7.4% 6.3% 2.4% 0.4%
0.7 0.0% 0.0% 0.1% 0.4% 0.9% 2.8% 6.3% 9.4% 7.3% 1.5%
0.8 0.0% 0.0% 0.0% 0.1% 0.4% 0.7% 2.4% 7.3% 13.5% 9.9%
0.9 0.0% 0.0% 0.0% 0.0% 0.0% 0.2% 0.4% 1.5% 9.9% 23.3%

(a) ρ0 = 0.1

ρ2
H

HHρ1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0 17.4% 18.7% 18.5% 17.2% 14.7% 10.4% 5.7% 2.4% 0.6% 0.0%

0.1 18.7% 18.3% 19.4% 19.3% 18.1% 15.4% 10.9% 5.4% 1.8% 0.2%
0.2 18.5% 19.4% 19.2% 20.5% 20.5% 19.4% 16.7% 11.5% 4.8% 0.8%
0.3 17.2% 19.3% 20.5% 21.1% 22.3% 22.2% 21.4% 18.8% 12.4% 3.1%
0.4 14.7% 18.1% 20.5% 22.3% 23.4% 24.8% 25.7% 25.4% 23.1% 22.5%
0.5 10.4% 15.4% 19.4% 22.2% 24.8% 26.7% 29.3% 30.7% 32.5% 32.7%
0.6 5.7% 10.9% 16.7% 21.4% 25.7% 29.3% 32.4% 36.1% 39.9% -
0.7 2.4% 5.4% 11.5% 18.8% 25.4% 30.7% 36.1% 40.8% - -
0.8 0.6% 1.8% 4.8% 12.4% 23.1% 32.5% 39.9% - - -
0.9 0.0% 0.2% 0.8% 3.1% 22.5% 32.7% - - - -

(b) ρ0 = 0.5

ρ2
HH

H
ρ1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0 26.5% 28.1% 28.7% 29.3% 29.4% 29.1% 28.6% 27.5% 24.7% 14.8%
0.1 28.1% 28.5% 29.6% 31.0% 31.7% 32.2% 32.8% 33.5% 34.2% 34.1%
0.2 28.7% 29.6% 30.5% 32.4% 33.9% 35.3% 36.9% 38.9% 41.6% -
0.3 29.3% 31.0% 32.4% 33.8% 35.9% 38.3% 40.7% 43.6% - -
0.4 29.4% 31.7% 33.9% 35.9% 38.1% 41.6% 44.4% - - -
0.5 29.1% 32.2% 35.3% 38.3% 41.6% 44.6% - - - -
0.6 28.6% 32.8% 36.9% 40.7% 44.4% - - - - -
0.7 27.5% 33.5% 38.9% 43.6% - - - - - -
0.8 24.7% 34.2% 41.6% - - - - - - -
0.9 14.8% 34.1% - - - - - - - -

(c) ρ0 = 0.9

Table A.2: Relative differences between E[S0]static(q∗) and E[S0]Markov for
Erlang-2 service times Bj, j = 0, 1, 2.
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ρ2
HH

H
ρ1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0 4.6% 3.9% 2.0% 0.9% 0.4% 0.1% 0.0% 0.0% 0.0% 0.0%
0.1 3.9% 4.5% 4.1% 2.3% 1.1% 0.6% 0.1% 0.0% 0.0% 0.0%
0.2 2.0% 4.1% 5.0% 4.4% 2.7% 1.1% 0.5% 0.1% 0.0% 0.0%
0.3 0.9% 2.3% 4.4% 5.0% 4.3% 2.5% 1.1% 0.2% 0.1% 0.0%
0.4 0.4% 1.1% 2.7% 4.3% 5.7% 4.7% 2.6% 1.2% 0.3% 0.0%
0.5 0.1% 0.6% 1.1% 2.5% 4.7% 6.2% 5.2% 2.4% 0.8% 0.1%
0.6 0.0% 0.1% 0.5% 1.1% 2.6% 5.2% 7.4% 6.1% 2.3% 0.5%
0.7 0.0% 0.0% 0.1% 0.2% 1.2% 2.4% 6.1% 9.5% 7.5% 1.5%
0.8 0.0% 0.0% 0.0% 0.1% 0.3% 0.8% 2.3% 7.5% 13.2% 9.7%
0.9 0.0% 0.0% 0.0% 0.0% 0.0% 0.1% 0.5% 1.5% 9.7% 23.5%

(a) ρ0 = 0.1

ρ2
H

HHρ1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0 17.5% 18.7% 18.3% 17.3% 14.7% 10.4% 5.7% 2.4% 0.6% 0.0%

0.1 18.7% 18.2% 19.3% 19.0% 18.1% 15.2% 10.9% 5.4% 1.9% 0.2%
0.2 18.3% 19.3% 19.6% 20.4% 20.3% 19.4% 16.9% 11.4% 4.8% 0.8%
0.3 17.3% 19.0% 20.4% 21.2% 22.3% 22.3% 21.4% 19.0% 12.4% 3.1%
0.4 14.7% 18.1% 20.3% 22.3% 23.2% 24.8% 25.5% 25.4% 23.1% 22.6%
0.5 10.4% 15.2% 19.4% 22.3% 24.8% 27.0% 29.1% 31.0% 32.6% 32.7%
0.6 5.7% 10.9% 16.9% 21.4% 25.5% 29.1% 32.4% 36.2% 39.8% -
0.7 2.4% 5.4% 11.4% 19.0% 25.4% 31.0% 36.2% 40.8% - -
0.8 0.6% 1.9% 4.8% 12.4% 23.1% 32.6% 39.8% - - -
0.9 0.0% 0.2% 0.8% 3.1% 22.6% 32.7% - - - -

(b) ρ0 = 0.5

ρ2
HH

H
ρ1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0 26.7% 28.1% 28.8% 29.3% 29.2% 29.2% 28.6% 27.5% 24.7% 14.8%
0.1 28.1% 28.4% 29.8% 30.9% 31.5% 32.3% 32.8% 33.5% 34.2% 34.1%
0.2 28.8% 29.8% 30.7% 32.4% 34.0% 35.2% 36.7% 38.9% 41.7% -
0.3 29.3% 30.9% 32.4% 33.9% 36.2% 38.1% 40.9% 43.6% - -
0.4 29.2% 31.5% 34.0% 36.2% 38.4% 41.5% 44.3% - - -
0.5 29.2% 32.3% 35.2% 38.1% 41.5% 44.6% - - - -
0.6 28.6% 32.8% 36.7% 40.9% 44.3% - - - - -
0.7 27.5% 33.5% 38.9% 43.6% - - - - - -
0.8 24.7% 34.2% 41.7% - - - - - - -
0.9 14.8% 34.1% - - - - - - - -

(c) ρ0 = 0.9

Table A.3: Relative differences between E[S0]static(q∗) and E[S0]Markov for
hyperexponential service times Bj with c2Bj

= 2, j = 0, 1, 2.
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ρ2
HH

H
ρ1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0 4.5% 4.1% 1.8% 0.9% 0.4% 0.1% 0.0% 0.0% 0.0% 0.0%
0.1 4.1% 4.7% 3.8% 2.4% 1.4% 0.3% 0.1% 0.0% 0.0% 0.0%
0.2 1.8% 3.8% 5.0% 4.2% 2.6% 1.3% 0.4% 0.1% 0.0% 0.0%
0.3 0.9% 2.4% 4.2% 5.0% 4.6% 2.8% 1.2% 0.4% 0.0% 0.0%
0.4 0.4% 1.4% 2.6% 4.6% 5.6% 4.7% 2.5% 0.9% 0.4% 0.0%
0.5 0.1% 0.3% 1.3% 2.8% 4.7% 6.4% 5.1% 2.8% 0.9% 0.2%
0.6 0.0% 0.1% 0.4% 1.2% 2.5% 5.1% 7.4% 6.0% 2.4% 0.4%
0.7 0.0% 0.0% 0.1% 0.4% 0.9% 2.8% 6.0% 9.3% 7.5% 1.5%
0.8 0.0% 0.0% 0.0% 0.0% 0.4% 0.9% 2.4% 7.5% 13.5% 9.8%
0.9 0.0% 0.0% 0.0% 0.0% 0.0% 0.2% 0.4% 1.5% 9.8% 23.5%

(a) ρ0 = 0.1

ρ2
H

HHρ1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0 17.5% 18.6% 18.4% 17.3% 14.6% 10.4% 5.7% 2.4% 0.6% 0.0%

0.1 18.6% 18.2% 19.4% 19.0% 17.7% 15.2% 10.9% 5.4% 1.9% 0.2%
0.2 18.4% 19.4% 19.6% 20.3% 20.5% 19.4% 16.6% 11.4% 4.8% 0.8%
0.3 17.3% 19.0% 20.3% 21.2% 22.2% 22.5% 21.6% 19.0% 12.4% 3.2%
0.4 14.6% 17.7% 20.5% 22.2% 23.5% 24.9% 25.5% 25.3% 23.1% 22.6%
0.5 10.4% 15.2% 19.4% 22.5% 24.9% 26.8% 29.1% 30.7% 32.5% 32.7%
0.6 5.7% 10.9% 16.6% 21.6% 25.5% 29.1% 32.4% 36.0% 39.9% -
0.7 2.4% 5.4% 11.4% 19.0% 25.3% 30.7% 36.0% 41.1% - -
0.8 0.6% 1.9% 4.8% 12.4% 23.1% 32.5% 39.9% - - -
0.9 0.0% 0.2% 0.8% 3.2% 22.6% 32.7% - - - -

(b) ρ0 = 0.5

ρ2
HH

H
ρ1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0 26.7% 27.7% 28.8% 29.1% 29.3% 29.1% 28.6% 27.5% 24.7% 14.7%
0.1 27.7% 28.4% 29.8% 30.7% 31.8% 32.1% 32.8% 33.5% 34.2% 34.1%
0.2 28.8% 29.8% 30.5% 32.5% 33.9% 35.4% 36.9% 38.9% 41.6% -
0.3 29.1% 30.7% 32.5% 33.7% 35.8% 38.1% 40.6% 43.8% - -
0.4 29.3% 31.8% 33.9% 35.8% 38.3% 41.4% 44.4% - - -
0.5 29.1% 32.1% 35.4% 38.1% 41.4% 44.5% - - - -
0.6 28.6% 32.8% 36.9% 40.6% 44.4% - - - - -
0.7 27.5% 33.5% 38.9% 43.8% - - - - - -
0.8 24.7% 34.2% 41.6% - - - - - - -
0.9 14.7% 34.1% - - - - - - - -

(c) ρ0 = 0.9

Table A.4: Relative differences between E[S0]static(q∗) and E[S0]Markov for
hyperexponential service times Bj with c2Bj

= 4, j = 0, 1, 2.
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ρ2
HH

H
ρ1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0 4.6% 4.1% 2.0% 1.0% 0.5% 0.1% 0.0% 0.0% 0.0% 0.0%
0.1 4.1% 4.8% 4.2% 2.2% 1.2% 0.3% 0.1% 0.0% 0.0% 0.0%
0.2 2.0% 4.2% 4.7% 4.0% 2.5% 1.4% 0.4% 0.1% 0.0% 0.0%
0.3 1.0% 2.2% 4.0% 5.3% 4.3% 2.5% 1.0% 0.4% 0.1% 0.0%
0.4 0.5% 1.2% 2.5% 4.3% 5.4% 4.9% 2.8% 1.0% 0.4% 0.0%
0.5 0.1% 0.3% 1.4% 2.5% 4.9% 6.2% 5.3% 2.7% 0.6% 0.0%
0.6 0.0% 0.1% 0.4% 1.0% 2.8% 5.3% 7.2% 6.2% 2.3% 0.5%
0.7 0.0% 0.0% 0.1% 0.4% 1.0% 2.7% 6.2% 9.5% 7.6% 1.6%
0.8 0.0% 0.0% 0.0% 0.1% 0.4% 0.6% 2.3% 7.6% 13.2% 9.7%
0.9 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.5% 1.6% 9.7% 23.5%

(a) ρ0 = 0.1

ρ2
H

HHρ1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0 17.6% 18.5% 18.3% 17.1% 14.6% 10.4% 5.7% 2.4% 0.6% 0.0%

0.1 18.5% 18.4% 19.1% 19.1% 18.0% 15.5% 10.9% 5.4% 1.8% 0.2%
0.2 18.3% 19.1% 19.4% 20.3% 20.6% 19.5% 16.8% 11.5% 4.8% 0.8%
0.3 17.1% 19.1% 20.3% 21.2% 22.2% 22.3% 21.5% 19.0% 12.4% 3.1%
0.4 14.6% 18.0% 20.6% 22.2% 23.3% 25.0% 25.7% 25.5% 23.2% 22.5%
0.5 10.4% 15.5% 19.5% 22.3% 25.0% 27.0% 29.2% 30.6% 32.3% 32.7%
0.6 5.7% 10.9% 16.8% 21.5% 25.7% 29.2% 32.4% 36.0% 39.6% -
0.7 2.4% 5.4% 11.5% 19.0% 25.5% 30.6% 36.0% 41.1% - -
0.8 0.6% 1.8% 4.8% 12.4% 23.2% 32.3% 39.6% - - -
0.9 0.0% 0.2% 0.8% 3.1% 22.5% 32.7% - - - -

(b) ρ0 = 0.5

ρ2
HH

H
ρ1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0 26.8% 27.9% 28.6% 29.2% 29.3% 29.1% 28.6% 27.5% 24.7% 14.8%
0.1 27.9% 28.3% 29.6% 30.9% 31.5% 32.3% 32.8% 33.5% 34.2% 34.1%
0.2 28.6% 29.6% 30.8% 32.3% 33.7% 35.2% 36.7% 38.9% 41.6% -
0.3 29.2% 30.9% 32.3% 33.9% 36.1% 38.0% 40.7% 43.8% - -
0.4 29.3% 31.5% 33.7% 36.1% 38.3% 41.5% 44.5% - - -
0.5 29.1% 32.3% 35.2% 38.0% 41.5% 44.6% - - - -
0.6 28.6% 32.8% 36.7% 40.7% 44.5% - - - - -
0.7 27.5% 33.5% 38.9% 43.8% - - - - - -
0.8 24.7% 34.2% 41.6% - - - - - - -
0.9 14.8% 34.1% - - - - - - - -

(c) ρ0 = 0.9

Table A.5: Relative differences between E[S0]static(q∗) and E[S0]Markov for
hyperexponential service times Bj with c2Bj

= 16, j = 0, 1, 2.

A.2 Optimal Splits in Job Split Model
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ρ2
HH

H
ρ1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0 0.0% 0.0% 0.0% 0.1% 0.8% 2.1% 5.5% 9.6% 17.1% 20.0%
0.1 0.0% 0.0% 0.0% 0.2% 0.5% 1.9% 4.2% 10.7% 18.2% 21.9%
0.2 0.0% 0.0% 0.0% 0.2% 0.3% 1.5% 3.3% 7.5% 18.7% 22.9%
0.3 0.1% 0.2% 0.2% 0.0% 0.1% 0.6% 2.4% 5.1% 15.3% 23.5%
0.4 0.8% 0.5% 0.3% 0.1% 0.0% 0.4% 1.6% 4.5% 9.5% 24.1%
0.5 2.1% 1.9% 1.5% 0.6% 0.4% 0.0% 0.4% 2.9% 6.3% 19.6%
0.6 5.5% 4.2% 3.3% 2.4% 1.6% 0.4% 0.0% 0.8% 4.5% 13.4%
0.7 9.6% 10.7% 7.5% 5.1% 4.5% 2.9% 0.8% 0.0% 2.5% 12.6%
0.8 17.1% 18.2% 18.7% 15.3% 9.5% 6.3% 4.5% 2.5% 0.0% 4.6%
0.9 20.0% 21.9% 22.9% 23.5% 24.1% 19.6% 13.4% 12.6% 4.6% 0.0%

(a) Light traffic optimal split α∗LT .

ρ2
HH

H
ρ1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0 0.0% 2.0% 5.7% 10.5% 9.7% 8.7% 8.1% 6.1% 4.3% 0.5%
0.1 2.0% 0.0% 1.6% 4.5% 7.4% 7.4% 7.2% 6.1% 4.9% 1.3%
0.2 5.7% 1.6% 0.0% 0.8% 3.8% 5.5% 6.5% 6.4% 6.0% 1.6%
0.3 10.5% 4.5% 0.8% 0.0% 1.1% 3.2% 4.9% 6.8% 6.1% 1.8%
0.4 9.7% 7.4% 3.8% 1.1% 0.0% 0.5% 2.1% 3.5% 6.1% 1.8%
0.5 8.7% 7.4% 5.5% 3.2% 0.5% 0.0% 0.9% 2.0% 6.4% 3.7%
0.6 8.1% 7.2% 6.5% 4.9% 2.1% 0.9% 0.0% 0.6% 2.5% 1.8%
0.7 6.1% 6.1% 6.4% 6.8% 3.5% 2.0% 0.6% 0.0% 0.3% 0.9%
0.8 4.3% 4.9% 6.0% 6.1% 6.1% 6.4% 2.5% 0.3% 0.0% 0.2%
0.9 0.5% 1.3% 1.6% 1.8% 1.8% 3.7% 1.8% 0.9% 0.2% 0.0%

(b) Heavy traffic optimal split α∗HT .

ρ2
HH

H
ρ1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0 0.0% 0.0% 0.0% 0.1% 0.1% 0.2% 0.4% 0.5% 0.4% 0.4%
0.1 0.0% 0.0% 0.0% 0.0% 0.1% 0.1% 0.3% 0.5% 0.8% 0.3%
0.2 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.2% 0.4% 0.9% 0.4%
0.3 0.1% 0.0% 0.0% 0.0% 0.0% 0.0% 0.1% 0.2% 0.5% 0.5%
0.4 0.1% 0.1% 0.0% 0.0% 0.0% 0.0% 0.0% 0.2% 0.4% 0.6%
0.5 0.2% 0.1% 0.0% 0.0% 0.0% 0.0% 0.0% 0.1% 0.4% 0.5%
0.6 0.4% 0.3% 0.2% 0.1% 0.0% 0.0% 0.0% 0.1% 0.1% 0.3%
0.7 0.5% 0.5% 0.4% 0.2% 0.2% 0.1% 0.1% 0.0% 0.0% 0.1%
0.8 0.4% 0.8% 0.9% 0.5% 0.4% 0.4% 0.1% 0.0% 0.0% 0.0%
0.9 0.4% 0.3% 0.4% 0.5% 0.6% 0.5% 0.3% 0.1% 0.0% 0.0%

(c) Composed optimal split α∗CP .

Table A.6: Relative differences between E[S0](α
∗
actual) and E[S0](α

∗
analytic)

for exponential service times Bj, j = 0, 1, 2, and ρ0 = 0.1.
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ρ2
HH

H
ρ1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0 0.0% 0.0% 0.0% 0.5% 0.8% 2.1% 3.3% 9.3% 16.8% 19.2%
0.1 0.0% 0.0% 0.0% 0.4% 0.5% 1.9% 4.2% 11.0% 17.2% 21.7%
0.2 0.0% 0.0% 0.0% 0.2% 0.3% 1.5% 3.5% 10.4% 18.9% 21.9%
0.3 0.5% 0.4% 0.2% 0.0% 0.1% 0.6% 2.4% 5.2% 13.1% 28.2%
0.4 0.8% 0.5% 0.3% 0.1% 0.0% 0.4% 1.5% 4.2% 9.1% 23.1%
0.5 2.1% 1.9% 1.5% 0.6% 0.4% 0.0% 0.4% 3.0% 6.6% 19.4%
0.6 3.3% 4.2% 3.5% 2.4% 1.5% 0.4% 0.0% 1.1% 4.1% 13.7%
0.7 9.3% 11.0% 10.4% 5.2% 4.2% 3.0% 1.1% 0.0% 2.8% 12.0%
0.8 16.8% 17.2% 18.9% 13.1% 9.1% 6.6% 4.1% 2.8% 0.0% 3.6%
0.9 19.2% 21.7% 21.9% 28.2% 23.1% 19.4% 13.7% 12.0% 3.6% 0.0%

(a) Light traffic optimal split α∗LT .

ρ2
H

HHρ1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0 0.0% 2.0% 5.6% 10.5% 9.7% 8.7% 6.9% 6.0% 0.6% 0.4%

0.1 2.0% 0.0% 1.6% 4.4% 7.4% 7.3% 7.3% 6.3% 3.8% 1.5%
0.2 5.6% 1.6% 0.0% 0.8% 3.8% 5.5% 6.3% 9.2% 4.1% 1.8%
0.3 10.5% 4.4% 0.8% 0.0% 1.0% 3.3% 4.8% 6.7% 5.3% 2.2%
0.4 9.7% 7.4% 3.8% 1.0% 0.0% 0.5% 2.3% 3.3% 6.4% 2.6%
0.5 8.7% 7.3% 5.5% 3.3% 0.5% 0.0% 0.8% 1.7% 6.7% 2.5%
0.6 6.9% 7.3% 6.3% 4.8% 2.3% 0.8% 0.0% 0.9% 2.3% 2.7%
0.7 6.0% 6.3% 9.2% 6.7% 3.3% 1.7% 0.9% 0.0% 0.5% 1.6%
0.8 0.6% 3.8% 4.1% 5.3% 6.4% 6.7% 2.3% 0.5% 0.0% 0.8%
0.9 0.4% 1.5% 1.8% 2.2% 2.6% 2.5% 2.7% 1.6% 0.8% 0.0%

(b) Heavy traffic optimal split α∗HT .

ρ2
HH

H
ρ1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0 0.0% 0.0% 0.0% 0.1% 0.2% 0.2% 0.4% 0.5% 0.4% 0.3%
0.1 0.0% 0.0% 0.0% 0.1% 0.1% 0.1% 0.3% 0.5% 0.8% 0.3%
0.2 0.0% 0.0% 0.0% 0.0% 0.1% 0.1% 0.2% 0.4% 0.9% 0.4%
0.3 0.1% 0.1% 0.0% 0.0% 0.0% 0.0% 0.2% 0.2% 0.6% 0.5%
0.4 0.2% 0.1% 0.1% 0.0% 0.0% 0.0% 0.1% 0.2% 0.5% 0.6%
0.5 0.2% 0.1% 0.1% 0.0% 0.0% 0.0% 0.0% 0.1% 0.4% 0.5%
0.6 0.4% 0.3% 0.2% 0.2% 0.1% 0.0% 0.0% 0.1% 0.1% 0.4%
0.7 0.5% 0.5% 0.4% 0.2% 0.2% 0.1% 0.1% 0.0% 0.0% 0.1%
0.8 0.4% 0.8% 0.9% 0.6% 0.5% 0.4% 0.1% 0.0% 0.0% 0.0%
0.9 0.3% 0.3% 0.4% 0.5% 0.6% 0.5% 0.4% 0.1% 0.0% 0.0%

(c) Composed optimal split α∗CP .

Table A.7: Relative differences between E[S0](α
∗
actual) and E[S0](α

∗
analytic)

for Erlang-2 service times Bj, j = 0, 1, 2, and ρ0 = 0.1.
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ρ2
HH

H
ρ1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0 0.0% 0.0% 0.0% 0.4% 0.7% 2.1% 5.5% 9.5% 17.6% 19.2%
0.1 0.0% 0.0% 0.0% 0.2% 0.5% 1.0% 4.2% 10.6% 17.6% 19.6%
0.2 0.0% 0.0% 0.0% 0.1% 0.3% 0.9% 3.2% 7.5% 18.9% 21.9%
0.3 0.4% 0.2% 0.1% 0.0% 0.1% 0.6% 2.6% 5.1% 14.8% 23.1%
0.4 0.7% 0.5% 0.3% 0.1% 0.0% 0.3% 1.6% 4.7% 9.1% 32.3%
0.5 2.1% 1.0% 0.9% 0.6% 0.3% 0.0% 0.2% 3.1% 5.8% 28.4%
0.6 5.5% 4.2% 3.2% 2.6% 1.6% 0.2% 0.0% 0.6% 4.5% 20.9%
0.7 9.5% 10.6% 7.5% 5.1% 4.7% 3.1% 0.6% 0.0% 2.0% 13.6%
0.8 17.6% 17.6% 18.9% 14.8% 9.1% 5.8% 4.5% 2.0% 0.0% 4.3%
0.9 19.2% 19.6% 21.9% 23.1% 32.3% 28.4% 20.9% 13.6% 4.3% 0.0%

(a) Light traffic optimal split α∗LT .

ρ2
H

HHρ1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0 0.0% 2.0% 5.7% 10.5% 9.7% 8.6% 8.0% 5.9% 4.7% 0.0%

0.1 2.0% 0.0% 1.6% 9.6% 9.7% 7.4% 7.3% 6.0% 5.6% 1.9%
0.2 5.7% 1.6% 0.0% 0.9% 3.8% 5.5% 6.4% 6.1% 5.9% 5.5%
0.3 10.5% 9.6% 0.9% 0.0% 1.1% 3.2% 4.8% 6.7% 5.9% 7.6%
0.4 9.7% 9.7% 3.8% 1.1% 0.0% 0.5% 2.0% 3.3% 5.8% 8.9%
0.5 8.6% 7.4% 5.5% 3.2% 0.5% 0.0% 0.8% 1.8% 5.6% 8.3%
0.6 8.0% 7.3% 6.4% 4.8% 2.0% 0.8% 0.0% 0.6% 3.1% 7.3%
0.7 5.9% 6.0% 6.1% 6.7% 3.3% 1.8% 0.6% 0.0% 0.5% 1.5%
0.8 4.7% 5.6% 5.9% 5.9% 5.8% 5.6% 3.1% 0.5% 0.0% 1.3%
0.9 0.0% 1.9% 5.5% 7.6% 8.9% 8.3% 7.3% 1.5% 1.3% 0.0%

(b) Heavy traffic optimal split α∗HT .

ρ2
HH

H
ρ1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0 0.0% 0.0% 0.1% 0.1% 0.2% 0.3% 0.4% 0.5% 0.4% 0.2%
0.1 0.0% 0.0% 0.0% 0.1% 0.1% 0.1% 0.3% 0.5% 0.8% 0.3%
0.2 0.1% 0.0% 0.0% 0.0% 0.1% 0.1% 0.2% 0.4% 0.9% 0.4%
0.3 0.1% 0.1% 0.0% 0.0% 0.0% 0.1% 0.1% 0.3% 0.6% 0.5%
0.4 0.2% 0.1% 0.1% 0.0% 0.0% 0.0% 0.1% 0.2% 0.4% 0.6%
0.5 0.3% 0.1% 0.1% 0.1% 0.0% 0.0% 0.0% 0.1% 0.4% 0.5%
0.6 0.4% 0.3% 0.2% 0.1% 0.1% 0.0% 0.0% 0.1% 0.1% 0.4%
0.7 0.5% 0.5% 0.4% 0.3% 0.2% 0.1% 0.1% 0.0% 0.1% 0.1%
0.8 0.4% 0.8% 0.9% 0.6% 0.4% 0.4% 0.1% 0.1% 0.0% 0.1%
0.9 0.2% 0.3% 0.4% 0.5% 0.6% 0.5% 0.4% 0.1% 0.1% 0.0%

(c) Composed optimal split α∗CP .

Table A.8: Relative differences between E[S0](α
∗
actual) and E[S0](α

∗
analytic)

for deterministic service times Bj, j = 0, 1, 2, and ρ0 = 0.1.
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ρ2
HH

H
ρ1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0 0.0% 0.0% 0.0% 0.1% 0.7% 2.2% 5.7% 9.8% 16.6% 19.1%
0.1 0.0% 0.0% 0.0% 0.2% 0.5% 1.9% 4.2% 11.0% 19.7% 21.8%
0.2 0.0% 0.0% 0.0% 0.2% 0.3% 1.4% 3.3% 7.4% 22.6% 22.1%
0.3 0.1% 0.2% 0.2% 0.0% 0.1% 0.6% 2.5% 5.4% 11.2% 25.1%
0.4 0.7% 0.5% 0.3% 0.1% 0.0% 0.4% 1.6% 4.3% 9.6% 24.5%
0.5 2.2% 1.9% 1.4% 0.6% 0.4% 0.0% 0.2% 3.2% 6.2% 20.2%
0.6 5.7% 4.2% 3.3% 2.5% 1.6% 0.2% 0.0% 0.8% 4.0% 12.7%
0.7 9.8% 11.0% 7.4% 5.4% 4.3% 3.2% 0.8% 0.0% 2.3% 12.1%
0.8 16.6% 19.7% 22.6% 11.2% 9.6% 6.2% 4.0% 2.3% 0.0% 3.8%
0.9 19.1% 21.8% 22.1% 25.1% 24.5% 20.2% 12.7% 12.1% 3.8% 0.0%

(a) Light traffic optimal split α∗LT .

ρ2
H

HHρ1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0 0.0% 0.4% 5.7% 10.5% 9.7% 8.7% 8.1% 5.8% 4.7% 0.6%

0.1 0.4% 0.0% 1.6% 4.5% 7.4% 7.4% 7.1% 6.2% 5.3% 4.6%
0.2 5.7% 1.6% 0.0% 0.8% 3.8% 5.5% 6.4% 6.6% 6.0% 7.3%
0.3 10.5% 4.5% 0.8% 0.0% 1.1% 3.3% 4.9% 6.8% 6.3% 3.9%
0.4 9.7% 7.4% 3.8% 1.1% 0.0% 0.6% 2.2% 3.6% 6.6% 1.1%
0.5 8.7% 7.4% 5.5% 3.3% 0.6% 0.0% 1.0% 2.0% 6.2% 1.1%
0.6 8.1% 7.1% 6.4% 4.9% 2.2% 1.0% 0.0% 0.4% 1.9% 1.0%
0.7 5.8% 6.2% 6.6% 6.8% 3.6% 2.0% 0.4% 0.0% 0.3% 0.2%
0.8 4.7% 5.3% 6.0% 6.3% 6.6% 6.2% 1.9% 0.3% 0.0% 1.0%
0.9 0.6% 4.6% 7.3% 3.9% 1.1% 1.1% 1.0% 0.2% 1.0% 0.0%

(b) Heavy traffic optimal split α∗HT .

ρ2
HH

H
ρ1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0 0.0% 0.0% 0.0% 0.1% 0.2% 0.2% 0.4% 0.5% 0.4% 0.2%
0.1 0.0% 0.0% 0.0% 0.1% 0.1% 0.1% 0.3% 0.5% 0.8% 0.3%
0.2 0.0% 0.0% 0.0% 0.0% 0.0% 0.1% 0.2% 0.5% 0.9% 0.4%
0.3 0.1% 0.1% 0.0% 0.0% 0.0% 0.0% 0.2% 0.2% 0.6% 0.5%
0.4 0.2% 0.1% 0.0% 0.0% 0.0% 0.0% 0.0% 0.2% 0.4% 0.6%
0.5 0.2% 0.1% 0.1% 0.0% 0.0% 0.0% 0.0% 0.1% 0.4% 0.5%
0.6 0.4% 0.3% 0.2% 0.2% 0.0% 0.0% 0.0% 0.1% 0.1% 0.3%
0.7 0.5% 0.5% 0.5% 0.2% 0.2% 0.1% 0.1% 0.0% 0.0% 0.1%
0.8 0.4% 0.8% 0.9% 0.6% 0.4% 0.4% 0.1% 0.0% 0.0% 0.1%
0.9 0.2% 0.3% 0.4% 0.5% 0.6% 0.5% 0.3% 0.1% 0.1% 0.0%

(c) Composed optimal split α∗CP .

Table A.9: Relative differences between E[S0](α
∗
actual) and E[S0](α

∗
analytic)

for hyperexponential service times Bj with c2Bj
= 2, j = 0, 1, 2 and ρ0 = 0.1.
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ρ2
HH

H
ρ1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0 0.0% 0.0% 0.0% 0.1% 0.7% 2.1% 5.4% 9.4% 17.4% 17.6%
0.1 0.0% 0.0% 0.0% 0.2% 0.6% 1.9% 4.1% 7.9% 18.1% 18.3%
0.2 0.0% 0.0% 0.0% 0.1% 0.3% 1.4% 3.3% 7.3% 18.5% 23.0%
0.3 0.1% 0.2% 0.1% 0.0% 0.1% 0.5% 2.4% 5.2% 17.0% 26.9%
0.4 0.7% 0.6% 0.3% 0.1% 0.0% 0.4% 1.6% 4.5% 9.0% 26.4%
0.5 2.1% 1.9% 1.4% 0.5% 0.4% 0.0% 0.5% 2.8% 6.4% 22.3%
0.6 5.4% 4.1% 3.3% 2.4% 1.6% 0.5% 0.0% 0.6% 4.4% 13.8%
0.7 9.4% 7.9% 7.3% 5.2% 4.5% 2.8% 0.6% 0.0% 3.0% 13.6%
0.8 17.4% 18.1% 18.5% 17.0% 9.0% 6.4% 4.4% 3.0% 0.0% 3.3%
0.9 31.5% 18.3% 23.0% 26.9% 26.4% 22.3% 13.8% 13.6% 3.3% 0.0%

(a) Light traffic optimal split α∗LT .

ρ2
H

HHρ1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0 0.0% 2.0% 5.7% 10.5% 9.7% 8.7% 8.1% 4.9% 4.8% 0.2%

0.1 2.0% 0.0% 1.6% 4.4% 7.5% 7.3% 7.2% 5.9% 5.8% 2.5%
0.2 5.7% 1.6% 0.0% 0.8% 3.8% 5.5% 6.7% 6.3% 5.8% 2.8%
0.3 10.5% 4.4% 0.8% 0.0% 1.0% 3.2% 5.0% 6.7% 10.1% 4.8%
0.4 9.7% 7.5% 3.8% 1.0% 0.0% 0.5% 2.2% 3.6% 6.1% 3.8%
0.5 8.7% 7.3% 5.5% 3.2% 0.5% 0.0% 1.0% 1.8% 5.1% 2.5%
0.6 8.1% 7.2% 6.7% 5.0% 2.2% 1.0% 0.0% 0.8% 2.1% 1.3%
0.7 4.9% 5.9% 6.3% 6.7% 3.6% 1.8% 0.8% 0.0% 0.2% 0.9%
0.8 4.8% 5.8% 5.8% 10.1% 6.1% 5.1% 2.1% 0.2% 0.0% 0.6%
0.9 0.2% 2.5% 2.8% 4.8% 3.8% 2.5% 1.3% 0.9% 0.6% 0.0%

(b) Heavy traffic optimal split α∗HT .

ρ2
HH

H
ρ1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0 0.0% 0.0% 0.1% 0.1% 0.2% 0.2% 0.4% 0.4% 0.4% 0.2%
0.1 0.0% 0.0% 0.0% 0.0% 0.1% 0.2% 0.3% 0.5% 0.8% 0.3%
0.2 0.1% 0.0% 0.0% 0.0% 0.1% 0.1% 0.2% 0.5% 0.9% 0.4%
0.3 0.1% 0.0% 0.0% 0.0% 0.0% 0.0% 0.2% 0.2% 0.5% 0.5%
0.4 0.2% 0.1% 0.1% 0.0% 0.0% 0.0% 0.1% 0.2% 0.4% 0.6%
0.5 0.2% 0.2% 0.1% 0.0% 0.0% 0.0% 0.1% 0.1% 0.4% 0.5%
0.6 0.4% 0.3% 0.2% 0.2% 0.1% 0.1% 0.0% 0.1% 0.1% 0.3%
0.7 0.4% 0.5% 0.5% 0.2% 0.2% 0.1% 0.1% 0.0% 0.0% 0.1%
0.8 0.4% 0.8% 0.9% 0.5% 0.4% 0.4% 0.1% 0.0% 0.0% 0.1%
0.9 0.2% 0.3% 0.4% 0.5% 0.6% 0.5% 0.3% 0.1% 0.1% 0.0%

(c) Composed optimal split α∗CP .

Table A.10: Relative differences between E[S0](α
∗
actual) and

E[S0](α
∗
analytic) for hyperexponential service times Bj with c2Bj

= 4,

j = 0, 1, 2 and ρ0 = 0.1.
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ρ2
HH

H
ρ1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0 0.0% 0.0% 0.0% 0.1% 0.8% 2.1% 3.3% 9.3% 13.7% 13.7%
0.1 0.0% 0.0% 0.0% 0.1% 0.6% 1.9% 4.3% 10.8% 13.8% 21.9%
0.2 0.0% 0.0% 0.0% 0.1% 0.3% 1.4% 3.5% 7.2% 18.6% 32.2%
0.3 0.1% 0.1% 0.1% 0.0% 0.1% 0.6% 2.3% 4.9% 15.9% 27.3%
0.4 0.8% 0.6% 0.3% 0.1% 0.0% 0.5% 1.6% 4.3% 15.4% 23.6%
0.5 2.1% 1.9% 1.4% 0.6% 0.5% 0.0% 0.2% 2.8% 6.8% 18.6%
0.6 3.3% 4.3% 3.5% 2.3% 1.6% 0.2% 0.0% 1.1% 4.2% 18.3%
0.7 9.3% 10.8% 7.2% 4.9% 4.3% 2.8% 1.1% 0.0% 2.2% 13.8%
0.8 13.7% 13.8% 18.6% 15.9% 15.4% 6.8% 4.2% 2.2% 0.0% 4.0%
0.9 13.7% 21.9% 32.2% 27.3% 23.6% 18.6% 18.3% 13.8% 4.0% 0.0%

(a) Light traffic optimal split α∗LT .

ρ2
H

HHρ1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0 0.0% 2.0% 5.7% 10.5% 9.7% 8.7% 5.8% 4.5% 4.0% 0.0%

0.1 2.0% 0.0% 1.6% 4.5% 7.4% 7.3% 7.1% 5.5% 4.4% 1.1%
0.2 5.7% 1.6% 0.0% 0.8% 3.8% 5.5% 6.5% 9.8% 5.9% 10.5%
0.3 10.5% 4.5% 0.8% 0.0% 1.1% 3.3% 4.8% 7.1% 6.9% 6.1%
0.4 9.7% 7.4% 3.8% 1.1% 0.0% 0.5% 2.2% 3.4% 3.6% 2.6%
0.5 8.7% 7.3% 5.5% 3.3% 0.5% 0.0% 0.8% 1.5% 1.7% 2.6%
0.6 5.8% 7.1% 6.5% 4.8% 2.2% 0.8% 0.0% 0.3% 0.9% 1.9%
0.7 4.5% 5.5% 9.8% 7.1% 3.4% 1.5% 0.3% 0.0% 0.2% 1.2%
0.8 4.0% 4.4% 5.9% 6.9% 3.6% 1.7% 0.9% 0.2% 0.0% 0.7%
0.9 0.0% 1.1% 10.5% 6.1% 2.6% 2.6% 1.9% 1.2% 0.7% 0.0%

(b) Heavy traffic optimal split α∗HT .

ρ2
HH

H
ρ1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0 0.0% 0.0% 0.0% 0.1% 0.2% 0.2% 0.4% 0.5% 0.4% 0.4%
0.1 0.0% 0.0% 0.0% 0.1% 0.1% 0.1% 0.3% 0.5% 0.8% 0.3%
0.2 0.0% 0.0% 0.0% 0.0% 0.0% 0.1% 0.2% 0.4% 0.9% 0.4%
0.3 0.1% 0.1% 0.0% 0.0% 0.0% 0.0% 0.1% 0.2% 0.6% 0.5%
0.4 0.2% 0.1% 0.0% 0.0% 0.0% 0.0% 0.0% 0.2% 0.4% 0.6%
0.5 0.2% 0.1% 0.1% 0.0% 0.0% 0.0% 0.0% 0.1% 0.4% 0.5%
0.6 0.4% 0.3% 0.2% 0.1% 0.0% 0.0% 0.0% 0.1% 0.1% 0.3%
0.7 0.5% 0.5% 0.4% 0.2% 0.2% 0.1% 0.1% 0.0% 0.0% 0.1%
0.8 0.4% 0.8% 0.9% 0.6% 0.4% 0.4% 0.1% 0.0% 0.0% 0.1%
0.9 0.4% 0.3% 0.4% 0.5% 0.6% 0.5% 0.3% 0.1% 0.1% 0.0%

(c) Composed optimal split α∗CP .

Table A.11: Relative differences between E[S0](α
∗
actual) and

E[S0](α
∗
analytic) for hyperexponential service times Bj with c2Bj

= 16,

j = 0, 1, 2 and ρ0 = 0.1.
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ρ2
HH

H
ρ1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0 0.0% 0.0% 0.1% 0.2% 1.3% 1.8% 4.2% 8.7% 12.8% 39.4%
0.1 0.0% 0.0% 0.0% 0.2% 0.5% 1.5% 2.6% 6.3% 11.7% 25.5%
0.2 0.1% 0.0% 0.0% 0.1% 0.2% 1.0% 2.4% 5.8% 10.2% 11.6%
0.3 0.2% 0.2% 0.1% 0.0% 0.1% 0.6% 1.7% 4.4% 7.4% 9.6%
0.4 1.3% 0.5% 0.2% 0.1% 0.0% 0.2% 0.4% 2.5% 5.1% 9.2%
0.5 1.8% 1.5% 1.0% 0.6% 0.2% 0.0% 0.2% 1.7% 3.0% 8.0%
0.6 4.2% 2.6% 2.4% 1.7% 0.4% 0.2% 0.0% 0.1% 0.3% -
0.7 8.7% 6.3% 5.8% 4.4% 2.5% 1.7% 0.1% 0.0% - -
0.8 12.8% 11.7% 10.2% 7.4% 5.1% 3.0% 0.3% - - -
0.9 39.4% 25.5% 11.6% 9.6% 9.2% 8.0% - - - -

(a) Light traffic optimal split α∗LT .

ρ2
H

HHρ1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0 0.0% 0.6% 1.0% 2.3% 4.1% 3.7% 3.6% 2.2% 1.6% 0.1%

0.1 0.6% 0.0% 0.3% 0.7% 1.7% 2.1% 1.7% 1.7% 1.4% 0.7%
0.2 1.0% 0.3% 0.0% 0.1% 0.9% 0.9% 1.6% 1.5% 1.3% 0.8%
0.3 2.3% 0.7% 0.1% 0.0% 0.1% 0.3% 0.6% 0.5% 1.1% 1.8%
0.4 4.1% 1.7% 0.9% 0.1% 0.0% 0.0% 0.3% 0.4% 0.5% 0.8%
0.5 3.7% 2.1% 0.9% 0.3% 0.0% 0.0% 0.0% 0.1% 0.3% 0.6%
0.6 3.6% 1.7% 1.6% 0.6% 0.3% 0.0% 0.0% 0.1% 0.2% -
0.7 2.2% 1.7% 1.5% 0.5% 0.4% 0.1% 0.1% 0.0% - -
0.8 1.6% 1.4% 1.3% 1.1% 0.5% 0.3% 0.2% - - -
0.9 0.1% 0.7% 0.8% 1.8% 0.8% 0.6% - - - -

(b) Heavy traffic optimal split α∗HT .

ρ2
HH

H
ρ1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0 0.0% 0.0% 0.0% 0.1% 0.3% 0.1% 0.0% 0.0% 0.0% 0.0%
0.1 0.0% 0.0% 0.0% 0.0% 0.1% 0.1% 0.1% 0.0% 0.0% 0.0%
0.2 0.0% 0.0% 0.0% 0.0% 0.1% 0.1% 0.1% 0.0% 0.0% 0.0%
0.3 0.1% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.1% 0.0% 0.0%
0.4 0.3% 0.1% 0.1% 0.0% 0.0% 0.0% 0.0% 0.1% 0.1% 0.3%
0.5 0.1% 0.1% 0.1% 0.0% 0.0% 0.0% 0.0% 0.0% 0.2% 0.4%
0.6 0.0% 0.1% 0.1% 0.0% 0.0% 0.0% 0.0% 0.0% 0.2% -
0.7 0.0% 0.0% 0.0% 0.1% 0.1% 0.0% 0.0% 0.0% - -
0.8 0.0% 0.0% 0.0% 0.0% 0.1% 0.2% 0.2% - - -
0.9 0.0% 0.0% 0.0% 0.0% 0.3% 0.4% - - - -

(c) Composed optimal split α∗CP .

Table A.12: Relative differences between E[S0](α
∗
actual) and

E[S0](α
∗
analytic) for exponential service times Bj, j = 0, 1, 2, and ρ0 = 0.5.
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ρ2
HH

H
ρ1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0 0.0% 0.1% 0.2% 0.3% 1.3% 1.8% 4.2% 8.7% 12.8% 39.4%
0.1 0.1% 0.0% 0.1% 0.3% 0.6% 1.7% 2.6% 6.3% 11.7% 25.5%
0.2 0.2% 0.1% 0.0% 0.0% 0.2% 1.1% 2.5% 5.8% 10.1% 11.6%
0.3 0.3% 0.3% 0.0% 0.0% 0.2% 0.6% 1.5% 4.5% 7.4% 9.6%
0.4 1.3% 0.6% 0.2% 0.2% 0.0% 0.1% 0.5% 2.6% 5.0% 9.2%
0.5 1.8% 1.7% 1.1% 0.6% 0.1% 0.0% 0.1% 1.6% 3.1% 8.1%
0.6 4.2% 2.6% 2.5% 1.5% 0.5% 0.1% 0.0% 0.0% 0.1% -
0.7 8.7% 6.3% 5.8% 4.5% 2.6% 1.6% 0.0% 0.0% - -
0.8 12.8% 11.7% 10.1% 7.4% 5.0% 3.1% 0.1% - - -
0.9 39.4% 25.5% 11.6% 9.6% 9.2% 8.1% - - - -

(a) Light traffic optimal split α∗LT .

ρ2
H

HHρ1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0 0.0% 0.4% 1.0% 2.4% 3.9% 3.7% 3.6% 2.2% 1.6% 0.2%

0.1 0.4% 0.0% 0.3% 0.9% 1.5% 2.3% 1.9% 1.7% 1.4% 0.7%
0.2 1.0% 0.3% 0.0% 0.3% 0.8% 0.9% 1.7% 1.5% 1.3% 0.8%
0.3 2.4% 0.9% 0.3% 0.0% 0.0% 0.2% 0.4% 0.5% 1.1% 1.8%
0.4 3.9% 1.5% 0.8% 0.0% 0.0% 0.1% 0.2% 0.3% 0.5% 0.8%
0.5 3.7% 2.3% 0.9% 0.2% 0.1% 0.0% 0.0% 0.1% 0.4% 0.5%
0.6 3.6% 1.9% 1.7% 0.4% 0.2% 0.0% 0.0% 0.2% 0.3% -
0.7 2.2% 1.7% 1.5% 0.5% 0.3% 0.1% 0.2% 0.0% - -
0.8 1.6% 1.4% 1.3% 1.1% 0.5% 0.4% 0.3% - - -
0.9 0.2% 0.7% 0.8% 1.8% 0.8% 0.5% - - - -

(b) Heavy traffic optimal split α∗HT .

ρ2
HH

H
ρ1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0 0.0% 0.0% 0.0% 0.2% 0.4% 0.1% 0.0% 0.0% 0.0% 0.0%
0.1 0.0% 0.0% 0.0% 0.0% 0.1% 0.1% 0.1% 0.1% 0.0% 0.0%
0.2 0.0% 0.0% 0.0% 0.0% 0.1% 0.1% 0.1% 0.1% 0.0% 0.0%
0.3 0.2% 0.0% 0.0% 0.0% 0.0% 0.0% 0.1% 0.1% 0.0% 0.0%
0.4 0.4% 0.1% 0.1% 0.0% 0.0% 0.0% 0.1% 0.1% 0.1% 0.3%
0.5 0.1% 0.1% 0.1% 0.0% 0.0% 0.0% 0.0% 0.1% 0.2% 0.4%
0.6 0.0% 0.1% 0.1% 0.1% 0.1% 0.0% 0.0% 0.0% 0.2% -
0.7 0.0% 0.1% 0.1% 0.1% 0.1% 0.1% 0.0% 0.0% - -
0.8 0.0% 0.0% 0.0% 0.0% 0.1% 0.2% 0.2% - - -
0.9 0.0% 0.0% 0.0% 0.0% 0.3% 0.4% - - - -

(c) Composed optimal split α∗CP .

Table A.13: Relative differences between E[S0](α
∗
actual) and

E[S0](α
∗
analytic) for Erlang-2 service times Bj, j = 0, 1, 2, and ρ0 = 0.5.
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ρ2
HH

H
ρ1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0 0.0% 0.1% 0.2% 0.5% 1.3% 1.8% 4.2% 8.7% 12.8% 39.5%
0.1 0.1% 0.0% 0.0% 0.3% 0.5% 1.7% 2.7% 6.3% 11.7% 25.5%
0.2 0.2% 0.0% 0.0% 0.1% 0.2% 1.1% 2.3% 5.8% 10.1% 11.6%
0.3 0.5% 0.3% 0.1% 0.0% 0.0% 0.5% 1.5% 4.3% 7.4% 9.6%
0.4 1.3% 0.5% 0.2% 0.0% 0.0% 0.2% 0.5% 2.3% 5.1% 9.2%
0.5 1.8% 1.7% 1.1% 0.5% 0.2% 0.0% 0.0% 1.6% 2.8% 8.2%
0.6 4.2% 2.7% 2.3% 1.5% 0.5% 0.0% 0.0% 0.0% 0.3% -
0.7 8.7% 6.3% 5.8% 4.3% 2.3% 1.6% 0.0% 0.0% - -
0.8 12.8% 11.7% 10.1% 7.4% 5.1% 2.8% 0.3% - - -
0.9 39.5% 25.5% 11.6% 9.6% 9.2% 8.2% - - - -

(a) Light traffic optimal split α∗LT .

ρ2
H

HHρ1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0 0.0% 0.5% 1.0% 2.4% 4.1% 3.7% 3.6% 2.2% 1.6% 0.2%

0.1 0.5% 0.0% 0.4% 0.7% 1.5% 2.3% 1.7% 1.7% 1.4% 0.7%
0.2 1.0% 0.4% 0.0% 0.0% 1.1% 1.1% 1.5% 1.5% 1.3% 0.8%
0.3 2.4% 0.7% 0.0% 0.0% 0.0% 0.2% 0.5% 0.8% 1.1% 1.8%
0.4 4.1% 1.5% 1.1% 0.0% 0.0% 0.1% 0.3% 0.5% 0.5% 0.8%
0.5 3.7% 2.3% 1.1% 0.2% 0.1% 0.0% 0.1% 0.2% 0.2% 0.5%
0.6 3.6% 1.7% 1.5% 0.5% 0.3% 0.1% 0.0% 0.0% 0.1% -
0.7 2.2% 1.7% 1.5% 0.8% 0.5% 0.2% 0.0% 0.0% - -
0.8 1.6% 1.4% 1.3% 1.1% 0.5% 0.2% 0.1% - - -
0.9 0.2% 0.7% 0.8% 1.8% 0.8% 0.5% - - - -

(b) Heavy traffic optimal split α∗HT .

ρ2
HH

H
ρ1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0 0.0% 0.0% 0.0% 0.2% 0.4% 0.1% 0.1% 0.0% 0.0% 0.0%
0.1 0.0% 0.0% 0.0% 0.0% 0.1% 0.1% 0.1% 0.0% 0.0% 0.0%
0.2 0.0% 0.0% 0.0% 0.0% 0.1% 0.1% 0.1% 0.1% 0.1% 0.0%
0.3 0.2% 0.0% 0.0% 0.0% 0.0% 0.0% 0.1% 0.1% 0.1% 0.0%
0.4 0.4% 0.1% 0.1% 0.0% 0.0% 0.0% 0.0% 0.1% 0.1% 0.3%
0.5 0.1% 0.1% 0.1% 0.0% 0.0% 0.0% 0.0% 0.1% 0.2% 0.4%
0.6 0.1% 0.1% 0.1% 0.1% 0.0% 0.0% 0.0% 0.0% 0.2% -
0.7 0.0% 0.0% 0.1% 0.1% 0.1% 0.1% 0.0% 0.0% - -
0.8 0.0% 0.0% 0.1% 0.1% 0.1% 0.2% 0.2% - - -
0.9 0.0% 0.0% 0.0% 0.0% 0.3% 0.4% - - - -

(c) Composed optimal split α∗CP .

Table A.14: Relative differences between E[S0](α
∗
actual) and

E[S0](α
∗
analytic) for deterministic service times Bj, j = 0, 1, 2, and

ρ0 = 0.5.
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ρ2
HH

H
ρ1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0 0.0% 0.0% 0.3% 0.3% 1.3% 1.8% 4.2% 8.7% 12.8% 39.4%
0.1 0.0% 0.0% 0.0% 0.2% 0.4% 1.6% 2.7% 6.3% 11.7% 25.4%
0.2 0.3% 0.0% 0.0% 0.0% 0.1% 1.1% 2.6% 5.8% 10.2% 11.6%
0.3 0.3% 0.2% 0.0% 0.0% 0.1% 0.8% 1.8% 4.5% 7.4% 9.6%
0.4 1.3% 0.4% 0.1% 0.1% 0.0% 0.2% 0.4% 2.5% 4.9% 9.2%
0.5 1.8% 1.6% 1.1% 0.8% 0.2% 0.0% 0.2% 1.7% 2.9% 7.9%
0.6 4.2% 2.7% 2.6% 1.8% 0.4% 0.2% 0.0% 0.0% 0.5% -
0.7 8.7% 6.3% 5.8% 4.5% 2.5% 1.7% 0.0% 0.0% - -
0.8 12.8% 11.7% 10.2% 7.4% 4.9% 2.9% 0.5% - - -
0.9 39.4% 25.4% 11.6% 9.6% 9.2% 7.9% - - - -

(a) Light traffic optimal split α∗LT .

ρ2
H

HHρ1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0 0.0% 0.5% 0.8% 2.1% 4.2% 3.7% 3.6% 2.2% 1.6% 0.1%

0.1 0.5% 0.0% 0.5% 0.6% 1.5% 2.2% 1.7% 1.7% 1.4% 0.7%
0.2 0.8% 0.5% 0.0% 0.3% 0.4% 0.8% 1.4% 1.5% 1.3% 0.9%
0.3 2.1% 0.6% 0.3% 0.0% 0.1% 0.2% 0.7% 0.8% 1.1% 1.8%
0.4 4.2% 1.5% 0.4% 0.1% 0.0% 0.2% 0.4% 0.4% 0.6% 0.8%
0.5 3.7% 2.2% 0.8% 0.2% 0.2% 0.0% 0.0% 0.1% 0.3% 0.4%
0.6 3.6% 1.7% 1.4% 0.7% 0.4% 0.0% 0.0% 0.0% 0.1% -
0.7 2.2% 1.7% 1.5% 0.8% 0.4% 0.1% 0.0% 0.0% - -
0.8 1.6% 1.4% 1.3% 1.1% 0.6% 0.3% 0.1% - - -
0.9 0.1% 0.7% 0.9% 1.8% 0.8% 0.4% - - - -

(b) Heavy traffic optimal split α∗HT .

ρ2
HH

H
ρ1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0 0.0% 0.0% 0.0% 0.1% 0.3% 0.1% 0.1% 0.0% 0.0% 0.0%
0.1 0.0% 0.0% 0.0% 0.0% 0.1% 0.1% 0.1% 0.1% 0.1% 0.0%
0.2 0.0% 0.0% 0.0% 0.0% 0.1% 0.1% 0.1% 0.1% 0.1% 0.0%
0.3 0.1% 0.0% 0.0% 0.0% 0.0% 0.0% 0.1% 0.1% 0.1% 0.1%
0.4 0.3% 0.1% 0.1% 0.0% 0.0% 0.0% 0.1% 0.1% 0.1% 0.3%
0.5 0.1% 0.1% 0.1% 0.0% 0.0% 0.0% 0.0% 0.1% 0.2% 0.4%
0.6 0.1% 0.1% 0.1% 0.1% 0.1% 0.0% 0.0% 0.0% 0.2% -
0.7 0.0% 0.1% 0.1% 0.1% 0.1% 0.1% 0.0% 0.0% - -
0.8 0.0% 0.1% 0.1% 0.1% 0.1% 0.2% 0.2% - - -
0.9 0.0% 0.0% 0.0% 0.1% 0.3% 0.4% - - - -

(c) Composed optimal split α∗CP .

Table A.15: Relative differences between E[S0](α
∗
actual) and

E[S0](α
∗
analytic) for hyperexponential service times Bj with c2Bj

= 2,

j = 0, 1, 2, and ρ0 = 0.5.
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ρ2
HH

H
ρ1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0 0.0% 0.1% 0.1% 0.5% 1.3% 1.8% 4.2% 8.7% 12.8% 39.5%
0.1 0.1% 0.0% 0.0% 0.3% 0.6% 1.5% 2.7% 6.3% 11.7% 25.4%
0.2 0.1% 0.0% 0.0% 0.2% 0.4% 0.9% 2.4% 5.8% 10.1% 11.6%
0.3 0.5% 0.3% 0.2% 0.0% 0.1% 0.6% 1.6% 4.2% 7.4% 9.6%
0.4 1.3% 0.6% 0.4% 0.1% 0.0% 0.1% 0.5% 2.5% 5.2% 9.2%
0.5 1.8% 1.5% 0.9% 0.6% 0.1% 0.0% 0.0% 1.6% 2.9% 8.1%
0.6 4.2% 2.7% 2.4% 1.6% 0.5% 0.0% 0.0% 0.0% 0.4% -
0.7 8.7% 6.3% 5.8% 4.2% 2.5% 1.6% 0.0% 0.0% - -
0.8 12.8% 11.7% 10.1% 7.4% 5.2% 2.9% 0.4% - - -
0.9 39.5% 25.4% 11.6% 9.6% 9.2% 8.1% - - - -

(a) Light traffic optimal split α∗LT .

ρ2
H

HHρ1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0 0.0% 0.5% 0.8% 2.4% 4.1% 3.7% 3.6% 2.2% 1.6% 0.2%

0.1 0.5% 0.0% 0.2% 0.8% 1.8% 2.2% 1.7% 1.7% 1.4% 0.7%
0.2 0.8% 0.2% 0.0% 0.3% 1.0% 1.1% 1.5% 1.5% 1.3% 0.9%
0.3 2.4% 0.8% 0.3% 0.0% 0.2% 0.2% 0.8% 0.8% 1.1% 1.8%
0.4 4.1% 1.8% 1.0% 0.2% 0.0% 0.1% 0.3% 0.5% 0.6% 0.8%
0.5 3.7% 2.2% 1.1% 0.2% 0.1% 0.0% 0.0% 0.3% 0.4% 0.5%
0.6 3.6% 1.7% 1.5% 0.8% 0.3% 0.0% 0.0% 0.2% 0.2% -
0.7 2.2% 1.7% 1.5% 0.8% 0.5% 0.3% 0.2% 0.0% - -
0.8 1.6% 1.4% 1.3% 1.1% 0.6% 0.4% 0.2% - - -
0.9 0.2% 0.7% 0.9% 1.8% 0.8% 0.5% - - - -

(b) Heavy traffic optimal split α∗HT .

ρ2
HH

H
ρ1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0 0.0% 0.0% 0.0% 0.1% 0.4% 0.1% 0.1% 0.0% 0.0% 0.0%
0.1 0.0% 0.0% 0.0% 0.0% 0.1% 0.1% 0.1% 0.1% 0.0% 0.0%
0.2 0.0% 0.0% 0.0% 0.0% 0.1% 0.1% 0.1% 0.1% 0.1% 0.0%
0.3 0.1% 0.0% 0.0% 0.0% 0.0% 0.0% 0.1% 0.1% 0.1% 0.0%
0.4 0.4% 0.1% 0.1% 0.0% 0.0% 0.0% 0.0% 0.1% 0.1% 0.3%
0.5 0.1% 0.1% 0.1% 0.0% 0.0% 0.0% 0.0% 0.1% 0.2% 0.4%
0.6 0.1% 0.1% 0.1% 0.1% 0.0% 0.0% 0.0% 0.0% 0.2% -
0.7 0.0% 0.1% 0.1% 0.1% 0.1% 0.1% 0.0% 0.0% - -
0.8 0.0% 0.0% 0.1% 0.1% 0.1% 0.2% 0.2% - - -
0.9 0.0% 0.0% 0.0% 0.0% 0.3% 0.4% - - - -

(c) Composed optimal split α∗CP .

Table A.16: Relative differences between E[S0](α
∗
actual) and

E[S0](α
∗
analytic) for hyperexponential service times Bj with c2Bj

= 4,

j = 0, 1, 2, and ρ0 = 0.5.
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ρ2
HH

H
ρ1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0 0.0% 0.2% 0.3% 0.4% 1.4% 1.8% 4.2% 8.7% 12.8% 39.5%
0.1 0.2% 0.0% 0.0% 0.3% 0.5% 1.6% 2.6% 6.3% 11.7% 25.5%
0.2 0.3% 0.0% 0.0% 0.1% 0.2% 0.8% 2.3% 5.8% 10.2% 11.6%
0.3 0.4% 0.3% 0.1% 0.0% 0.0% 0.6% 1.6% 4.5% 7.4% 9.6%
0.4 1.4% 0.5% 0.2% 0.0% 0.0% 0.4% 0.2% 2.4% 5.2% 9.2%
0.5 1.8% 1.6% 0.8% 0.6% 0.4% 0.0% 0.3% 1.8% 2.8% 8.1%
0.6 4.2% 2.6% 2.3% 1.6% 0.2% 0.3% 0.0% 0.0% 0.2% -
0.7 8.7% 6.3% 5.8% 4.5% 2.4% 1.8% 0.0% 0.0% - -
0.8 12.8% 11.7% 10.2% 7.4% 5.2% 2.8% 0.2% - - -
0.9 39.5% 25.5% 11.6% 9.6% 9.2% 8.1% - - - -

(a) Light traffic optimal split α∗LT .

ρ2
H

HHρ1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0 0.0% 0.5% 0.8% 2.2% 4.0% 3.7% 3.6% 2.2% 1.6% 0.2%

0.1 0.5% 0.0% 0.3% 0.5% 1.7% 2.2% 1.7% 1.7% 1.4% 0.7%
0.2 0.8% 0.3% 0.0% 0.1% 1.1% 1.4% 1.7% 1.5% 1.3% 0.8%
0.3 2.2% 0.5% 0.1% 0.0% 0.1% 0.3% 0.7% 0.7% 1.1% 1.8%
0.4 4.0% 1.7% 1.1% 0.1% 0.0% 0.1% 0.4% 0.5% 0.6% 0.8%
0.5 3.7% 2.2% 1.4% 0.3% 0.1% 0.0% 0.0% 0.2% 0.4% 0.7%
0.6 3.6% 1.7% 1.7% 0.7% 0.4% 0.0% 0.0% 0.0% 0.3% -
0.7 2.2% 1.7% 1.5% 0.7% 0.5% 0.2% 0.0% 0.0% - -
0.8 1.6% 1.4% 1.3% 1.1% 0.6% 0.4% 0.3% - - -
0.9 0.2% 0.7% 0.8% 1.8% 0.8% 0.7% - - - -

(b) Heavy traffic optimal split α∗HT .

ρ2
HH

H
ρ1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0 0.0% 0.0% 0.1% 0.2% 0.4% 0.1% 0.1% 0.0% 0.0% 0.0%
0.1 0.0% 0.0% 0.0% 0.1% 0.1% 0.1% 0.1% 0.1% 0.0% 0.0%
0.2 0.1% 0.0% 0.0% 0.0% 0.1% 0.1% 0.1% 0.1% 0.0% 0.0%
0.3 0.2% 0.1% 0.0% 0.0% 0.0% 0.0% 0.1% 0.1% 0.1% 0.1%
0.4 0.4% 0.1% 0.1% 0.0% 0.0% 0.0% 0.0% 0.1% 0.1% 0.3%
0.5 0.1% 0.1% 0.1% 0.0% 0.0% 0.0% 0.0% 0.0% 0.2% 0.4%
0.6 0.1% 0.1% 0.1% 0.1% 0.0% 0.0% 0.0% 0.0% 0.2% -
0.7 0.0% 0.1% 0.1% 0.1% 0.1% 0.0% 0.0% 0.0% - -
0.8 0.0% 0.0% 0.0% 0.1% 0.1% 0.2% 0.2% - - -
0.9 0.0% 0.0% 0.0% 0.1% 0.3% 0.4% - - - -

(c) Composed optimal split α∗CP .

Table A.17: Relative differences between E[S0](α
∗
actual) and

E[S0](α
∗
analytic) for exponential service times Bj, j = 0, 1, 2 with c2Bj

= 16,

and ρ0 = 0.5.
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ρ2
HH

H
ρ1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0 0.0% 0.0% 0.1% 0.2% 1.4% 2.4% 6.4% 10.8% 9.3% 9.1%
0.1 0.0% 0.0% 0.0% 0.6% 1.5% 2.7% 6.3% 10.5% 7.8% 0.0%
0.2 0.1% 0.0% 0.0% 0.0% 0.5% 0.5% 3.9% 9.5% 6.5% -
0.3 0.2% 0.6% 0.0% 0.0% 0.2% 0.2% 3.0% 8.6% - -
0.4 1.4% 1.5% 0.5% 0.2% 0.0% 0.0% 0.1% - - -
0.5 2.4% 2.7% 0.5% 0.2% 0.0% 0.0% - - - -
0.6 6.4% 6.3% 3.9% 3.0% 0.1% - - - - -
0.7 10.8% 10.5% 9.5% 8.6% - - - - - -
0.8 9.3% 7.8% 6.5% - - - - - - -
0.9 9.1% 0.0% - - - - - - - -

(a) Light traffic optimal split α∗LT .

ρ2
H

HHρ1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0 0.0% 0.0% 0.6% 1.0% 0.5% 0.4% 0.4% 0.3% 0.3% 0.1%

0.1 0.0% 0.0% 0.0% 0.1% 0.6% 0.5% 0.1% 0.1% 0.1% 0.0%
0.2 0.6% 0.0% 0.0% 0.1% 1.0% 0.9% 0.1% 0.0% 0.0% -
0.3 1.0% 0.1% 0.1% 0.0% 1.2% 0.3% 0.1% 0.0% - -
0.4 0.5% 0.6% 1.0% 1.2% 0.0% 0.1% 0.0% - - -
0.5 0.4% 0.5% 0.9% 0.3% 0.1% 0.0% - - - -
0.6 0.4% 0.1% 0.1% 0.1% 0.0% - - - - -
0.7 0.3% 0.1% 0.0% 0.0% - - - - - -
0.8 0.3% 0.1% 0.0% - - - - - - -
0.9 0.1% 0.0% - - - - - - - -

(b) Heavy traffic optimal split α∗HT .

ρ2
HH

H
ρ1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0 0.0% 0.1% 0.1% 0.2% 0.3% 0.2% 0.1% 0.1% 0.1% 0.1%
0.1 0.1% 0.0% 0.0% 0.1% 0.4% 0.2% 0.2% 0.1% 0.0% 0.0%
0.2 0.1% 0.0% 0.0% 0.0% 0.1% 0.2% 0.0% 0.1% 0.0% -
0.3 0.2% 0.1% 0.0% 0.0% 0.0% 0.2% 0.1% 0.0% - -
0.4 0.3% 0.4% 0.1% 0.0% 0.0% 0.0% 0.0% - - -
0.5 0.2% 0.2% 0.2% 0.2% 0.0% 0.0% - - - -
0.6 0.1% 0.2% 0.1% 0.1% 0.0% - - - - -
0.7 0.1% 0.1% 0.1% 0.0% - - - - - -
0.8 0.1% 0.0% 0.0% - - - - - - -
0.9 0.1% 0.0% - - - - - - - -

(c) Composed optimal split α∗CP .

Table A.18: Relative differences between E[S0](α
∗
actual) and

E[S0](α
∗
analytic) for exponential service times Bj, j = 0, 1, 2, and ρ0 = 0.9.
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ρ2
HH

H
ρ1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0 0.0% 0.0% 0.2% 0.3% 1.5% 2.4% 6.4% 10.8% 9.3% 9.2%
0.1 0.0% 0.0% 0.1% 0.7% 1.7% 2.8% 6.3% 10.5% 7.8% 0.0%
0.2 0.2% 0.1% 0.0% 0.0% 0.3% 0.4% 3.9% 9.5% 6.5% -
0.3 0.3% 0.7% 0.0% 0.0% 0.3% 0.3% 3.0% 8.7% - -
0.4 1.5% 1.7% 0.3% 0.3% 0.0% 0.0% 0.2% - - -
0.5 2.4% 2.8% 0.4% 0.3% 0.0% 0.0% - - - -
0.6 6.4% 6.3% 3.9% 3.0% 0.2% - - - - -
0.7 10.8% 10.5% 9.5% 8.7% - - - - - -
0.8 9.3% 7.8% 6.5% - - - - - - -
0.9 9.2% 0.0% - - - - - - - -

(a) Light traffic optimal split α∗LT .

ρ2
H

HHρ1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0 0.0% 0.0% 0.6% 1.0% 0.5% 0.5% 0.4% 0.3% 0.3% 0.1%

0.1 0.0% 0.0% 0.0% 0.2% 0.6% 0.6% 0.1% 0.1% 0.1% 0.1%
0.2 0.6% 0.0% 0.0% 0.1% 1.0% 0.9% 0.1% 0.1% 0.1% -
0.3 1.0% 0.2% 0.1% 0.0% 1.2% 0.3% 0.1% 0.1% - -
0.4 0.5% 0.6% 1.0% 1.2% 0.0% 0.1% 0.1% - - -
0.5 0.5% 0.6% 0.9% 0.3% 0.1% 0.0% - - - -
0.6 0.4% 0.1% 0.1% 0.1% 0.1% - - - - -
0.7 0.3% 0.1% 0.1% 0.1% - - - - - -
0.8 0.3% 0.1% 0.1% - - - - - - -
0.9 0.1% 0.1% - - - - - - - -

(b) Heavy traffic optimal split α∗HT .

ρ2
HH

H
ρ1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0 0.0% 0.1% 0.1% 0.2% 0.3% 0.2% 0.2% 0.1% 0.1% 0.1%
0.1 0.1% 0.0% 0.0% 0.1% 0.5% 0.2% 0.2% 0.1% 0.1% 0.1%
0.2 0.1% 0.0% 0.0% 0.0% 0.2% 0.2% 0.1% 0.1% 0.1% -
0.3 0.2% 0.1% 0.0% 0.0% 0.1% 0.2% 0.1% 0.0% - -
0.4 0.3% 0.5% 0.2% 0.1% 0.0% 0.0% 0.0% - - -
0.5 0.2% 0.2% 0.2% 0.2% 0.0% 0.0% - - - -
0.6 0.2% 0.2% 0.1% 0.1% 0.0% - - - - -
0.7 0.1% 0.1% 0.1% 0.0% - - - - - -
0.8 0.1% 0.1% 0.1% - - - - - - -
0.9 0.1% 0.1% - - - - - - - -

(c) Composed optimal split α∗CP .

Table A.19: Relative differences between E[S0](α
∗
actual) and

E[S0](α
∗
analytic) for Erlang-2 service times Bj, j = 0, 1, 2, and ρ0 = 0.9.
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ρ2
HH

H
ρ1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0 0.0% 0.1% 0.2% 0.3% 1.3% 2.4% 6.4% 10.8% 9.3% 9.2%
0.1 0.1% 0.0% 0.1% 0.6% 1.5% 2.9% 6.3% 10.5% 7.7% 0.1%
0.2 0.2% 0.1% 0.0% 0.0% 0.3% 0.5% 3.6% 9.5% 6.5% -
0.3 0.3% 0.6% 0.0% 0.0% 0.3% 0.5% 3.2% 8.5% - -
0.4 1.3% 1.5% 0.3% 0.3% 0.0% 0.1% 0.2% - - -
0.5 2.4% 2.9% 0.5% 0.5% 0.1% 0.0% - - - -
0.6 6.4% 6.3% 3.6% 3.2% 0.2% - - - - -
0.7 10.8% 10.5% 9.5% 8.5% - - - - - -
0.8 9.3% 7.7% 6.5% - - - - - - -
0.9 9.2% 0.1% - - - - - - - -

(a) Light traffic optimal split α∗LT .

ρ2
H

HHρ1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0 0.0% 0.0% 0.6% 1.1% 0.5% 0.4% 0.4% 0.3% 0.3% 0.1%

0.1 0.0% 0.0% 0.0% 0.1% 0.6% 0.6% 0.2% 0.2% 0.1% 0.1%
0.2 0.6% 0.0% 0.0% 0.1% 1.0% 0.9% 0.1% 0.1% 0.0% -
0.3 1.1% 0.1% 0.1% 0.0% 1.2% 0.3% 0.1% 0.1% - -
0.4 0.5% 0.6% 1.0% 1.2% 0.0% 0.1% 0.0% - - -
0.5 0.4% 0.6% 0.9% 0.3% 0.1% 0.0% - - - -
0.6 0.4% 0.2% 0.1% 0.1% 0.0% - - - - -
0.7 0.3% 0.2% 0.1% 0.1% - - - - - -
0.8 0.3% 0.1% 0.0% - - - - - - -
0.9 0.1% 0.1% - - - - - - - -

(b) Heavy traffic optimal split α∗HT .

ρ2
HH

H
ρ1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0 0.0% 0.1% 0.1% 0.2% 0.3% 0.2% 0.2% 0.1% 0.1% 0.1%
0.1 0.1% 0.0% 0.1% 0.1% 0.5% 0.2% 0.2% 0.1% 0.1% 0.0%
0.2 0.1% 0.1% 0.0% 0.0% 0.2% 0.2% 0.1% 0.1% 0.1% -
0.3 0.2% 0.1% 0.0% 0.0% 0.0% 0.2% 0.1% 0.0% - -
0.4 0.3% 0.5% 0.2% 0.0% 0.0% 0.0% 0.0% - - -
0.5 0.2% 0.2% 0.2% 0.2% 0.0% 0.0% - - - -
0.6 0.2% 0.2% 0.1% 0.1% 0.0% - - - - -
0.7 0.1% 0.1% 0.1% 0.0% - - - - - -
0.8 0.1% 0.1% 0.1% - - - - - - -
0.9 0.1% 0.0% - - - - - - - -

(c) Composed optimal split α∗CP .

Table A.20: Relative differences between E[S0](α
∗
actual) and

E[S0](α
∗
analytic) for deterministic service times Bj, j = 0, 1, 2, and

ρ0 = 0.9.
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ρ2
HH

H
ρ1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0 0.0% 0.1% 0.2% 0.3% 1.5% 2.4% 6.4% 10.8% 9.3% 9.1%
0.1 0.1% 0.0% 0.0% 0.4% 1.6% 2.6% 6.3% 10.5% 7.8% 0.0%
0.2 0.2% 0.0% 0.0% 0.0% 0.5% 0.5% 4.1% 9.5% 6.5% -
0.3 0.3% 0.4% 0.0% 0.0% 0.0% 0.4% 3.2% 8.6% - -
0.4 1.5% 1.6% 0.5% 0.0% 0.0% 0.2% 0.3% - - -
0.5 2.4% 2.6% 0.5% 0.4% 0.2% 0.0% - - - -
0.6 6.4% 6.3% 4.1% 3.2% 0.3% - - - - -
0.7 10.8% 10.5% 9.5% 8.6% - - - - - -
0.8 9.3% 7.8% 6.5% - - - - - - -
0.9 9.1% 0.0% - - - - - - - -

(a) Light traffic optimal split α∗LT .

ρ2
H

HHρ1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0 0.0% 0.1% 0.6% 1.0% 0.5% 0.4% 0.4% 0.3% 0.3% 0.1%

0.1 0.1% 0.0% 0.0% 0.1% 0.6% 0.6% 0.2% 0.1% 0.1% 0.1%
0.2 0.6% 0.0% 0.0% 0.1% 1.0% 1.0% 0.1% 0.1% 0.1% -
0.3 1.0% 0.1% 0.1% 0.0% 1.2% 0.3% 0.1% 0.0% - -
0.4 0.5% 0.6% 1.0% 1.2% 0.0% 0.1% 0.0% - - -
0.5 0.4% 0.6% 1.0% 0.3% 0.1% 0.0% - - - -
0.6 0.4% 0.2% 0.1% 0.1% 0.0% - - - - -
0.7 0.3% 0.1% 0.1% 0.0% - - - - - -
0.8 0.3% 0.1% 0.1% - - - - - - -
0.9 0.1% 0.1% - - - - - - - -

(b) Heavy traffic optimal split α∗HT .

ρ2
HH

H
ρ1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0 0.0% 0.1% 0.6% 1.0% 0.5% 0.4% 0.4% 0.3% 0.3% 0.1%
0.1 0.1% 0.0% 0.0% 0.1% 0.6% 0.6% 0.2% 0.1% 0.1% 0.1%
0.2 0.6% 0.0% 0.0% 0.1% 1.0% 1.0% 0.1% 0.1% 0.1% -
0.3 1.0% 0.1% 0.1% 0.0% 1.2% 0.3% 0.1% 0.0% - -
0.4 0.5% 0.6% 1.0% 1.2% 0.0% 0.1% 0.0% - - -
0.5 0.4% 0.6% 1.0% 0.3% 0.1% 0.0% - - - -
0.6 0.4% 0.2% 0.1% 0.1% 0.0% - - - - -
0.7 0.3% 0.1% 0.1% 0.0% - - - - - -
0.8 0.3% 0.1% 0.1% - - - - - - -
0.9 0.1% 0.1% - - - - - - - -

(c) Composed optimal split α∗CP .

Table A.21: Relative differences between E[S0](α
∗
actual) and

E[S0](α
∗
analytic) for hyperexponential service times Bj with c2Bj

= 2,

j = 0, 1, 2, and ρ0 = 0.9.
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ρ2
HH

H
ρ1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0 0.0% 0.0% 0.1% 0.2% 1.6% 2.4% 6.4% 10.8% 9.3% 9.1%
0.1 0.0% 0.0% 0.0% 0.5% 1.7% 2.7% 6.3% 10.5% 7.8% 0.0%
0.2 0.1% 0.0% 0.0% 0.1% 0.7% 0.4% 4.1% 9.5% 6.5% -
0.3 0.2% 0.5% 0.1% 0.0% 0.1% 0.2% 2.9% 8.7% - -
0.4 1.6% 1.7% 0.7% 0.1% 0.0% 0.1% 0.1% - - -
0.5 2.4% 2.7% 0.4% 0.2% 0.1% 0.0% - - - -
0.6 6.4% 6.3% 4.1% 2.9% 0.1% - - - - -
0.7 10.8% 10.5% 9.5% 8.7% - - - - - -
0.8 9.3% 7.8% 6.5% - - - - - - -
0.9 9.1% 0.0% - - - - - - - -

(a) Light traffic optimal split α∗LT .

ρ2
H

HHρ1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0 0.0% 0.1% 0.6% 1.1% 0.5% 0.4% 0.4% 0.3% 0.3% 0.1%

0.1 0.1% 0.0% 0.0% 0.1% 0.6% 0.5% 0.2% 0.1% 0.1% 0.1%
0.2 0.6% 0.0% 0.0% 0.1% 1.0% 1.0% 0.1% 0.1% 0.1% -
0.3 1.1% 0.1% 0.1% 0.0% 1.2% 0.3% 0.1% 0.1% - -
0.4 0.5% 0.6% 1.0% 1.2% 0.0% 0.1% 0.1% - - -
0.5 0.4% 0.5% 1.0% 0.3% 0.1% 0.0% - - - -
0.6 0.4% 0.2% 0.1% 0.1% 0.1% - - - - -
0.7 0.3% 0.1% 0.1% 0.1% - - - - - -
0.8 0.3% 0.1% 0.1% - - - - - - -
0.9 0.1% 0.1% - - - - - - - -

(b) Heavy traffic optimal split α∗HT .

ρ2
HH

H
ρ1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0 0.0% 0.1% 0.1% 0.2% 0.3% 0.2% 0.1% 0.1% 0.1% 0.1%
0.1 0.1% 0.0% 0.1% 0.1% 0.4% 0.2% 0.2% 0.1% 0.1% 0.0%
0.2 0.1% 0.1% 0.0% 0.0% 0.2% 0.2% 0.2% 0.1% 0.1% -
0.3 0.2% 0.1% 0.0% 0.0% 0.1% 0.2% 0.1% 0.1% - -
0.4 0.3% 0.4% 0.2% 0.1% 0.0% 0.0% 0.1% - - -
0.5 0.2% 0.2% 0.2% 0.2% 0.0% 0.0% - - - -
0.6 0.1% 0.2% 0.2% 0.1% 0.1% - - - - -
0.7 0.1% 0.1% 0.1% 0.1% - - - - - -
0.8 0.1% 0.1% 0.1% - - - - - - -
0.9 0.1% 0.0% - - - - - - - -

(c) Composed optimal split α∗CP .

Table A.22: Relative differences between E[S0](α
∗
actual) and

E[S0](α
∗
analytic) for hyperexponential service times Bj, j = 0, 1, 2 with

c2Bj
= 4, and ρ0 = 0.9.
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ρ2
HH

H
ρ1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0 0.0% 0.0% 0.1% 0.1% 1.3% 2.4% 6.4% 10.8% 9.3% 9.1%
0.1 0.0% 0.0% 0.0% 0.8% 1.7% 2.6% 6.3% 10.5% 7.8% 0.0%
0.2 0.1% 0.0% 0.0% 0.0% 0.4% 0.4% 4.1% 9.5% 6.5% -
0.3 0.1% 0.8% 0.0% 0.0% 0.3% 0.3% 3.1% 8.6% - -
0.4 1.3% 1.7% 0.4% 0.3% 0.0% 0.0% 0.1% - - -
0.5 2.4% 2.6% 0.4% 0.3% 0.0% 0.0% - - - -
0.6 6.4% 6.3% 4.1% 3.1% 0.1% - - - - -
0.7 10.8% 10.5% 9.5% 8.6% - - - - - -
0.8 9.3% 7.8% 6.5% - - - - - - -
0.9 9.1% 0.0% - - - - - - - -

(a) Light traffic optimal split α∗LT .

ρ2
H

HHρ1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0 0.0% 0.1% 0.6% 1.1% 0.5% 0.5% 0.4% 0.3% 0.3% 0.1%

0.1 0.1% 0.0% 0.0% 0.2% 0.6% 0.5% 0.2% 0.1% 0.1% 0.1%
0.2 0.6% 0.0% 0.0% 0.1% 1.0% 1.0% 0.1% 0.1% 0.0% -
0.3 1.1% 0.2% 0.1% 0.0% 1.2% 0.3% 0.1% 0.1% - -
0.4 0.5% 0.6% 1.0% 1.2% 0.0% 0.1% 0.1% - - -
0.5 0.5% 0.5% 1.0% 0.3% 0.1% 0.0% - - - -
0.6 0.4% 0.2% 0.1% 0.1% 0.1% - - - - -
0.7 0.3% 0.1% 0.1% 0.1% - - - - - -
0.8 0.3% 0.1% 0.0% - - - - - - -
0.9 0.1% 0.1% - - - - - - - -

(b) Heavy traffic optimal split α∗HT .

ρ2
HH

H
ρ1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0 0.0% 0.1% 0.1% 0.2% 0.3% 0.2% 0.2% 0.1% 0.1% 0.1%
0.1 0.1% 0.0% 0.1% 0.1% 0.5% 0.2% 0.2% 0.1% 0.1% 0.1%
0.2 0.1% 0.1% 0.0% 0.1% 0.2% 0.2% 0.2% 0.1% 0.1% -
0.3 0.2% 0.1% 0.1% 0.0% 0.0% 0.2% 0.1% 0.0% - -
0.4 0.3% 0.5% 0.2% 0.0% 0.0% 0.0% 0.0% - - -
0.5 0.2% 0.2% 0.2% 0.2% 0.0% 0.0% - - - -
0.6 0.2% 0.2% 0.2% 0.1% 0.0% - - - - -
0.7 0.1% 0.1% 0.1% 0.0% - - - - - -
0.8 0.1% 0.1% 0.1% - - - - - - -
0.9 0.1% 0.1% - - - - - - - -

(c) Composed optimal split α∗CP .

Table A.23: Relative differences between E[S0](α
∗
actual) and

E[S0](α
∗
analytic) for hyperexponential service times Bj, j = 0, 1, 2 with

c2Bj
= 16, and ρ0 = 0.9.
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A.3 Static Models

ρ2
H

HHρ1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0 49.9% 43.6% 39.4% 34.7% 27.4% 20.4% 15.3% 10.2% 5.7% 2.5%

0.1 42.6% 42.7% 39.9% 35.9% 29.8% 24.7% 17.1% 11.8% 8.3% 3.2%
0.2 39.4% 39.9% 40.1% 37.4% 32.7% 26.4% 19.0% 13.3% 8.4% 3.4%
0.3 34.7% 35.9% 37.4% 38.0% 35.3% 29.4% 22.9% 15.9% 10.0% 4.6%
0.4 27.4% 29.8% 32.7% 35.3% 35.3% 32.8% 26.7% 18.6% 10.0% 5.2%
0.5 20.4% 24.7% 26.4% 29.4% 32.8% 33.7% 31.1% 23.8% 14.2% 5.7%
0.6 15.3% 17.1% 19.0% 22.9% 26.7% 31.1% 31.5% 28.5% 19.5% 7.2%
0.7 10.2% 11.8% 13.3% 15.9% 18.6% 23.8% 28.5% 30.7% 26.6% 12.9%
0.8 5.7% 8.3% 8.4% 10.0% 10.0% 14.2% 19.5% 26.6% 28.7% 21.9%
0.9 2.5% 3.2% 3.4% 4.6% 5.2% 5.7% 7.2% 12.9% 21.9% 31.5%

(a) ρ0 = 0.1

ρ2
HH

H
ρ1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0 50.1% 46.3% 43.2% 39.5% 38.0% 33.5% 29.6% 23.2% 18.2% 9.3%
0.1 46.3% 44.4% 42.1% 38.3% 36.6% 33.7% 30.2% 26.2% 18.8% 9.7%
0.2 43.2% 42.1% 41.0% 38.0% 36.4% 34.0% 31.0% 27.8% 24.6% 13.2%
0.3 39.5% 38.3% 38.0% 37.1% 35.3% 34.7% 31.5% 28.1% 26.4% 18.5%
0.4 38.0% 36.6% 36.4% 35.3% 34.2% 33.4% 31.7% 31.0% 28.3% 22.8%
0.5 33.5% 33.7% 34.0% 34.7% 33.4% 33.3% 33.3% 32.9% 28.7% 28.3%
0.6 29.6% 30.2% 31.0% 31.5% 31.7% 33.3% 33.7% 34.6% 35.0% -
0.7 23.2% 26.2% 27.8% 28.1% 31.0% 32.9% 34.6% 40.0% - -
0.8 18.2% 18.8% 24.6% 26.4% 28.3% 28.7% 35.0% - - -
0.9 9.3% 9.7% 13.2% 18.5% 22.8% 28.3% - - - -

(b) ρ0 = 0.5

ρ2
HH

H
ρ1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0 50.2% 44.6% 42.3% 40.0% 37.6% 33.0% 32.1% 30.8% 27.8% 22.8%
0.1 44.6% 43.7% 40.7% 37.1% 36.1% 33.1% 32.6% 29.2% 30.5% 28.3%
0.2 42.3% 40.7% 38.6% 37.1% 35.9% 34.0% 33.1% 28.9% 36.4% -
0.3 40.0% 37.1% 37.1% 35.8% 34.2% 34.0% 32.4% 26.1% - -
0.4 37.6% 36.1% 35.9% 34.2% 33.1% 32.6% 31.5% - - -
0.5 33.0% 33.1% 34.0% 34.0% 32.6% 28.8% - - - -
0.6 32.1% 32.6% 33.1% 32.4% 31.5% - - - - -
0.7 30.8% 29.2% 28.9% 26.1% - - - - - -
0.8 27.8% 29.1% 36.4% - - - - - - -
0.9 22.8% 28.3% - - - - - - - -

(c) ρ0 = 0.9

Table A.24: Relative differences between E[S0]select(q
∗) and E[S0]split(α

∗)
for exponential service times Bj, j = 0, 1, 2.



80 Concurrent Access to Mobile Networks

ρ2
HH

H
ρ1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0 50.0% 45.1% 40.5% 34.4% 28.3% 23.3% 17.2% 11.4% 7.5% 2.7%
0.1 45.1% 45.2% 41.5% 36.0% 30.0% 24.5% 19.1% 12.7% 7.6% 3.5%
0.2 40.5% 41.5% 41.6% 38.8% 33.2% 27.4% 20.4% 14.4% 8.4% 3.8%
0.3 34.4% 36.0% 38.8% 39.9% 36.0% 30.0% 24.1% 16.5% 10.2% 4.6%
0.4 28.3% 30.0% 33.2% 36.0% 36.1% 33.9% 28.1% 19.6% 13.0% 5.0%
0.5 23.3% 24.5% 27.4% 30.0% 33.9% 34.7% 32.1% 24.8% 17.0% 6.5%
0.6 17.2% 19.1% 20.4% 24.1% 28.1% 32.1% 33.8% 29.3% 21.7% 10.1%
0.7 11.4% 12.7% 14.4% 16.5% 19.6% 24.8% 29.3% 32.8% 27.8% 15.4%
0.8 7.5% 7.6% 8.4% 10.2% 13.0% 17.0% 21.7% 27.8% 30.3% 26.9%
0.9 2.7% 3.5% 3.8% 4.6% 5.0% 6.5% 10.1% 15.4% 26.9% 34.2%

(a) ρ0 = 0.1

ρ2
H

HHρ1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0 49.8% 46.2% 41.6% 38.3% 35.2% 32.0% 28.5% 22.3% 14.5% 5.5%

0.1 46.2% 44.2% 41.8% 38.4% 35.3% 33.0% 29.7% 25.6% 20.0% 10.8%
0.2 41.6% 41.8% 40.3% 38.4% 36.0% 33.6% 30.8% 27.6% 21.9% 13.8%
0.3 38.3% 38.4% 38.4% 36.9% 35.4% 33.1% 31.4% 29.2% 23.6% 17.2%
0.4 35.2% 35.3% 36.0% 35.4% 34.2% 33.0% 31.9% 30.3% 26.6% 19.9%
0.5 32.0% 33.0% 33.6% 33.1% 33.0% 32.5% 32.0% 31.6% 26.7% 20.4%
0.6 28.5% 29.7% 30.8% 31.4% 31.9% 32.0% 33.4% 33.7% 36.1% -
0.7 22.3% 25.6% 27.6% 29.2% 30.3% 31.6% 33.7% 34.1% - -
0.8 14.5% 20.0% 21.9% 23.6% 26.6% 26.7% 36.1% - - -
0.9 5.5% 10.8% 13.8% 17.2% 19.9% 20.4% - - - -

(b) ρ0 = 0.5

ρ2
HH

H
ρ1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0 49.6% 44.7% 41.1% 38.3% 35.8% 33.4% 32.2% 25.8% 24.2% 23.1%
0.1 44.7% 44.2% 40.0% 38.9% 35.6% 33.3% 31.7% 26.2% 25.4% 25.2%
0.2 41.1% 40.0% 38.2% 36.7% 35.0% 32.7% 31.0% 28.1% 26.6% -
0.3 38.3% 38.9% 36.7% 36.4% 35.0% 32.7% 29.7% 29.1% - -
0.4 35.8% 35.6% 35.0% 35.0% 32.1% 28.3% 27.7% - - -
0.5 33.4% 33.3% 32.7% 32.7% 28.3% 28.1% - - - -
0.6 32.2% 31.7% 31.0% 29.7% 27.7% - - - - -
0.7 25.8% 26.2% 28.1% 29.1% - - - - - -
0.8 24.2% 25.4% 26.6% - - - - - - -
0.9 23.1% 25.2% - - - - - - - -

(c) ρ0 = 0.9

Table A.25: Relative differences between E[S0]select(q
∗) and E[S0]split(α

∗)
for Erlang-2 service times Bj, j = 0, 1, 2.
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ρ2
HH

H
ρ1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0 50.1% 45.3% 40.0% 33.0% 27.4% 21.5% 15.7% 11.0% 6.3% 2.7%
0.1 45.3% 45.4% 40.9% 35.7% 30.1% 23.7% 17.3% 12.2% 7.4% 3.1%
0.2 40.0% 40.9% 41.3% 38.1% 32.3% 26.7% 20.0% 13.5% 7.5% 3.7%
0.3 33.0% 35.7% 38.1% 38.3% 35.9% 30.1% 23.4% 16.8% 10.1% 4.3%
0.4 27.4% 30.1% 32.3% 35.9% 36.0% 33.3% 26.5% 18.6% 11.3% 4.7%
0.5 21.5% 23.7% 26.7% 30.1% 33.3% 34.6% 31.3% 24.1% 14.0% 7.5%
0.6 15.7% 17.3% 20.0% 23.4% 26.5% 31.3% 31.6% 28.9% 21.0% 8.7%
0.7 11.0% 12.2% 13.5% 16.8% 18.6% 24.1% 28.9% 31.0% 28.0% 15.7%
0.8 6.3% 7.4% 7.5% 10.1% 11.3% 14.0% 21.0% 28.0% 29.8% 25.9%
0.9 2.7% 3.1% 3.7% 4.3% 4.7% 7.5% 8.7% 15.7% 25.9% 34.8%

(a) ρ0 = 0.1

ρ2
H

HHρ1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0 49.9% 46.5% 40.9% 38.0% 34.8% 31.4% 27.3% 22.3% 14.7% 5.8%

0.1 46.5% 44.3% 41.3% 37.9% 35.3% 32.1% 29.0% 25.0% 19.4% 8.6%
0.2 40.9% 41.3% 40.0% 37.6% 35.1% 32.7% 30.5% 27.3% 23.1% 13.3%
0.3 38.0% 37.9% 37.6% 37.2% 34.6% 32.9% 31.2% 28.4% 23.9% 19.3%
0.4 34.8% 35.3% 35.1% 34.6% 34.3% 32.2% 31.5% 29.5% 24.9% 22.8%
0.5 31.4% 32.1% 32.7% 32.9% 32.2% 31.6% 31.5% 29.8% 29.3% 28.3%
0.6 27.3% 29.0% 30.5% 31.2% 31.5% 31.5% 31.4% 31.4% 29.7% -
0.7 22.3% 25.0% 27.3% 28.4% 29.5% 29.8% 31.4% 35.2% - -
0.8 14.7% 19.4% 23.1% 23.9% 24.9% 29.3% 29.7% - - -
0.9 5.8% 8.6% 13.3% 19.3% 22.8% 28.3% - - - -

(b) ρ0 = 0.5

ρ2
HH

H
ρ1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0 49.9% 44.4% 40.0% 39.0% 35.4% 32.1% 29.1% 27.4% 22.2% 20.5%
0.1 44.4% 42.7% 39.9% 38.3% 34.7% 33.8% 30.8% 28.8% 25.6% 22.0%
0.2 40.0% 39.9% 38.2% 37.6% 33.7% 33.7% 30.1% 28.6% 28.5% -
0.3 39.0% 38.3% 37.6% 35.8% 33.6% 33.6% 29.1% 26.4% - -
0.4 35.4% 34.7% 33.7% 33.6% 33.6% 32.1% 27.0% - - -
0.5 32.1% 33.8% 33.7% 33.6% 32.1% 26.1% - - - -
0.6 29.1% 30.8% 30.1% 29.1% 27.0% - - - - -
0.7 27.4% 28.8% 28.6% 26.4% - - - - - -
0.8 22.2% 25.6% 28.5% - - - - - - -
0.9 20.5% 22.0% - - - - - - - -

(c) ρ0 = 0.9

Table A.26: Relative differences between E[S0]select(q
∗) and E[S0]split(α

∗)
for deterministic service times Bj, j = 0, 1, 2.



82 Concurrent Access to Mobile Networks

ρ2
HH

H
ρ1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0 50.4% 45.1% 40.8% 34.3% 29.7% 23.0% 17.5% 13.2% 6.8% 3.7%
0.1 45.1% 45.2% 43.5% 38.5% 32.5% 25.8% 19.2% 14.0% 7.5% 3.9%
0.2 40.8% 43.5% 44.0% 40.2% 34.8% 27.6% 21.6% 15.6% 9.5% 4.4%
0.3 34.3% 38.5% 40.2% 40.3% 38.0% 32.3% 25.5% 17.9% 12.4% 4.6%
0.4 29.7% 32.5% 34.8% 38.0% 38.7% 35.2% 28.5% 20.8% 12.7% 6.7%
0.5 23.0% 25.8% 27.6% 32.3% 35.2% 36.1% 33.3% 27.4% 16.0% 7.0%
0.6 17.5% 19.2% 21.6% 25.5% 28.5% 33.3% 33.4% 32.0% 21.3% 10.4%
0.7 13.2% 14.0% 15.6% 17.9% 20.8% 27.4% 32.0% 34.6% 29.7% 17.2%
0.8 6.8% 7.5% 9.5% 12.4% 12.7% 16.0% 21.3% 29.7% 31.0% 26.7%
0.9 3.7% 3.9% 4.4% 4.6% 6.7% 7.0% 10.4% 17.2% 26.7% 40.0%

(a) ρ0 = 0.1

ρ2
H

HHρ1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0 49.2% 46.6% 41.7% 38.6% 35.7% 33.0% 28.1% 22.7% 18.4% 4.6%

0.1 46.6% 44.3% 41.8% 39.6% 37.9% 34.3% 30.2% 25.3% 18.5% 8.9%
0.2 41.7% 41.8% 41.3% 39.2% 37.6% 34.9% 31.0% 27.7% 25.1% 14.7%
0.3 38.6% 39.6% 39.2% 38.6% 36.8% 35.7% 32.4% 30.3% 26.6% 19.0%
0.4 35.7% 37.9% 37.6% 36.8% 36.0% 35.6% 33.4% 31.1% 26.7% 22.3%
0.5 33.0% 34.3% 34.9% 35.7% 35.6% 33.4% 32.4% 31.6% 31.2% 31.1%
0.6 28.1% 30.2% 31.0% 32.4% 33.4% 32.4% 32.4% 32.4% 31.3% -
0.7 22.7% 25.3% 27.7% 30.3% 31.1% 31.6% 32.4% 35.1% - -
0.8 18.4% 18.5% 25.1% 26.6% 26.7% 31.2% 31.3% - - -
0.9 4.6% 8.9% 14.7% 19.0% 22.3% 31.1% - - - -

(b) ρ0 = 0.5

ρ2
HH

H
ρ1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0 49.7% 45.5% 40.8% 39.3% 36.6% 34.2% 30.7% 28.6% 25.4% 24.8%
0.1 45.5% 44.6% 40.4% 38.2% 35.7% 33.7% 31.2% 30.6% 27.9% 26.5%
0.2 40.8% 40.4% 39.5% 37.5% 35.4% 33.3% 32.7% 30.6% 28.7% -
0.3 39.3% 38.2% 37.5% 37.3% 34.9% 32.9% 32.9% 30.5% - -
0.4 36.6% 35.7% 35.4% 34.9% 34.6% 32.8% 29.9% - - -
0.5 34.2% 33.7% 33.3% 32.9% 32.8% 31.8% - - - -
0.6 30.7% 31.2% 32.7% 32.9% 29.9% - - - - -
0.7 28.6% 30.6% 30.6% 30.5% - - - - - -
0.8 25.4% 27.9% 28.7% - - - - - - -
0.9 24.8% 26.5% - - - - - - - -

(c) ρ0 = 0.9

Table A.27: Relative differences between E[S0]select(q
∗) and E[S0]split(α

∗)
for hyperexponential service times Bj with c2Bj

= 2, j = 0, 1, 2
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ρ2
HH

H
ρ1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0 50.5% 46.0% 42.1% 35.9% 30.6% 24.2% 18.1% 12.2% 9.0% 3.3%
0.1 46.0% 46.1% 42.7% 37.8% 32.6% 25.0% 20.3% 15.8% 11.4% 5.0%
0.2 42.1% 42.7% 42.8% 40.2% 36.5% 30.9% 21.8% 17.0% 12.2% 5.7%
0.3 35.9% 37.8% 40.2% 41.2% 38.3% 32.5% 28.0% 19.1% 11.5% 6.0%
0.4 30.6% 32.6% 36.5% 38.3% 38.5% 34.5% 30.4% 21.6% 13.4% 7.8%
0.5 24.2% 25.0% 30.9% 32.5% 34.5% 36.9% 34.1% 29.7% 18.4% 13.2%
0.6 18.1% 20.3% 21.8% 28.0% 30.4% 34.1% 34.3% 33.5% 24.2% 14.1%
0.7 12.2% 15.8% 17.0% 19.1% 21.6% 29.7% 33.5% 33.8% 33.0% 23.3%
0.8 9.0% 11.4% 12.2% 11.5% 13.4% 18.4% 24.2% 33.0% 36.8% 33.8%
0.9 3.3% 5.0% 5.7% 6.0% 7.8% 13.2% 14.1% 23.3% 33.8% 40.4%

(a) ρ0 = 0.1

ρ2
H

HHρ1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0 49.7% 46.7% 43.4% 40.0% 38.0% 33.4% 29.7% 24.1% 17.1% 8.4%

0.1 46.7% 44.8% 42.5% 39.0% 37.8% 34.0% 30.3% 27.1% 20.1% 11.9%
0.2 43.4% 42.5% 42.4% 38.8% 36.4% 34.3% 31.6% 28.8% 23.7% 17.9%
0.3 40.0% 39.0% 38.8% 37.7% 36.2% 35.2% 33.2% 30.4% 28.0% 21.3%
0.4 38.0% 37.8% 36.4% 36.2% 35.6% 35.8% 34.0% 32.4% 29.0% 28.2%
0.5 33.4% 34.0% 34.3% 35.2% 35.8% 35.2% 34.1% 33.5% 32.6% 32.5%
0.6 29.7% 30.3% 31.6% 33.2% 34.0% 34.1% 35.0% 33.9% 33.1% -
0.7 24.1% 27.1% 28.8% 30.4% 32.4% 33.5% 33.9% 36.0% - -
0.8 17.1% 20.1% 23.7% 28.0% 29.0% 32.6% 33.1% - - -
0.9 8.4% 11.9% 17.9% 21.3% 28.2% 32.5% - - - -

(b) ρ0 = 0.5

ρ2
HH

H
ρ1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0 49.3% 45.2% 41.0% 40.7% 36.8% 36.6% 30.8% 29.6% 26.4% 19.1%
0.1 45.2% 43.4% 40.8% 39.6% 37.2% 34.8% 31.4% 30.5% 28.4% 22.4%
0.2 41.0% 40.8% 38.8% 39.4% 36.7% 34.4% 34.1% 31.4% 29.7% -
0.3 40.7% 39.6% 39.4% 36.7% 34.5% 32.3% 31.4% 30.4% - -
0.4 36.8% 37.2% 36.7% 34.5% 33.7% 32.1% 31.3% - - -
0.5 36.6% 34.8% 34.4% 32.3% 32.1% 31.9% - - - -
0.6 30.8% 31.4% 34.1% 31.4% 31.3% - - - - -
0.7 29.6% 30.5% 31.4% 30.4% - - - - - -
0.8 26.4% 28.4% 29.7% - - - - - - -
0.9 19.1% 22.4% - - - - - - - -

(c) ρ0 = 0.9

Table A.28: Relative differences between E[S0]select(q
∗) and E[S0]split(α

∗)
for hyperexponential service times Bj with c2Bj

= 4, j = 0, 1, 2.
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ρ2
HH

H
ρ1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0 50.6% 46.8% 43.4% 37.5% 31.7% 25.5% 18.5% 11.0% 11.2% 2.9%
0.1 46.8% 47.0% 41.8% 37.2% 32.9% 24.2% 21.4% 17.7% 15.4% 6.1%
0.2 43.4% 41.8% 41.4% 40.2% 38.2% 34.1% 21.9% 18.6% 14.8% 7.1%
0.3 37.5% 37.2% 40.2% 41.7% 38.6% 32.8% 30.6% 20.5% 10.4% 7.4%
0.4 31.7% 32.9% 38.2% 38.6% 38.1% 34.0% 32.5% 22.5% 14.1% 8.9%
0.5 25.5% 24.2% 34.1% 32.8% 34.0% 37.6% 34.9% 31.7% 20.7% 19.5%
0.6 18.5% 21.4% 21.9% 30.6% 32.5% 34.9% 35.6% 34.8% 27.0% 18.0%
0.7 11.0% 17.7% 18.6% 20.5% 22.5% 31.7% 34.8% 33.2% 36.1% 29.4%
0.8 11.2% 15.4% 14.8% 10.4% 14.1% 20.7% 27.0% 36.1% 42.8% 40.7%
0.9 2.9% 6.1% 7.1% 7.4% 8.9% 19.5% 18.0% 29.4% 40.7% 40.6%

(a) ρ0 = 0.1

ρ2
H

HHρ1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0 50.1% 46.8% 45.2% 41.6% 40.6% 33.6% 31.2% 25.3% 15.7% 12.4%

0.1 46.8% 45.3% 42.9% 38.5% 37.6% 33.8% 30.4% 28.8% 21.6% 14.9%
0.2 45.2% 42.9% 43.5% 38.6% 35.0% 33.7% 32.4% 29.9% 22.3% 21.0%
0.3 41.6% 38.5% 38.6% 36.6% 35.6% 34.6% 33.7% 30.4% 29.4% 23.8%
0.4 40.6% 37.6% 35.0% 35.6% 35.5% 36.0% 34.7% 33.5% 31.3% 34.1%
0.5 33.6% 33.8% 33.7% 34.6% 36.0% 36.8% 35.5% 35.1% 34.2% 34.1%
0.6 31.2% 30.4% 32.4% 33.7% 34.7% 35.5% 37.5% 35.3% 34.6% -
0.7 25.3% 28.8% 29.9% 30.4% 33.5% 35.1% 35.3% 36.9% - -
0.8 15.7% 21.6% 22.3% 29.4% 31.3% 34.2% 34.6% - - -
0.9 12.4% 14.9% 21.0% 23.8% 34.1% 34.1% - - - -

(b) ρ0 = 0.5

ρ2
HH

H
ρ1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0 48.8% 44.8% 41.2% 42.3% 36.8% 39.1% 30.9% 30.7% 27.6% 13.5%
0.1 44.8% 42.1% 40.9% 40.9% 38.4% 36.1% 31.7% 30.1% 28.9% 18.4%
0.2 41.2% 40.9% 37.9% 41.3% 38.1% 35.7% 35.6% 32.0% 30.6% -
0.3 42.3% 40.9% 41.3% 36.1% 34.1% 31.7% 30.2% 30.4% - -
0.4 36.8% 38.4% 38.1% 34.1% 32.9% 31.4% 32.8% - - -
0.5 39.1% 36.1% 35.7% 31.7% 31.4% 32.3% - - - -
0.6 30.9% 31.7% 35.6% 30.2% 32.8% - - - - -
0.7 30.7% 30.1% 32.0% 30.4% - - - - - -
0.8 27.6% 28.9% 30.6% - - - - - - -
0.9 13.5% 18.4% - - - - - - - -

(c) ρ0 = 0.9

Table A.29: Relative differences between E[S0]select(q
∗) and E[S0]split(α

∗)
for hyperexponential service times Bj with c2Bj

= 16, j = 0, 1, 2.
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