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Introduction

Through the years several methods have been proposed for managing opti-
mization issues. In plenty of different areas such as finance, logistics, telecom-
munications, industrial production or personal planning, problems may take a
form of Mathematical Programming.

The optimization problems mentioned above are frequently classified based
on the types of the decision variables, constraints, and the objective function.
The most classical one, with efficient solution algorithms, is called Linear Pro-
gramming (LP), where all constraints, and the objective function have a linear
character, while all variables are usually non-negative and real-valued, thus it
is said that the variables have continuous domains. Many real-life problems fit
this category very well. Problems with even millions of variables and constraints
are routinely solved with commercial mathematical programming software like
Xpress-Optimizer, which will be used to do calculations in our models.

It has quickly occurred that continuous variables are not sufficient to represent
decisions of a discrete nature. This brought researchers to the development of
Mixed Integer Programming (MIP). This is a very similar technique to the
LP, but all variables may have either discrete or continuous domains. The
other technique is called Integer Programming (IP), with all integer (discrete)
variables. A method of solution of such problems contains LP techniques cou-
pled with Branch-and-Bound (an enumeration technique). However, using these
methods even for small problem instances might lead to a “computational ex-
plosion”.

In recent years, algorithmic improvements, growing computer speed have en-
abled tackling even larger problems, so that modeling real-world situations can
be done with greater accuracy. Though solution techniques of mathematical
programming is probably the best researched area of optimization, postopti-
mality analysis has obtained much fewer attention. However, it deals with much
more information about a single optimal solution, than just a solution itself.

Coefficients, right-hand side values within LP problems, are assumed to be
“real” numbers, in practise they commonly occur to fluctuate in a certain
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range. There are several ways to cope with such a problem. One of them is the
Stochastic Programming (SP) approach, where based on the historical data
the parameter distribution should be estimated. However, it may still not pro-
vide us with a guarantee, that the current solutions behave as the estimated
distribution does.

The other way to assess all possible ranges of the uncertain parameters is
Sensitivity Analysis. It is simply an analysis of changes of an optimal solution,
resulted by alterations of the input data. This is mostly done by computation
of parameters changes, for which an optimal solution stays unchanged.

Sensitivity anaysis constitutes perhaps the most important issue of nowadays
applied modelling. Knowledge about perturbations in the problem data is nec-
essary to effectively manage uncertainty. Since sensitivity analysis is used to
reveal factors, on which the solution depends mostly, it is essential to know
what to focus on during collecting the information, and it indicates issues that
should be closely watched by decision makers.

In this paper we will introduce some optimization methods and techniques
dealing with sensitivity analysis for Linear Programming (Chapter 1), Integer
and Mixed-Integer Programming (Chapter 2), and Multicriteria Optimization
(Chapter 3), that have been developed in previous years by researchers. These
considerations will lead us to an application of MIP sensitivity analysis within
a call center shift-scheduling problem (Chapter 4).

It is commonly known that the solution of the LP dual, points out the sensi-
tivity of the optimal objective function value to alterations in the right-hand
sides of the inequality constraints. Results obtained in LP theory stands a core
of the development for other optimization branches. Influenced by LP, duality
theories were introduced for discrete optimization problems, which became the
basis for the sensitivity analysis. However, due to the problem growth, dual
solutions in Integer Programming are very complex, and rarely used.

A new approach was introduced by Dawande and Hooker. They have devel-
oped the inference dual theory of an optimization problem, which might be
used effectively for sensitivity analysis both in LP and IP theory.

Inferring the best possible bound on the optimal value from the constraint
set is an assignment of the inference dual. Since the solution of a dual is a
proof, obtained by usage of inference method, sensitivity analysis might be
regarded as a contribution analysis of each constraint in the proof.

There are two conditions of the inference dual solution that should be satisfied.
First, all inference rules stemming from the constraint set in the problem should
be recognized, and secondary those rules should be used to prove optimality.
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As the paper was built on the knowledge basically introduced by scientists
in the past, there are few areas of the author’s contribution. First of all, it is
shown in Chapter 4, by constructing an example, that in general the set TWx∗ of
all weak efficient solutions is not equal to the closure of the set of all efficient
solutions clTx∗ in the Multi-Objective Linear Programming (MOLP) problem:

clTx∗ 6= TWx∗

Furthermore, inspired by an approach of Mavrotas & Diakoulaki of generating
the so-called incumbent list of all efficient solutions within Multicriteria Branch
& Bound Method (MCBB), and an approach of Dawande & Hooker within a
MIP primal sensitivity analysis, we propose a MIP analogous with usage of
usual Branch & Bound (B&B) technique to generate all possible solutions, by
solving the main MIP problem in the first step, and afterwards deriving at each
feasible node of a B&B search tree, all other possible efficient solutions. In that
way the decision maker is provided with the list of all efficient solutions, not
only with the first one achieved by the software.



Notation

Since there are some special abbreviations, which are referred to throughout
the entire paper, we introduce them now:

LP − Linear Programming
IP − Integer Programming
MIP − Mixed-Integer Programming
CP − Constraint Programming

MOLP − Multiple Objective Linear Programming
MOIP − Multiple Objective Integer Programming
MOMIP − Multiple Objective Mixed-Integer Programming

B&B − Branch-and-Bound Method
MCBB − Multicriteria Branch-and-Bound Method

SA − Sensitivity Analysis



Chapter 1

Linear Programming

There are a lot of reasons, why Linear Programming (LP) still is a strongly
considerable field of optimization. Many real-life problems can be directly
solved by LP, or has its own importance in solving sub-problems (Branch &
Bound).

A vast number of the central concepts (duality, decomposition, importance
of convexity, etc) of optimization theory have been influenced by LP.

Furthermore, we may find application of LP in industrial environments, eco-
nomics or company management. Moreover, the presence of LP algorithms is
noticed in planning, scheduling, technology and other branches.

In this chapter we present only the most important facts from LP theory.
All theory is introduced without a proof as a commonly well-known theory,
which stands as the foundation for further considerations. This chapter is en-
tirely based on the book of Robert J. Vanderbei called Linear Programming:
Foundations and Extensions [26].

1.1. Preliminaries

Primal Problem

Each linear problem of the following form is commonly referred to as the
primal problem:

min cTx

Ax ≥ b
x ∈ Rn

+

where: c ∈ Rn, A ∈ Rm×n, and b ∈ Rm.

(1.1)
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This can be written equivalently in a standard form as a:

min
∑n

j=1 cjxj∑n
j=1 aijxj ≥ bi i = 1, . . . ,m

xj ≥ 0 j = 1, . . . , n.

Dual Problem

Associated with the primal problem is the so-called dual problem:

max yT b

yTA ≤ cT

y ∈ Rm

where: c ∈ Rn, A ∈ Rm×n, and b ∈ Rm,

(1.2)

which analogously has its own standard form:

max
∑m

i=1 yibi∑m
i=1 yiaij ≤ cj j = 1, . . . , n.

Slack Variables

Let us now introduce slack variables:

xn+i = wi =
n∑
j=1

aijxj − bi i = 1, . . . ,m.

and:

ym+j = zj = cj −
m∑
i=1

yiaij j = 1, . . . , n.
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This transfers primal problem (1.1) into:

min cTx

A− w = b
x, w ∈ Rn

+,

and dual problem (1.2) into:

max yT b

yTA+ z = cT

y, z ∈ Rm.

Basic notation

Let us introduce:

B = {j1, . . . , jm} −the set of basis indexes, we call this the base
N = {jm+1, . . . , jm+n} −the set of non-basis indexes
c = c− cBA−1

B A −vector of optimality indicators

moreover:

AB − submatrix of A, associated with B

AN − submatrix of A without basis columns
xB − vector of basis variables of primal (1.1)
xN − vector of non-basis variablesof primal (1.1)
yB − vector of basis variables of dual (1.2)
yN − vector of non-basis variables of dual (1.2)
cB − basis columns of a cost vector c
cN − non-basis columns of a cost vector c

Definition 1. We call the vector [xB, xN ] the basis feasible solution with respect
to B of a primal problem (1.1) if:
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xB = A−1
B b ≥ 0,

xN = 0.

We call the vector [yB, yN ] the basis feasible solution with respect to B of a
dual problem (1.2) if:

yB = 0,
yN = (A−1

B AN)T cB − cN .

1.2. Convex Analysis

Before we will go further in our considerations, let us step back to the
beginning of optimality theory, namely convex analysis.

Definition 2 (Convex Combination). Given a finite set of points: x1, x2, . . . , xn,
in Rn, a point x ∈ Rn is called a convex combination of these points if:

x =
n∑
j=1

λjxj and
∑
j

λj = 1

Furthermore, it is called a strict convex combination if none of the λ′js vanish.

Definition 3 (Convex Set). If for every x and y in a subset S ∈ Rm, this subset
also contains all points on the line connecting x and y, then S is convex. That
is:

θx+ (1− θ)y ∈ S, for every 0 < θ < 1.

Theorem 1. A set C contains all convex combinations of points in C, if and
only if the set C is convex as well.

For each set S ∈ Rm, there exists a smallest convex set containing S, called
the convex hull of S and is denoted by conv(S).
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Definition 4 (Convex hull of S). The intersection of all convex sets containing
S.

This definition is equivalent to the following theorem:

Theorem 2. The convex hull conv(S) of a set S in Rm consists precisely of
the set of all convex combinations of finite collections of points from S.

1.2.1. Carathéodory’s Theorem

In 1907 Carathéodory showed that to define the convex hull of S, it is
sufficient to use m+ 1 points:

Theorem 3 (Carathéodory’s Theorem). The convex hull conv(S) of a set
S ∈ Rm consists of all convex combinations of m+ 1 points from S:

conv(S) =

{
z =

m+1∑
j=1

λjzj : zj ∈ S and λj ≥ 0 for all j,
∑
j

λj = 1

}
.

1.2.2. The Separation Theorem

Definition 5 (Halfspace). Any set given by a single (nontrivial) linear inequal-
ity in Rn is a halfspace of Rn:

x ∈ Rn :
n∑
j=1

ajxj ≤ b, b ∈ R, (a1, . . . , an) 6= 0.

Definition 6 (Generalized halfspace). If the coefficients (a1, a2, . . . , an) vanish
in the definition of a halfspace, then such a set is called a generalized halfspace.

Every generalized halfspace is simply a halfspace, all of Rn, or the empty
set, and thus it is convex as well.
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Definition 7 (Polyhedron). An intersection of a finite collection of generalized
halfspaces is called a polyhedron. A polyhedron is any set of the form:

x ∈ Rn :
n∑
j=1

aijxj ≤ bi, i = 1, . . . ,m

As every polyhedron is an intersection of a collection of convex sets, it is
obviously convex.

Theorem 4 (The Separation Theorem for polyhedra). Let P and P̄ be two
disjoint nonempty polyhedra in Rn. Then there exist disjoint halfspaces H and
H̄ such that P ⊂ H and P̄ ⊂ H̄.

1.2.3. Farkas’ Lemma

Farkas’ Lemma plays a fundamental role in the proof of the separation
theorem, and constitutes one of the basic theorems of optimality theory.

Theorem 5 (Farkas’ Lemma). The system Ax ≤ b has no solutions if and
only if there is a y such that:

ATy = 0, y ≥ 0, bTy < 0.

1.3. The Simplex Method

The simplex method, developed by George Dantzig, constitutes one of the
most important algorithms in optimization theory nowadays. It solves LP prob-
lems by constructing a feasible solution at a vertex of the polyhedron and
then walking along a path on the edges of the polyhedron to vertices with
non-decreasing values of the objective function until an optimum is reached. In
other words, the simplex method produces a sequence of steps to “adjacent”
bases such that the current value of the objective function increases at each
step.
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We begin with the so-called starting dictionary, which initially has m basis
and n nonbasis variables. As the simplex method goes further, it moves from
one dictionary to another whilst searching for an optimal solution.

During iterations of the simplex method, exactly one variable enters B, chosen
from N as to increase the objective function value. Usually it means picking a
variable of index k, which has the largest coefficient. However, if the set N is
empty, we have obtained an optimal solution. Furthermore, at the same time
there is one variable that leaves the basis B, chosen to preserve nonnegativity
of the current basis variables.

It is required that:

b̄i − āikxk ≥ 0, i ∈ B.

This means that the only variables that can become negative while xk increases
are those for which āik is positive. As we do not want any of the variables to
become negative, the following equality seems to be reasonable:

xk = min
{i∈B:āik>0}

b̄i
āik

The above mentioned variable selection rule might be altered, since we wish to
take the largest possible increase in xk:

xk =

(
max
i∈B

āik
b̄i

)−1

.

As we have chosen the leaving and entering variables to achieve an interchange,
there must be some appropriate row operations involved, called pivot rules.

Degeneracy, cycling, unboundedness

When a denominator in one of the above mentioned ratios vanishes and
the numerator is nonzero, then the ratio should be regarded as +∞ or −∞.
Furthermore, if the numerator is positive we deal with a degenerate pivot.
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The most undesirable issue is cycling, when the simplex method makes a se-
quence of degenerate pivots and eventually returns to an initial feasible solu-
tion. Such infinite loops never find an optimal solution. In such a situation all
the pivots within the cycle must be degenerate, since the objective function
value never decreases. However, in practice, degeneracy is very common, but
cycling is rare.

When all of the ratios are nonpositive, as the entering variable increases, none
of the basis variables will become zero. Then the problem becomes unbounded.

Auxiliary problem

When we set each xj to zero, then we obtain the solution, which is feasible if
and only if all the right-hand sides are nonnegative. If they are not, an auxiliary
problem must be introduced :

maximize −x0∑n
j=1 aijxj − x0 ≤ bi i = 1, . . . ,m

xj ≥ 0 j = 1, . . . , n.
(1.3)

If now we set xj = 0, for j = 1, . . . , n, and then pick x0 sufficiently large,
then we obtain a feasible solution to the auxiliary problem. Additionally the
objective value of this solution is equal to zero, if the original problem has a
feasible solution. The solving process of the auxiliary problem to find an initial
feasible solution is commonly called Phase I.

Now we are able to continue applying the simplex method until an optimal
solution is reached, this process is called Phase II.

Fundamental Theorem of Linear Programming

Theorem 6 (Fundamental Theorem of Linear Programming). For an arbitrary
linear program, the following statements are true:

— If there is no optimal solution, then the problem is either infeasible or
unbounded.

— If a feasible solution exists, then a basis feasible solution exists.
— If an optimal solution exists, then a basis optimal solution exists.
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1.4. Duality theory

One of the most important issues in optimization is duality theory. In
LP, the primal problem (1.1) and the dual problem (1.2) are complementary.
Thanks to duality a solution to either one determines a solution to both. In
other words, it means that the dual of the dual is simply the primal problem.
Each feasible solution for one of these two, gives a bound on the optimal objec-
tive function value for the other. These bounds, however, leave a gap (within
which the optimal solution lies), but they are better than nothing.

The Weak Duality Theorem

The dual problem in general provides tighter bounds for the primal objec-
tive function value, which is summarized in the following theorem:

Theorem 7 (Weak Duality Theorem). Let x = (x1, . . . , xn) be a feasible so-
lution of primal problem (1.1), analogously let y = (y1, . . . , ym) be a feasible
solution of dual problem (1.2). Then:

yT b ≤ cTx.

If we imagine the real line consisting of all possible values for the primal
objective function, and visualize analogous situations for the dual problem, we
would see that the set of primal values lie entirely to the right of the set of
dual values.

The Strong Duality Theorem

In fact, for linear programming there is no gap between the optimal objec-
tive function value for the primal and for the dual, which stands as a convenient
tool for verifying optimality.

Theorem 8 (Strong Duality Theorem). If x∗ = (x∗1, x
∗
2, . . . , x

∗
n) is an optimal

solution of primal problem (1.1),then dual problem (1.2) also has an optimal
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solution y∗ = (y∗1, . . . , y
∗
m), such that:

y∗T b = cTx∗.

A very important issue raises when primal problem (1.1) does not have an
optimal solution. Let us suppose it is unbounded. This fact together with the
weak duality theorem shows that dual problem (1.2) must be infeasible.

Analogously, when dual problem (1.2) is unbounded, then primal problem (1.1)
is infeasible. However sometimes it occurs that both the primal and the dual
problems are infeasible. These considerations lead to the following theorem:

Theorem 9 (Duality Theorem). Only one of the following conditions occurs:
1. Both the primal (1.1) and dual problem (1.2) have optimal solutions and:

cTx = yT b.

2. The primal problem does not have any feasible solution, X = Ø, the dual
problem has a feasible solution, but not optimal as:

sup {yT b : y ∈ Y } = +∞.

3. The dual problem does not have any feasible solution, Y = Ø, the primal
problem has a feasible solution, but not optimal as:

inf {cTx : x ∈ X} = −∞.

4. Neither the primal, nor the dual problem has a feasible solution:

X = Ø, Y = Ø.

Thanks to duality theory it is easy to provide a certificate of optimality. It
must be checked that the primal solution is feasible for the primal problem,
the dual solution is feasible for the dual problem, and that the primal and dual
objective values agree.

The simplex method applied to primal problem (1.1) in fact solves both the
primal and the dual (1.2). As the dual of the dual is the primal, during solution
procedure with respect to the dual, the simplex method solves both the primal
and the dual problem.



18

When we notice that the dual has an obvious basis feasible solution, it might be
easier to apply the simplex method to the dual problem, instead of the primal
one.

1.4.1. Complementary Slackness

Now we will consider primal problem (1.1) with its slack variables:

min cTx
Ax− w = b
x, w ≥ 0.

(1.4)

The dual (1.2) can be written as follows:

max yT b
yTA+ z = cT

y, z ≥ 0.
(1.5)

Sometimes there might occur a situation, when it is necessary to obtain an
optimal solution for the dual problem, when only an optimal solution for the
primal one is known. This issue is a subject of the following theorem.

Theorem 10 (The Complementary Slackness Theorem). Suppose that x =
(x1, . . . , xn) is a primal feasible solution and that y = (y1, . . . , ym) is a dual
feasible solution. Let w = (w1, w2, . . . , wm) denote the corresponding primal
slack variables, and let z = (z1, z2, . . . , zn) denote the corresponding dual slack
variables. Then x and y are optimal for their respective problems if and only
if:

xjzj = 0, for j = 1, . . . , n

wiyi = 0, for i = 1, . . . ,m.

Suppose that a nondegenerate basis optimal solution for the primal is
known:

x∗ = (x∗1, x
∗
2, . . . , x

∗
n),
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and we want to obtain a corresponding optimal solution for the dual.

Let:
w∗ = (w∗1, w

∗
2, . . . , w

∗
m),

denote the corresponding primal slack variables, which might be easily obtained
from their definition as slack variables:

w∗i =
∑
j

aijx
∗
j − bi.

The dual (1.2) constraints are:∑
i

yiaij + zj = cj, j = 1, . . . , n

where we have written the inequalities in equality form by introducing slack
variables zj, j = 1, 2, . . . , n.

These constraints form n equations with m + n unknown variables. However,
the basis optimal solution (x∗, w∗) is a collection of n + m variables, many of
which are positive. In fact, since the solution of the primal (1.1) is assumed to
be nondegenerate, it follows that the m basic variables will be strictly positive.

Then from the Complementary Slackness Theorem it is known that the cor-
responding dual variables must vanish. As we may set m of m + n variables
to zero, there are just n equations left with n unknown variables. Thus there
should be a unique solution, and all its components should be nonnegative,
since we assumed optimality of x∗.

Thus if (x∗, w∗) denotes an optimal solution to the primal and (y∗, z∗) denotes
an optimal solution to the dual, then the Complementary Slackness Theorem
says that, for each j = 1, . . . , n, either x∗j = 0 or z∗j = 0 (or both).

Strict Complementarity

As a matter of fact, there are optimal pairs of solutions, for which exactly
one member of each pair (x∗j , z

∗
j ) vanishes and exactly one member from each

pair (y∗j , w
∗
j ) vanishes.

Then the optimal solutions are strictly complementary to each other. This
is often expressed by x∗ + z∗ > 0 and y∗ + w∗ > 0.
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Theorem 11. If both the primal (1.1) and the dual (1.2) have feasible so-
lutions, then there exists a primal feasible solution (x̄, w̄) and a dual feasible
solution (ȳ, z̄) such that x̄+ z̄ > 0 and ȳ + w̄ > 0.

As to make a linear programming problem feasible there must exist a vari-
able xj that vanishes, the so-called null variable. If such a variable exists, then
its dual slack is not null.

Theorem 12 (The Strict Complementary Slackness Theorem). If a linear
programming problem has an optimal solution, then there is an optimal solution
(x∗, w∗) and an optimal dual solution (y∗, z∗) such that:

x∗ + z∗ > 0 and y∗ + w∗ > 0.

1.5. Sensitivity Analysis

The dual solution provides a partial sensitivity analysis. Let y∗T be the
optimal solution of the dual problem (1.2), which makes f(y∗) = y∗T b the
optimal value for both the primal (1.1) and the dual. If Ax ≥ b+ ∆b in (1.1),
then the dual becomes:

max yT (b+ ∆b)

yTA ≤ cT

y ∈ Rm

where: c ∈ Rn, A ∈ Rn×m, and b ∈ Rm.

(1.6)

As only the objective function changes, y∗T is feasible as well in (1.6). There-
fore yT (b+ ∆b) is a lower bound to the optimal value of the perturbed primal
problem. The possibly negative change in the optimal value y∗T b of the original
problem is bounded below by y∗T∆b. The change is in fact equal to y∗T∆b, if
the perturbation ∆b lies within easy computational ranges.

Let us assume that a problem has been solved to optimality, therefore we have
at our disposal the final optimal dictionary. Suppose now we wish to change the
objective coefficients from c to, say, c. It is natural to ask how the dictionary
at hand could be adjusted to become a valid dictionary for the new problem.
That is, we want to maintain the current classification of the variables into
basis and nonbasis variables and simply adjust f(x∗), x∗B and y∗N appropriately.
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Recall that:

x∗B = A−1
B b,

y∗N = (A−1
B AN)T cB − cN ,

f(x∗) = cTBA
−1
B b.

(1.7)

Hence, the change from c to c requires us to recompute y∗N , f(x∗), but x∗B re-
mains unchanged. Therefore, after recomputing the new dictionary the primal
is still feasible, and so there is no need for a Phase I procedure: we can jump
straight into the primal simplex method, and if c is not too different from c,
we can expect to get to the new optimal solution in a relatively small number
of steps.

Now suppose that instead of changing c, we wish to change only the right-hand
side b. In this case, we see that we need to recompute x∗B, f(x∗), but y∗N remains
unchanged. Hence, the new dictionary will be dual feasible, and so we can apply
the dual simplex method to arrive at the new optimal solution fairly directly.

Therefore, changing just the objective function or just the right-hand side
results in a new dictionary having nice feasibility properties.

What if we need/want to change some (or all) entries in both the objective
function and the right-hand side and maybe even the constraint matrix too?

In this case, everything changes: y∗N , f(x∗), and x∗B. Even the entries in B

and N change.

Nonetheless, as long as the new basis matrix AB is nonsingular, we can make
a new dictionary that preserves the old classification into basic and nonbasic
variables. The new dictionary will most likely be neither primal feasible nor
dual feasible, but if the changes in the data are fairly small in magnitude, one
would still expect that this starting dictionary will get us to an optimal solution
in fewer iterations than simply starting from scratch.

While there is no guarantee that any of these so-called warm-starts will end up
in fewer iterations to optimality, extensive empirical evidence indicates that this
procedure often makes a substantial improvement: sometimes the warm-started
problems solve in as little as one percent of the time it takes to solve the original
problem.



22

Ranging

Often one does not wish to solve a modification of the original problem,
but instead just wants to ask a hypothetical question:

If one is to change the objective function by increasing or decreasing one of
the objective coefficients a small amount, how much could it increase/decrease
without changing the optimality of the current basis?

To study this question, let us suppose that c gets changed to c + t∆c, where
t is a real number and c is a given vector (which is often all zeros except for
a one in a single entry, but we do not need to restrict the discussion to this
case). It is easy to see that y∗N gets incremented by

t∆yN ,

where:

∆yN = (A−1
B AN)T∆cB −∆cN .

Hence, the current basis will remain dual feasible as long as

y∗N + t∆yN ≥ 0.

We have manipulated this type of inequality many times before, and so it
should be clear that, for t > 0, this inequality will remain valid as long as:

t ≤

(
max
j∈N
−∆yj
y∗j

)−1

.

Similar manipulations show that, for t < 0, the lower bound is:

t ≥

(
min
j∈N
−∆yj
y∗j

)−1

.
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Combining these two inequalities, we see that t must lie in the interval:

(
min
j∈N
−∆yj
y∗j

)−1

≤ t ≤

(
max
j∈N
−∆yj
y∗j

)−1

.

Now suppose we change b to b + t∆b and ask how much t can change before
the current basis becomes nonoptimal. In this case, y∗N does not change, but
x∗B gets incremented by t∆xB, where:

∆xB = A−1
B ∆b.

Hence the current basis remains optimal as long as t lies in interval:

(
min
i∈B
−∆xi
x∗i

)−1

≤ t ≤

(
max
i∈B
−∆xi
x∗i

)−1

.



Chapter 2

Integer Programming

The LP models are continuous, in the meaning that all decision variables
are allowed to be fractional. However, fractional solutions sometimes are un-
desirable, and we must consider the following problem:

min cTx

Ax ≥ b
x ∈ Zn+

where: c ∈ Rn, A ∈ Rm×n, and b ∈ Rm.

(2.1)

This problem is called an integer-programming problem (IP). When at least
one of the decision variables becomes fractional, the problem becomes a mixed
integer programming (MIP) model. Without loss of generality, it might be
assumed that the variables with indexes from 1 to p ≤ n are integer, thus the
MIP primal problem takes the form of:

min cTx

Ax ≥ b
x ∈ X ′ = Zp+ × Rn−p

where: c ∈ Rn, A ∈ Rm×n, and b ∈ Rm

(2.2)

Integer programming is present in all areas of decision making nowadays. It has
particular contribution to optimization problems as: facility location, all kinds
of scheduling problems, routing, communication networks, capital budgeting,
project selection, or analysis of capital development alternatives. As a matter of
fact, there are several applications of IP in science: physics, genetics, medicine,
and even in engineering.
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2.1. Solution Methods

Sometimes the solution of the primal IP problem (2.1) might be obtained,
by ignoring the integrality restrictions and deriving the solution to the resulting
linear program (1.1), the so-called linear relaxation of IP. However it is possible
only when all the basis solutions of (1.1) are integer.

The feasible constraint set Ax ≥ b, x ≥ 0, for an arbitrary integer vector b have
only integer basic solutions, if and only if the matrix A is totally unimodular,
which means that all square submatrices of A have a determinant equal to 0,
1 or −1.

In general some of the variables in the LP solution will still be fractional,
thus other methods should be undertaken to obtain a pure IP solution.

Since LP is less constrained than IP, there are some conclusions:

— If we consider primal IP (2.1), then the optimal objective value for the
primal LP (1.1) is less than or equal to the optimal objective for a primal
IP (an upper bound).

— If there is considered dual IP, then the optimal objective value for dual LP
problem (1.2) is greater than or equal to that of the primal IP (a lower
bound).

— If the LP primal (dual) is infeasible, then so is the IP primal (dual).

— If the LP primal (dual) is optimized by integer variables, then that solution
is feasible and optimal for the IP primal (dual).

— If the objective function coefficients are integer, then the optimal objective
for primal IP (2.1) is greater than or equal to the “round up” of the optimal
objective for the primal LP (1.1). The optimal objective for dual IP (un-
known) is less than or equal to the “round down” of the optimal objective
for the dual LP (1.2).

In fact, solving the LP relaxation does give some information: it gives a bound
on the optimal value, and, if we are lucky, it may give the optimal solution to
the IP. However, rounding the solution of the LP will not in general give the
optimal solution of the IP. In fact, for some problems it is difficult to round
and even get a feasible solution.

There is no single technique for solving integer programs. Instead, a lot of
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procedures have been developed. We indicate three possible approaches:

1. enumeration techniques, including the branch-and-bound procedure;

2. cutting-plane techniques; and

3. group-theoretic techniques.

There exists plenty of other procedures, which are simply a mixed-modification
of above mentioned approaches.

The cutting-plane technique was the first one introduced for IP, for which the
convergence in a finite number of moves, was proved[29]. The algorithm solves
integer programs by modifying LP solutions until the integer one is reached.
By adding new constraints a single LP is being redefined, which successively
reduces the feasible region until an integer optimal solution is found.

However, in practice, the Branch & Bound procedure almost always outperform
the cutting-plane algorithm. Therefore in this paper we will deal with the much
more efficient one.

2.2. Branch & Bound

Branch & Bound might be seen as a strategy of “divide and conquer.” The
main issue is to divide the feasible region to develop bounds LB ≤ z∗ ≤ UB
on z∗, and if it is still required, further partitioning.

Basic Intuitions

Let us consider primal IP problem (2.1), corresponding to the so-called root
node of a tree. Let X denote the constraint set of this problem:

X = {x ∈ Zn+ : Ax ≥ b}.

The search tree is constructed in an iterative way. By branching on an existing
node, for which the optimal solution of the LP relaxation is fractional, which
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means that some of the integer restricted variables have fractional values, the
new node is formed.

Next by selection of the fractional valued variable and adding proper con-
straints in each child subproblem, two child nodes are formed.

The essence of the B&B algorithm is as follows:

1. Solve the linear relaxation of the problem. If the solution is integer, then
we are done. Otherwise create two new subproblems by branching on a
fractional variable.

2. A subproblem is not active when any of the following occurs:

a) The subproblem was used to branch on,

b) All variables in the solution are integer,

c) The subproblem is infeasible,

d) The subproblem might be fathomed by a bounding argument.

3. Choose an active subproblem and branch on a fractional variable. Repeat
until there are no active subproblems.

The B&B algorithm is a search tree, of which leaves represent a partition,
and their nodes represent subpolyhedra that were further subdivided. Con-
sider now a partition of X into the subpolyhedra L1, . . . , Ls in such way that
X ⊂

∑s
i=1 Li and assume that these subpolyhedra are nonempty. Let LPi be

the linear program minxi∈Xi c
Txi associated with subpolyhedron Li. The B&B

optimality conditions are presented formally by the following theorem:

Theorem 13 (Ralphs, Guzelsoy, 2004). Let Bi be the optimal basis for LP i.
Let

U = min {cBi(ABi)−1b+ βi|1 ≤ i ≤ s, x̂i ∈ X ′}
and

L = min {cBi(ABi)−1b+ γi|1 ≤ i ≤ s},
where βi and γi are constant factors associated with nonbasis variables fixed at
nonzero bounds and x̂i is the BFS corresponding to basis Bi. If U = L, then
z∗ = U and for each 1 ≤ j ≤ s such that x̂j ∈ X ′ and cBj(ABj)

−1b = z∗, x̂j is
an optimal solution.
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Fathoming

There are some criteria with respect to which the Lj region need not to be
subdivided. This occurs when:

1. Fathoming by infeasibility
the LP over Lj is infeasible;

2. Fathoming by integrality
the optimal LP over Lj is integer;

3. Fathoming by bounds
the value of the LP solution zj over Lj satisfies zj ≤ z (while maximizing.)

Mathematical Algorithm

We introduced some intuitive rules of the B&B algorithm, now let us in-
troduce the general mathematical idea of it [20]. First of all, let us introduce
some useful notation. Let L denote the list of active subproblems {IP}i, where
IP 0 = IP denotes the original integer program. Let zi denote an upper bound
on the optimal objective value of IP i, and let zIP denote the incumbent ob-
jective value (the objective value corresponding to the current best integral
feasible solution of IP). The algorithm is as follows:

1. (Initialization): Set L = {IP 0}, z0 = −∞, and zIP = +∞.

2. (Termination): If L = Ø, then the solution z∗, which yielded the incumbent
objective value zIP is optimal. If no such z∗ exists, then IP is infeasible.

3. (Problem selection and relaxation): Select and delete a problem IP i from
L. Solve a relaxation of IP i. Let zRi denote an optimal objective value of
the relaxation, and let xiR be an optimal solution if one exists, which means
that: zRi = CTxiR or zRi =∞.

4. (Fathoming and Pruning):
— If zRi ≤ zIP go to Step 2.

— If zRi > zIP and xiR is integral feasible, update zIP = zRi . Delete from L
all problems with zi ≤ zIP . Go to Step 2.
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5. (Partitioning): {X i,j}kj=1 be a partition of the constraint set X i of problem

IP i. Add problems {IP ij}kj=1 to L, where IP ij is IP i with feasible region

restricted to X ij and zij = zRi for j = 1, . . . , k. Go to Step 2.

When we go from an original region to one of its subdivisions, we need to
add one constraint. This constraint is not satisfied by an optimal solution of
the LP relaxation over the original region, and this brings a motivation for the
dual simplex algorithm use in here.

When a new constraint is added with its own slack basic variable, we begin
with a starting solution for the dual-simplex algorithm, which actually has only
one negative basis variable.

Usually, only a few dual-simplex computations are needed to reach an opti-
mal solution. The primal-simplex algorithm would require many more pivoting
operations.

2.2.1. Partitioning Strategies within the B&B
Algorithm

Suppose xR is an optimal solution to the linear relaxation of a tree node.
Throughout the years there were some partitioning strategies proposed:
— Variable dichotomy.

When xRj is fractional, two new nodes are created in following way:

xj ≤ bxRj c and dxRj e ≤ xj,

where b· c, d· e denote, respectively, the floor and the ceiling of the real
number.

— Generalized-Upper-Bound Dichotomy (GUB Dichotomy).

When in the original IP program there is a following constraint
∑

j∈Q xj =

1, and xRi , i ∈ Q are fractional. The following partition:

Q = Q1 ∪Q2,

might occur, such that
∑

j∈Q1
xRj and

∑
j∈Q2

xRj are approximately of equal
value.
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Then by setting respectively:∑
j∈Q1

xj = 0 and
∑
j∈Q2

xj = 0,

two branches can be formed.

— Multiple branches for bounded integer variable.

When xRj is fractional and xj ∈ {0, . . . , l}, new nodes might be created
l + 1 with:

xj = k for node k = 0, . . . , l.

2.2.2. Branching Variable Selection

During the partitioning process, there must be selected a branching variable
to create the children nodes. There are some common approaches:

— Most/least infeasible integer variable.

The integer variable, whose fractional value is the farthest from (closest
to) an integral value is chosen.

— Driebeck-Tomlin penalties.

The penalties are defined as the cost of the dual pivot, which are neces-
sary to remove the fractional variable from the basis. When many pivots
are required to restore primal feasibility, these penalties may not be very
informative.

When forcing the value of the kth basic variable up, the up penalty is:

uk = min
j:akj<0

(1− fk)cj
−akj

,

where: fk is the fractional part of xk, cj is the reduced cost of the variable
xj, and the akj are the transformed matrix coefficients from the kth row of
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the optimal dictionary for the LP relaxation.

The down penalty dk is calculated as:

dk = min
j:akj>0

fkcj
akj

.

As the penalties are computed, there are several rules of the branching
variable selection. For instance:

max
k

max
k

(uk, dk) or max
k

min
k

(uk, dk).

When the LP objective value for the parent node minus the penalty is worse
than the incumbent integer solution, a penalty might be used to eliminate
a branch.

— Pseudocost estimate.

Not just the cost of the first pivot, as with the penalties, but the total
cost of all pivots, is reflected by pseudocost. When xk is a candidate on a
branching variable, the pseudocosts are computed as:

Uk =
zk − zuk
1− fk

and

Dk =
zk − zdk
fk

,

where zk is the objective value of the parent, zuk is the objecting value from
forcing up, and zdk is the objective value from forcing down.

If a variable has been branched upon repeatedly, an average may be used.

The maximum degradation is computed as follows:

Dkfk + Uk(1− fk).

and determines the selection of the branching variable.

If the problem has a large percentage of integer variables the pseudocosts
are not regarded as beneficial.
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— Pseudoshadow prices.

Pseudoshadow prices calculate the total cost of forcing a fractional variable
to become an integral one. For each constraint and for each integer variable
pseudoshadow prices are either given an initial value or specified by the user.

The branching variable is chosen using criteria similar to penalties and
pseudocosts.

— Strong branching.

Strong branching is applicable to 0-1 IP programs with simplex-based branch
and cut settings. The algorithm works as follows:

Let N,K ∈ Zn+. Having a solution for some LP relaxation, make a list
of N binary variables that are fractional and close to 0.5.

Let I be an index set of this list. Then, for each i ∈ I fix xi first to 0,
then to 1 and perform K iterations of the dual simplex method with the
steepest edge pricing.

Let Li, Ui, i ∈ I, be the objective values that result from these calcula-
tions, where Li corresponds to fixing xi to 0, and Ui to fixing it to 1.

Then the selection of a branching variable might be based on the best
weighted-sum of both values.

— Priorities selection.

Selection of the variables is based on user-assigned priorities, furthermore,
priorities may stem from objective function coefficients, or pseudocosts.

2.2.3. Node Selection

There are several strategies of the node selection, which, in fact, may affect
the improvement possibilities of an incumbent, the chance of node fathoming,
and the total number of problems necessary to solve before optimality is ob-
tained.
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— Depth-first-search with backtracking.

Choose a child of the previous node as the next node, when it is pruned
select the other child. When both of them are pruned, select the most
recently created unexplored node, which will be the other child node of the
last successful node.

— Best bound.

Select the node, with the best LP objective value, among all unexplored
nodes. Since nodes might be pruned only if its relaxed objective value is
less than the current incumbent, thus the node with the larger LP objective
value cannot be pruned.

— Sum of integer infeasibilities.

The sum of infeasibilities at a node is calculated as a:

s =
∑
j

min(fj, 1− fj).

Select the node with either maximum or minimum sum of integer infeasi-
bilities.

— Best estimate using pseudocosts.

The individual pseudocost might be used to estimate the resulting integer
objective value achievable from node k:

εk = zk −
∑
i

min(Difi, Ui(1− fi)),

where zk is the LP relaxation value at node k.

The best estimate indicates which node should be chosen.

— Best estimate using pseudoshadow prices.

Pseudoshadow prices can also be used to derive an estimate of the resulting
integer objective value achievable from the node, and the best estimate
becomes an indicator for node selection.
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— Best projection.

The projection is defined as an estimate of the objective function value,
which is associated with an integer solution, attained by following the sub-
tree that starts at this node.

In particular the projection pk associated with node k defintion is as follows:

pk = zk −
sk(z0 − zIP )

s0

,

where z0 denotes an objective value of the LP at the root node, zIP denotes
an estimate of an optimal integer solution, and sk denotes the sum of integer
infeasibilities at node k.

The projection is therefore the weighting between the objective function
and the sum of infeasibilities. The weight z0−zIP

s0
corresponds to the slope

of the line between 0 and the node, at which an optimal integer solution is
attained.

Let nk be the number of integer infeasibilities at node k, then a more
general projection formula might be provided. Let: wk = µnk + (1 − µ)sk,
where µ ∈ [0, 1] and define:

pk = zk −
wk(z0 − zIP )

w0

2.2.4. Preprocessing and Reformulation

Prior to and during B&B there the Problem preprocessing might be applied
and reformulation such as:

— Empty rows and columns removal. Implicit bounds and implicit slack vari-
ables detection.

— Removal of rows dominated by multiples of other rows.
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— Bounds strengthening within rows, having compared individual variables
and coefficients with the right-hand sides. Rounding might be used as an
additional strengthening for integral variables.

— Determining of the upper and lower bounds for the left-hand side of a
constraint, by rounding variables, and next comparison of them with the
right-hand side.

— Aggregation.

Given an equality constraint for which on some variable there is a bound
implied by the satisfaction of the bounds on the other variables, leads to
the constraint removal, and the substitution of this variable.

Integral variables might be eliminated only if their integrality is obtained
by the integrality of the remaining variables.

— Coefficient reduction.

Consider a constraint
∑

j∈K ajxj ≥ b in which all aj ≥ 0 and all xj ≥ 0.

If xj is a binary variable and aj > b, for some j ∈ K, replace aj with
b.

2.2.5. Continuous Reduced Cost Implications

At the lower bound one can notice that the reduced costs cj are nonpositive
for all nonbasis variables xj, while at their upper bounds they become nonneg-
ative, given an optimal solution to an LP relaxation with an objective value
zLP . When zip describes the objective value for an IP feasible solution, there
are few facts:

— If in the LP relaxation xj is at its lower bound, and additionally

zLP − zip ≤ −cj,
then there exists an optimal IP solution with xj at its lower bound.



36

— If in the LP relaxation xj is at its upper bound, while

zLP − zip ≤ cj,

then there exists an optimal IP solution, for which xj is at its upper bound.

A reduction of the IP size, might occur as a result of the removal of the fixed
variables from the problem when reduced-cost fixing is applied to the root
node.

2.2.6. B&B algorithm with efficiency improvement

The question is, if we are able to choose which region should be divided
next in order to obtain a near-optimal integer solution z′ rapidly?

If so, then we can make immediate elimination of some potential subdivisions.
In fact, if in any region the LP value z ≤ z′, then none of the objective values
of integer points in such an area can exceed z′, which results in the lack of need
of any further subdivisions in this region.

There is no universal procedure for decision-making, however, a lot of heuris-
tic methods have been introduced, for instance: the largest optimal LP value
selection.

The effectiveness of the B&B algorithm is hihgly dependent on the selection
of the variables for branching. A brief description of a few algorithms used
nowadays was given in the Branching Variable Selection section.

Derpich and Vera, inspired by Lenstra’s algorithm, have used the “Flatness
theorem”, thanks to which it is possible to bound the width of the feasible
region, with respect to the number of integral objective function values in
different directions [5].

The B&B method slices the polyhedron in a horizontal manner, the new ap-
proach suggests to cut the feasible region, either horizontally, or vertically, but
with a preference to the minimum lattice width direction. This requires solving
a very difficult problem - the “shortest integral vector” problem.

The authors have used ellipses to approximate the shape of the feasible region.
As the size of the ellipse’s axes bears information about the thinness of the
directions, it would possibly be tied with the minimum width directions of the
feasible region.



37

They have constructed a pair of concentric ellipses:

E = {x ∈ Rn : (x− x0)TQ(x− x0) ≤ 1}

and:

E ′ = {x ∈ Rn : (x− x0)TQ(x− x0) ≤ γ2}

such that:

E ⊂ P (d) ⊂ E ′,

where:

P (d) : solve max {CTx : Ax ≤ b, x ∈ Zn+}

They used ellipses based on a logarithmic barrier function for the polyhedron:

P = {x : αx ≤ b}

and:

ρ(x) = −
m∑
i=1

log(b− αTx),

where ρ was a barrier for polyhedron as ρ(x) → ∞, when x approaches the
boundary of P from the interior.

Then they defined an analytical center of P :

x = arg min ρ(x).

As computation of this center requires a lot of extra work, they have proposed
a different approach: a selection rule for the branching variable, based on the
vectors corresponding to the principal axes of the Dikin ellipse associated to
a central point. Having assumed that they have computed x, they have defined:

Q = ∇2ρ(x̄) = ATD(x̄)−2A,

where:

D(x̄) = diag(b− αTx).



38

Then, it can be shown that the ellipsoid constructed using Q satisfies the
required properties and γ = m + 1. The ellipse E is called a Dikin ellipse for
the polyhedron.

One of the problems that might occur is the fact that the shortest axis might
be too small, thus searching in the orthogonal directions may results in finding
more integral points. This brought them to use the following geometric fact:

Lemma 14. Let (β1, . . . , βn) be the vector corresponding to the shortest semi-axis
of the Dikin ellipse constructed with the point x0 as a center. Let:

δ = min{|βj| : j = 1, . . . , n}.

Let B(x0, δ)∞ be the ball, in the L∞ norm, of radius δ with center x0.

Then if δ < 0.5 and x0 is the center of the unit hypercube, then there is no
nonzero integral point in intB(x0, δ)∞.

Set-priority algorithm

1. As using an analytic center to define the ellipse is a very time consuming
step, a different computation of the polyhedral center was proposed:

max {t| Ax+ te ≤ b, t ≥ 0},

where:

e = [1, . . . , 1]T .

Let x̄ be the minimizer. This point is in the interior of the polyhedron, which
in fact is the center of the largest sphere contained in the polyhedron.

2. Let:

Q = ∇2ρ(x̄) = ATD(x̄)−2A,

where:

D(x̄) = diag(b− αTx).
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3. Let (β1, . . . , βn) be the shortest semi-axis of the following:

E = {x ∈ Rn : (x− x0)TQ(x− x0) ≤ 1}.

4. Let Θ = {βj : βj >
1
2
, j = 1, . . . , n}.

5. Let P = 1, S = Θ.

6. Repeat until S=Ø.

As the β-coordinates correspond to the directions in which it is more
probable to find integer coordinates for points contained in the polyhe-
dron, the highest priorities should be given in the following way: let k =
arg maxj {βj : βj ∈ S}. Then αk = p and S = S − {βk}, p = p+ 1.

End repeat.

7. The priorities for the remaining components are set to zero.

The computational results presented by the authors has indicated 50% better
performance of the B&B algorithm. However, the computation of the selection
is not truly based on the analytic center of the feasible region, but on the much
less time-consuming - polyhedra central point.

2.3. Dual Integer Programming

In general, any problem of form:

zD = max {g(u)|u ∈ U}

is called a dual problem with respect to the primal problem (2.1), when zD ≤ z∗,
and strong dual if it becomes equal.
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2.3.1. The Subadditive Dual

Wolsey introduced the following aproach to the dual problem:

zgD = max
g:Rm→R

{g(b)|g(Ax) ≤ cTx, x ∈ X ′} = max
g:Rm→R

{g(b)|g(d) ≤ x∗(d), d ∈ Rm}

Then z∗(d) = minx∈X′(d) c
Tx is the value function, which expresses the optimal

value of a MIP as a function of the right-hand side d and:

X ′(d) = {x ∈ Zp × Rn−p|Ax = d, x ≥ 0}.

Functions, that are solutions to the above mentioned program, approximate the
value function from below, hence the ones that agree with the value function
at b are optimal [21].

Clearly only a few solutions bound the value function equally well. Naturally,
the class of functions considered above might be restricted to belong to some
class of functions. Johnson and Jeroslow proposed an idea of restricting the
domain to the set of subaddiditve functions [21], such that it satisfies:

f(a+ b) ≤ f(a) + f(b) for all vectors a, b ∈ D.

In that way proposed Wolsey an approach that might be rewrited in the pure
integer case as the subadditive dual:

max f(b)

f(A) ≤ cT

f ∈ F

where: F - subadditive.

(2.3)

Blair indicated that the value function is able to be extended to a subad-
ditive function defined on all of Rn. Moreover Wolsey has showed that the
subadditive dual extends many of the properties of the LP dual, such as the
complementary slackness to MIPs, and what is more interesting the subadditive
dual provides sensitivity analysis to right-hand side perturbations. However,
such an approach becomes impractical with respect to large problems.
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2.3.2. Branch & Bound Dual

Wolsey and Schrage proposed in [22] an alternative way of deriving a dual
solution. Their approach of obtaining dual solutions from the B&B tree, does
not provide any independently computed upper bound, but constitutes a useful
sensitivity analysis tool.

The feasible set will be composed of the following functions:

f(d) = max {yd+ y0,min {f1(d), f2(d)}}, (2.4)

where y ≥ 0 and f1, f2 are either identically zero, or of the form (2.4). Strong
duality might be shown as follows.

At each node t of the search tree, the linear relaxation for the (2.1) is solved:

min cTx

Ax ≥ b (u)
x ≥ Lt (α)
−x ≥ −U t (β)

x ∈ Z+

where: c ∈ Rn, A ∈ Rm×n, and b ∈ Rm,

(2.5)

where u, α, β stands for the dual multipliers, and Lt, U t are the lower and
the upper bound defined by branching, respectively.

By weak LP duality the lower bound on the optimal value of (2.5) with per-
turbed right-hand side d = b+ ∆b is

vt(b) = ub+ αLt − βU t.

When (2.5) is infeasible, the dual solution u, α, β of the phase I problem might
still exist in which the objective function is the sum of negative constraint
violations [16]. Then vt(b) = −∞ if ub+ α− β > 0, and +∞ otherwise.

When t1, t2 are the child nodes of node t,

wt(b) = max {vt(b),min {wt1(b), wt2(b)}} (2.6)
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is a lower bound of the optimal value of (2.5) with right-hand side b = b+ ∆b
and integral x.

Since w0(b) is the optimal value of (2.1), the recursively computed function
w0 tied with the root node, solves the dual problem (2.3).

2.3.3. Inference Duality

The inference dual is the problem of inferring from the constraints the best
possible bound on the optimal value. A mixed integer problem has the form:

min z = cx

Ax ≥ b
0 ≤ x ≤ h
xj integer, j = 1, . . . , k.

(2.7)

The inference dual is defined:

max z

(Ax ≥ b, 0 ≤ x ≤ h)
D−→ cx ≥ z

where: D = D1 × . . .×Dk × Rn−k.

(2.8)

Therefore the largest z for which f(x) ≥ z can be inferred from the constraint
set is being sought after during the dual.

When the optimal value of a minimization problem is allowed to be ∞ or
−∞, if the problem becomes infeasible or unbounded, and the same for a max-
imization problem, the optimal value of the primal (2.7) equals the optimal
value of the dual (2.8), which is a consequence of the Strong Inference Duality
Theorem proved by Hooker in [11]:

When an optimal value of the primal is z∗, then solving the dual (2.8) be-
comes simply the proof of f(x) ≥ z∗ using the constraints as premises. The
same proof exhibits that f(x) ≥ z∗−∆z for ∆z ≥ 0. For the MIP the proof is
reconstructed from the B&B search tree, which solves the primal problem.
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Logical Properties of Inequalities

Dawande & Hooker suggest to treat a mixed integer inequality of the form
bx ≥ β as a proposition in the logic of discrete variables [4].

While the MIP problem is being solved there might be k integer variables:
x1, . . . , xk and other variables xk+1, . . . , xn, that are continuous, in sense that
they take a fractional value.

Let us now suppose that:

xj ∈ {0, 1, . . . , hj} for j = 1, . . . , k and 0 ≤ xj ≤ hj for j = k+1, . . . , n.

However, when the continuous variable xj is unbounded, hj ought to be set to
infinity.

When bx ≥ β is satisfied by (x1, . . . , xn) = (v1, . . . , vn) for some assignment to
xk+1, . . . , xn such that 0 ≤ vj ≤ hj for j = k + 1, . . . , n, then the following as-
signment (x1, . . . , xk) = (v1, . . . , vk) does not violate the previously mentioned
inequality bx ≥ β, otherwise it does.

Hooker & Dawande’s sensitivity analysis methodology is concerned with partial
assignments that are imposed by the branch cuts in a search tree [4].

During the B&B procedure, one branches on a variable xj that, in the solution
of the LP relaxation, has a fractional value between two integers v and v + 1.

These values impose cuts of the following form:

xj ≤ v, xj ≥ v + 1.

Such branch cuts from every given node make the partial assignment A:

xj ∈ {vj, vj + 1, . . . , vj, j = 1, . . . , k}

where vj, vj takes integer values from {0, 1, . . . , hj} for j = 1, . . . , k.

With a partial assignment A, there are associated falsified clauses, the weakest
one is:

CA =
∨k

j=1
(xj /∈ {vj, . . . , vj}).
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Hooker & Dewande introduced the following necessary and sufficient condition,
ensuring that an inequality implies a clause of the upper form [4]:

Lemma 15. bx ≥ β implies CA if and only if there exist b1, . . . , bn such that:

n∑
j=1

bjvj + bj(vj − vj) < β,

bj ≥ bj ≥ 0, j = 1, . . . , n.

where (vj, vj) = (0, hj) for j = k + 1, . . . , n.

Solution Procedure

A solution of the dual (2.8) can be recovered in the following way. At each
leaf node of the tree, let z be the best integral solution found so far for a
solution that is feasible in (2.7), if a solution was not found, z =∞.

At each node, as the original constraint set is strengthened with branching
cuts of the form xj ≤ Up or xj ≥ Lp, mentioned in the previous section, the
following linear relaxation is being solved:

min z = cx

Ax ≥ b (u)
x ≥ Lp (α)
−x ≥ −Up (β)
0 ≤ x ≤ h

(2.9)

Then one of the following cases is satisfied:

1. The linear relaxation (2.9) is infeasible. Then a non-negative vector (u, α, β)
of dual multipliers proves infeasibility. That is:

upA+ α− β ≤ 0 and upb+ αpLp − βpUp > 0.

Thus the following constraints are infeasible:

upAx ≥ upb, Lp ≤ x ≤ Up, 0 ≤ x ≤ h.
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In other words, the surrogate is inconsistent with bounds.

2. The solution of (2.9) is integral and equals to ẑp, where ẑp < z. In that
situation for any ∆z ≥ 0, the following set of constraints becomes infeasible:

−cx ≥ −ẑ + ∆z, Ax ≥ b, x ≥ Lp, −x ≥ −Up, 0 ≤ x ≤ h.

When (up, αp, βp) is a dual solution of (2.9), then the multipliers (1, up, αp, βp)
prove infeasibility of the constraint set mentioned above, which means that
bounds are inconsistent with the following surrogate:

(upA− c)x ≥ Upb− ẑ + ∆z.

3. The solution of (2.9) is integral and equals ẑp, where ẑp ≥ z. In that situa-
tion for any ∆z ≥ 0, the following set of constraints becomes infeasible:

−cx ≥ −z + ∆z, Ax ≥ b, x ≥ Lp, −x ≥ −Up, 0 ≤ x ≤ h.

As before, the multipliers (1, up, αp, βp) prove infeasibility, and bounds are
inconsistent with the following surrogate:

(upA− c)x ≥ Upb− z + ∆z.

Therefore bounds are inconsistent with the surrogate at every leaf node, the
main issue to sensitivity analysis is to keep contradictions at every leaf node,
and the proof remains valid.

2.4. Inferenced-Based Sensitivity Analysis for

MIP

Hooker with Dawande in [4] have introduced a new approach - search and
inference, based on two parallel points of view. From the primal problem one
can derive what values should be assigned to the variables, as from the dual,
what may be inferred from the constraints.

The primal problem is solved by the usual B&B method, while the dual is
solved with respect to inference methods for generating new constraints with
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the aim at inferring the best possible bound on the objective function value.

During sensitivity analysis the contribution of each constraint in the proof
of optimality is examined. It might be revealed, that some of them do not have
impact on the proof and might be dropped, while others are suspectible to
alterations, which do not affect the proof.

The analysis presented by Dawande & Hooker allows any kind of perturbation
of the problem data, i.e. within right-hand sides, constraint coefficients and the
objective function values.

Hooker and Dawande have developed two ways of sensitivity analysis for a
given minimization problem. The so-called dual analysis, which allows to de-
termine how much the problem can be altered, while keeping the objective
function value at some prespecified level. This method uses the inference dual.

They have proposed a primal analysis as well, achieved by solving LP problems
at feasible leaf nodes of the search tree. The analysis gives an upper bound on
the objective function, when the main problem is altered by a given amount.

Let z∗ be the optimal value of (2.7), and suppose that (2.7) is perturbed as
follows:

min z = (c+ ∆c)x

(A+ ∆A)x ≥ b+ ∆b
0 ≤ x ≤ h
xj integer, j = 1, . . . , k.

(2.10)

The violated surrogate becomes in corresponding cases:

1. up(A+ ∆A)x ≥ up(b+ ∆b),

2. (up(A+ ∆A)− (c+ ∆c))x ≥ up(b+ ∆b)− ẑ + ∆z,

3. (up(A+ ∆A)− (c+ ∆c))x ≥ up(b+ ∆b)− z + ∆z.

Let up be the vector u of dual multipliers at leaf node p. The surrogate at node
p is:
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(upA− up0c)x ≥ upb− zp + ∆zp + ε,

which can be written as:

qpx ≥ upb− zp + ∆zp + ε.

where

qp = upA− up0c,

∆qp = up∆A− up0∆c.

After the problem is perturbed this surrogate becomes:

(qp + ∆qp)x ≥ up(b+ ∆b)− zp + ∆zp + ε.

and:

(up0, zp −∆zp) =


(0, ε) case(1)

(1, ẑp −∆z) case(2)

(1, z̄p −∆z) case(3).

The question rises: how much alteration is possible? To answer this question
Hooker & Dawande introduced a helpful observation, based on the Lemma 15:
the bounds are inconsistent with inequality dx ≤ δ if and only if there exists a
vector d > 0, such that:

dL+ d(U − L) < δ, d ≥ d and d ≥ 0.

With respect to the n variables this becomes:

n∑
j=1

djLj + dj(Uj − Lj) < δ, dj ≥ dj and dj > 0, j = 1, . . . , n. (2.11)

Having used this observation, the bound z ≥ z∗ −∆z remains valid for (2.10)
if the perturbations satisfy for some vector q̄p > 0 at every leaf node p, the
following:
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∑n
j=1(qpj + ∆qpj )L

p
j + q̄pj (U

p
j − L

p
j) ≤ up(b+ ∆b)− zp + ∆zp,

q̄pj ≥ qpj + ∆qpj ,

q̄pj ≥ 0,

(2.12)

where:

(Lpj , U
p
j ) = (0, hj) for j = k + 1, . . . , n.

Hooker & Dawande have introduced this as the following theorem:

Theorem 16. [4] If (2.7) is perturbed as in (2.10), then the optimal value of
(2.7) decreases at most ∆z, when the perturbation satisfies the linear system
consisting of the inequalities (2.11) for each leaf node p of the search tree.

Thus assuming that there exist sp1, . . . , s
p
n, we may take q̄pj = spj+q

p
j . The sen-

sitivity analysis might be introduced for each constraint in the system Ax ≥ b.
If sp1, . . . , s

p
n satisfy the following set of inequalities, for each leaf node p with

upi > 0 the constraint z ≥ z∗ −∆z remains valid:

upi
∑n

j=1AijL
p
j +

∑n
j=1 s

p
j(U

p
j − L

p
j)− u

p
i∆bi ≤ rp,

spj ≥ upi∆Aij, s
p
j ≥ −q

p
j , j = 1, . . . , n,

(2.13)

where

rp = −
n∑
j=1

qpjU
p
j + upb− zp + ∆zp.

A perturbation ∆c of the objective function can be similarly analyzed. The
bound remains valid if, for each leaf node p with up0 = 1, there are sp1, . . . , s

p
n

that satisfy the following:

∑n
j=1 ∆cjL

p
j − s

p
j(U

p
j − L

p
j) ≥ −rp,

spj ≥ −∆cj, s
p
j ≥ −q

p
j , j = 1, . . . , n. (2.14)

To summarize:
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If z∗ is the optimal value of (2.7), then the bound z ≥ z∗ −∆z remains valid
when constraint Aix ≥ bi is perturbed to (Ai+∆Ai)x ≥ bi+∆bi, provided that
there are sp1, . . . , s

p
n that satisfy the linear system consisting of the inequalities

(2.13) for each leaf node p with upi > 0.

If z∗ is the optimal value of (2.7), then the bound z ≥ z∗ −∆z remains valid
when the objective function is perturbed to (c+ ∆c)x, provided that there are
sp1, . . . , s

p
n that satisfy the linear system consisting of the inequalities (2.14) for

each leaf node p with up0 = 1.

In other words the basic idea of the proposed approach is to utilize the in-
formation obtained from the sensitivity analysis of the deterministic solution
to determine the importance of different parameters and constraints and the
range of parameters where the optimal solution remains unchanged.

More speciffically, there are two parts in the proposed analysis. In the first
part, important information about the effect of different parameters is extracted
following the sensitivity analysis step, whereas in the second part alternative
solutions are determined and evaluated for different uncertainty ranges.

First, the deterministic problem is solved at the nominal values using a branch
and bound solution approach, and the dual multipliers up are collected at each
leaf node p.

Then the inference-based sensitivity analysis as described in previous section is
performed. Note that, only the dual information of the nodes that correspond
to nonzero dual variables is required.

Primal analysis

A simple primal analysis obtains an upper bound on the optimal value that
results from a given perturbation of the problem data. Let F be the set of
nodes of the search tree at which feasible solutions were found for the original
problem. For each node p ∈ F consider the linear programming problem:

min z = (c+ ∆c)x

(A+ ∆A)x ≥ b+ ∆b
x ≥ Lp

−x ≥ −Up

0 ≤ x ≤ h
xj = xj, j = 1, . . . , k,

(2.15)
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where x1, . . . , xk are the integral solution values of x1, . . . , xk at node p. Then
if z′p is the optimal value of (2.15) at node p, minp∈F z

′
p is an upper bound on

the optimal value of the perturbed problem (2.10).

Implementation

The procedure described is straightforward to implement within a B&B
framework. Deriving a surrogating inequality which is violated by the partial
assignment at a leaf node requires the following:

1. the bounds on the variable that are restricted by branch cuts at the leaf
node,

2. the dual solution vector corresponding to the original problem constraints
Ax ≥ b.

If the inequalities, which are to be investigated during sensitivity analysis, are
not known beforehand, then the part of the dual solution corresponding to the
original constraints Ax ≥ b must be stored for every leaf node. However, if the
constraints of interest are known in advance, only the leaf nodes at which the
corresponding dual variables are nonzero are relevant.

Regardless of whether the constraints of interest are specified in advance, the
tolerance ∆z on the optimal value need not to be fixed until the linear system
used to compute sensitivity ranges is already set up. The user can interactively
try different values of ∆z and obtain the corresponding ranges.

Jia and Ierapetritou Approach

Zhenya Jia and Marianthi G. Ierapetritou have considered the Short-Term
Scheduling problem under Uncertainty Using MIP Sensitivity Analysis [13].

Their approach is based on the Hooker & Dawande approach. They basically
use the Hooker & Dawande Duality Analysis to obtain possible problem per-
turbations, ranges of uncertain parameters for some alterations in the objective
function. Next, they proceed to continue the B&B procedure, but only on the
nodes with the objective value within some predicted limits.

The alternative schedules are assessed with respect to the robustness metric
and the average and the nominal schedule in terms of the objective function
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[13]. This, in consequence, makes the problem much larger, and much more
difficult to be dealt with.

The New Approach

Having implemented the primal analysis, we can see that not only we are
able to obtain an upper bound, but what is more - all possible different sce-
narios with the solution that is equal to an upper bound.

If now we would consider the original problem, and instead of the primal anal-
ysis, just solve our MIP without any perturbations at each feasible node, we
will be provided with the set of all possible efficient solutions. That means
that a decision maker now has the possibility to select which optimal solution
he would like to choose. It is a big change of quality as usually software only
provides the decision maker with the first efficient solution found. Thus it gives
us an useful sensitivity analysis tool.



Chapter 3

Multicriteria Optimization

Multiple objective linear and integer programming problems play a central
role in the field of multicriteria optimization. Besides their relevance for practi-
cal applications, they are theoretically interesting due to their connection with
the classical theory of (single objective) linear and integer programming.

Wherever two or more conflicting objectives occur, an application of multi-objective
optimization problems might be found. Decision makers may want to miximize
the proft, while minimizing the cost at the same time. This situation stands as
the easiest example of multicriteria optimization technique.

In this chapter some sensitivity analysis techniques are introduced, that have
been introduced in previous years by researchers. However, we will not use this
theory to conduct the sensitivity analysis within the call center framework.

3.1. Multiple Objective Linear Programming

MOLP constitutes a fast growing branch of mathematical programming,
mainly it is resulted by offering plenty points of view to the solution of many
complex problems. The vector maximization algorithm contributes to searching
MOLP efficient solutions, from which a decision maker may select those, he
prefers.



53

3.1.1. Classical MOLP problem

Let us define the classical form of the MOLP problem:

Vmax Cx

Ax ≤ b
x ∈ Rn

+

where: b ∈ Rm, C ∈ Rk×n, A ∈ Rm×n

(3.1)

Furthermore let us call Rn a decision space, while Rk is the criterion space.

3.1.2. Graphical method

There exist two equivalent graphical methods for computing the efficient
solution sets: in a decision space, and in a criterion space. Let us first introduce
the following theorem:

Theorem 17 (Characterization of the feasible region for MOLP). If the fea-
sible region X is bounded, then it is a convex hull of all its own vertexes:

X = {x ∈ Rn : x =
s∑
i=1

(λiAi),
s∑
i=1

(λiAi) = 1, λ ≥ 0},

where:

{A1, . . . , As} - the vertex set of X.

Graphical method in a decision space

The method described below will be introduced in the situation when we
deal with only two decision variables, but there is an arbitrary number of partial
objective functions.
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Theorem 18 (Characterization of the efficient solutions set Xs for MOLP).
Let S be a polyhedra defined in the following way:

S := {x ∈ Rn : Cx ≥ 0},

then:

— if S is a point or a line, then X = Xs,

— if S a half-plane, then:

Xs = {x ∈ Rn : X ∩ int{x+ S} = Ø},

— If S is a polyhedron different that the one descibed in the previous part,
then:

Xs = {x ∈ Rn : X ∩ {x+ S} = {x}}.

Graphical method in a criterion space

The following method is based on a drawing of the set of all possible ob-
jective function vectors, thus it is applied only if there are only two objective
functions, and only two decision variables.

Theorem 19 (Set of all possible objective function values). Let X be the fea-
sible region:

X = {x ∈ Rn : x =
s∑
i=1

(λiAi),
s∑
i=1

(λiAi) = 1, λ ≥ 0},

where:

{A1, . . . , As} - the vertexes set of X,

then the set of all possible objective function values is defined by:

C(X) = {y ∈ Rk : x =
s∑
i=1

(λiC(Ai)),
s∑
i=1

(λiAi) = 1, λ ≥ 0}.
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Theorem 20 (Characterization of undominated price sets for MOLP). Let Rk
+

be a polyhedron of non-negative vectors, that means: Rk
+ = {z ∈ Rk : z ≥ 0}

then:

y ∈ YN ⇐⇒ Y ∩ {y + Rk
+} = {y}.

3.1.3. Mulitiple objective simplex tableu

Let us introduce some basic notation:

B = {j1, . . . , jm} − the set of basis indexes
N = {jm, . . . , j(m+n)} − the set of non-basis indexes

AB = [aj1 , . . . , ajm ] − submatrix of A, associated with B

AN − submatrix of A without basis columns
xB − vector of basis variables
xN − vector of non-basis variables
CB − basis columns of a cost matrix C
CN − non-basis columns of a cost matrix C
c − matrix of optimality indicators

Definition 8. We call the vector [xB, xN ]the basis feasible solution with respect
to B if:

xB = A−1
B b ≥ 0,

xN = 0.

And we call a such base the feasible base.

This leads us to a simplex tableau for fixed base B:

C
x

xB CT
B A−1

B A A−1
B b

C CBA
−1
B b
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3.1.4. Pivoting rules

Neighbour vertex generating

If x∗ is a BFS (basis feasible solution) with respect to B, then for all s /∈ B

such that in the s-column of the A−1
B A matrix there exists at least one positive

element, then there exists a neighbour BFS to x∗, such that xs is a basis
variable. Pivoting from x∗ to x∗∗ is described by:

x∗∗k =


x∗k − α(s)· (A−1

B A)is k ∈ B

α(s) k = s
0 k /∈ B ∪ {s},

where:

α(s) = min

{
A−1
B bi

(A−1
B A)is

: (A−1
B )is > 0, i = 1, . . . ,m

}

Unbounded edge generating

If x∗ is a BFS with respect to B, and s /∈ B is such that in the s-column
of the A−1

B A matrix all elements are nonpositive, then there exist unbounded
edge of the set X, with the beginning in x∗, and the direction described by:

xk =


−(A−1

B A)is k ∈ B

1 k = s
0 k /∈ B ∪ {s}.

3.1.5. Basis feasible solution

It commonly occurs that for finding the first BFS, slack variables should be
used, which requires solving the following subproblem:

min 1Tv

Ax+ Iv = b

where : 0 ≤ x ∈ Rn, 0 ≤ v ∈ Rm.

(3.2)
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Theorem 21. If an optimal value of an objective function in the above men-
tioned slack subproblem is equal to 0, and the basis optimal solution is a vector
[xd, vd], then xd is the BFS in the MOLP.

However, if an optimal value of an objective function is larger than 0, then
the set X of efficient solutions in MOLP is empty.

3.1.6. Finding Initial Efficient Extreme Point

Benson’s method is known for generating the first basis efficient solution
for a MOLP problem [2]. The method consists of two steps. In the first one,
the following corresponding to MOLP problem - LP program is solved:

min {−zTCxd + wT b− α(1T b)}

zTC − wTA+ α(1TA) + Iv = −1TC,

where : 0 ≤ v ∈ Rn, 0 ≤ z ∈ Rk, 0 ≤ w ∈ Rm, 0 ≤ α ∈ R.

(3.3)

Then if the program (3.3) does not have an optimal solution, there does not
exist an efficient extreme point for a corresponding MOLP problem. However,
if an optimal solution of the program (3.3) exists, it takes the form of the
following vector [z∗, u∗, v∗, α].

When an optimal solution of the LP program (3.3) is equal to 0, and xd = 0,
then if and only if xd is a basis solution, x∗ is a basis efficient solution for the
corresponding MOLP problem.

When an optimal solution of the LP program (3.3) is greater than zero, then
we proceed to the second step of the algorithm.

The efficient vertex is derived by the solution of the following LP problem:

max (z∗ + 1)TCx

Ax = b

where : x ≥ 0.
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3.1.7. ADBASE algorithm

The ADBASE method consists of three phases:

1. Either compute the first basis feasible solution, or prove that considered
problem is unsolvable.

2. Either compute the first basis efficient solution, or prove that considered
problem is unsolvable.

3. Computation of all efficient solutions and efficient edges.

3.2. Sensitivity Analysis in MOLP

The several types of sensitivity analysis might be proposed:

— on objective function coefficients alterations

— on a removal of an objective function

— on an addition of an objective function

— on right-hand side changes

— or on alterations of the matrix A.

We will focus on the first branch of SA.

3.2.1. Sensitivity Analysis of efficiency

Preliminaries

Definition 9. We call x∗ an efficient solution of MOLP if there does not exist
an x’ such that:
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Cx∗ ≤ Cx′ ∧ Cx∗ 6= Cx′.

Definition 10. If there exist i ∈ B, such that (xB)i = 0, then we call the
solution xB degenerated, and (xB)i a degenerated basis variable. Let us denote
the number of degenerated variables by d, and analogously by [A−1

B AN ]D the
matrix associated with the degenerated basis variables.

We will denote the set of all efficient solutions of our problem by XS.

Theorem 22 (Testing efficiency of extreme points). [Steuer] Consider the fol-
lowing single objective linear program associated with an extreme solution x∗:

max 1Tv

−CNy + Iv = 0
[A−1

B AN ]Dy + Is = 0
y ≥ 0, v ≥ 0, s ≥ 0.

(3.4)

The solution x∗ is efficient if and only if the above mentioned problem has an
objective function value of zero.

We will consider the following problem:

V max {Dij
t x : x ∈ X},

where Dij
t is a matrix obtained from C, by changing only one parameter cij

into parameter t :

[Dij
t ]kl =


ckl (k, l) 6= (i, j)

t otherwise.

Whenever it does not cause misunderstanding, we omit the indices, and de-
fine D := Dij

t , analogously. We will denote the reduced cost matrix of our new
problem by D.
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Definition 11. We denote the set of all values of parameter t for which a
given solution is efficient of our problem in the following way:

Tx∗ = {t ∈ R : x∗ ∈ XS}.

Theorem 23. The set Tx∗ is convex.

[23]. Let t0, t1 ∈ Tx∗ , λ ∈ (0, 1). We denote tλ = λt1 + (1 − λ)t0. It is easily
seen that:

Dtλ = λDt1 + (1− λ)Dt0 .

We will use the following well-known characterization of the efficient solutions:

t ∈ Tx∗ ⇐⇒ ∀x ∈ X, Dtx ≥ Dtx
∗ =⇒ Dtx = Dtx

∗.

Let x′ fulfill Dtλx
′ ≥ Dtλx

∗, then:

λDt1x
′ + (1− λ)Dt0x

′ ≥ λDt1x
∗ + (1− λ)Dt0x

∗.

Hence we get:

Dt1x
′ ≥ Dt1x

∗ or Dt0x
′ ≥ Dt0x

∗.

Let us assume the latter one. Since t0 ∈ Tx∗ we have:

Dt0x
′ = Dt0x

∗,

analogously the same holds for t1, what provides:

Dtλx
′ = Dtλx

∗.

We have shown that if an arbitrary x′ ∈ X fulfills Dtλx
′ ≥ Dtλx

∗, then Dtλx
′ =

Dtλx
∗. It means that tλ ∈ Tx∗ , which proves that Tx∗ is convex.

Graphical method for testing efficiency

Theorem 24 (Steuer).

x∗ ∈ XS ⇐⇒ Dx∗ ∩X = {x∗},
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where:

Dx∗ = {x∗}+ {y ∈ Rn : Cy ≥ 0 ∧ Cy 6= 0} ∪ {0 ∈ Rn}.

Numerical method for testing efficiency

We now build a numerical method in order to determine the set Tx∗ , which
is resulted by the Steuer theorem, introduced at the beginning of this chapter:

max 1Tv

−CNy + Iv = 0
[A−1

B AN ]Dy + Is = 0
y ≥ 0, v ≥ 0, s ≥ 0.

(3.5)

3.2.2. Sensitivity Analysis of weak-efficiency

The sensitivity analysis is presented here in the following way: is a given
weak efficient solution still weak efficient after one objective function coefficient
change? Moreover we limit our consideration to the extreme feasible solutions.
Our aim is to compute the set of the parameters (corresponding to only one
coefficient) for which a given feasible solution is weak efficient. This section
shows that this set is a closed interval.

Preliminaries

Definition 12. We call x∗ a weak efficient solution of the MOLP if there does
not exist an x’ such that:

Cx∗ < Cx′.

We will denote the set of all efficient solutions of our problem by XW .

Definition 13. We denote the set of all values of parameter t for which a
given solution is weak efficient of our problem in the following way:

TWx∗ = {t ∈ R : x∗ ∈ XW}.
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Graphical method for testing weak efficiency

Theorem 25 (Steuer).

x∗ ∈ XW ⇐⇒ DW
x∗ ∩X = {x∗},

where:
DW
x∗ = {x∗}+ {y ∈ Rn : Cy > 0} ∪ {0 ∈ Rn}.

Numerical method for testing weak efficiency

Theorem 26 (Steuer). The extreme solution x∗ is a weak solution if and only
if the following problem:

max r

−DNy + 1r ≤ 0
[A−1

B AN ]dy + Is = 0
0 ≤ y ∈ Rn−m, 0 ≤ s ∈ Rd, 0 ≤ r ∈ R,

(3.6)

has a bounded objective function value of zero.

Properties of TWx∗ set.

Theorem 27. The set TWx∗ is convex.

[24]. Let t0, t1 ∈ TWx∗ , λ ∈ (0, 1). We denote tλ = λt1 + (1− λ)t0. Moreover let
us fix x∗ ∈ X and let Di

t denote the i -th row of matrix Dt.

Suppose that for some λ ∈ (0, 1) we have: tλ /∈ TWx∗ , then we may find such
x′ ∈ X that:

Dtλx
∗ < Dtλx

′,

and for all k 6= i one has:

Dk
t0
x∗ = Dk

t0
x∗ = Dk

tλ
x∗ < Dk

tλ
x′ = Dk

t1
x′ = Dk

t0
x′.
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This leads to two cases:

1. Di
t0
x′ ≤ Di

t0
x∗.

Then it holds that:

Di
t1
x′ > Di

t1
x∗,

as a result of comparison of two linear functions: f1 = Di
tx
∗ and f2(t) =

Di
tx
′. This means that t1 /∈ TWx∗ , thus we have obtained a contradiction with

our basic assumptions.

2. Di
t1
x′ ≤ Di

t1
x∗.

Then it holds that:

Di
t0
x′ > Di

t0
x∗,

as a result of comparison of two linear functions: f1 = Di
tx
∗ and f2(t) =

Di
tx
′. This means that t0 /∈ TWx∗ , thus we have obtained a contradiction with

our basic assumptions.

We have shown that for all λ ∈ (0, 1) we have tλ ∈ TWx∗ , which means that the
set TWx∗ is convex indeed.

It is well known that on the real line convex sets are intervals, hence we
obtain the following corollary:

Corollary 1. The set TWx∗ is a closed interval.

The following corollary shows some connections between the sensitivity
analysis of weak efficiency and the sensitivity analysis of efficiency.

Corollary 2. It holds for all x∗ ∈ X, that:

clTx∗ ⊂ TWx∗ .
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Proof. From the definitions of Tx∗ , T
W
x∗ sets we have:

Tx∗ ⊂ TWx∗ .

Hence:

clTx∗ ⊂ clTWx∗ .

Moreover we know that clTWx∗ = TWx∗ , thus:

clTx∗ ⊂ clTWx∗ = TWx∗ .

The question is if there an equality might hold:

clTx∗ = TWx∗ ?

The following example shows this to be false.

Example 1. Consider a problem:

V max [x1, x2]
x1 + x2 ≤ 2,
x2 ≤ 1.

The feasible region X = {(x1, x2) : x1 +x2 ≤ 2, x2 ≤ 1} is a polyhedron
with the extreme points:

-

6

r

r r

r@
@

@
@

@
@

x1 = [0, 0]

x4 = [0, 1]

x2 = [2, 0]

x3 = [1, 1]

X

Using the graphical method let us derive Tx∗ and TWx∗ sets for these points.
We do that in the following way. First, we analyze the sensitivity for extreme
points and c11 = t, then we obtain Tx∗ and TWx∗ sets corresponding to each
extreme point:
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T[0,0] = Ø TW[0,0] = (−∞, 0]

T[0,1] = (−∞, 0] TW[0,1] = R

T[1,1] = [0,+∞) TW[1,1] = R

T[2,0] = (0,+∞) TW[2,0] = [0,+∞).

The results above already show differences between the following sets: clTWx∗ and
TWx∗ . Thus the example contradicts that these sets are equal in general. However,
it is still interesting to study which conditions guarantee such equality. As we
see in our example only clTW[2,0] = T[2,0].

Summary

We studied the sensitivity analysis of weak efficiency in the MOLP for
extreme feasible solutions. We proved that the set of the parameters for the
considered problem is closed and convex. To compute the set of the parameters
for which a given extreme solution is weak efficient we proposed the method
based on the simplex algorithm. We showed in the illustrative examples the
differences and similarities between the sensitivity analysis of efficiency and the
sensitivity analysis of weak efficiency.

3.3. Multiple Objective Integer Programming

Having used integer variables in the MOLP problems results in a more
realistic modelling approach. Some issues as the minimum capacity size of the
new units, economies of scale in the investment cost are not possible to be
modeled without integer or binary variables.

Now we are going to introduce the multicriteria version of Branch & Bound(MCBB)
algorithm, developed by Mavrotas and Diakoulaki, which not only supplies the
set of all efficient solutions, but at the same time, it indicates corresponding
efficient combinations in MOIP and the same in MOMIP.

The entire chapter is based on the work of Mavrotas and Diakoulaki - the inven-
tors and developers of the Multicriteria Branch & Bound method: [17],[18],[19].



66

3.3.1. Multicriteria Branch & Bound

In 1998, Mavrotas and Diakoulaki have introduced a Branch-and-Bound
method for multicriteria optimization [18], where the characteristics of the
multiple objective problem becomes vectors, instead of scalars, as it is in the
single objective case. During the procedure, at each node the current best value
is being calculated, and the vector of ‘the best case’ point is formed.

The set of efficient points is generated at final nodes, while it is stored in
an incumbent list Dex, updated each time a final node is visited. The final list
of the points, stored in the list, becomes the set of the efficient solutions for
the multiple objective problem.

Due to the vector comparisons at each node, the fathoming condition becomes
much more difficult to be met. The generating of an efficient solutions’ set at
the final nodes remains the most time-consuming part: based on the MOLP
Simplex Method, the efficient points there are derived using the Evans-Steuer
criterion for the identification of the efficient movements in the Simplex algo-
rithm.

There are several important differences between the usual B&B and MCBB
algorithms:

1. First of all, an ideal vector with the individual optimal values for each
objective function is computed at each node. However those values usually
might not be reached by a feasible solution.

2. Moreover, all possible efficient points are computed at each leaf node.
Mavrotas and Dioukalaki have introduced, the so-called partially efficient
points (PEP ), stored in an incumbent listDex, candidates for being efficient
points of the Mixed 0-1 MOLP.

At each leaf node, Dex, is updated: at first, it should be checked if any
point stored in Dex dominates the new ones. Then we procede to examine
whether any of the stored points are dominated by the new ones. The
dominated ones are being removed out of Dex.

3. If an ideal vector is dominated by a PEP , then a node is fathomed. The
fathoming condition at each k node might be defined in the following way:

∃i ∈ Dex such that max fj(k) ≤ effpj(i) + εj ∀j = 1, . . . , p
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fj(k) − j-th element of the ideal vector of node k
effpj(i) − the value of the j-th objective of the i-th efficient point in Dex

p − the number of objective functions
εj − small tolerance

with at least one strict inequality.

4. As there are more than one efficient solutions in the MOIP, thus the branch-
ing variable may take a lot of values, which results in the fact that the
decision space is unable to be divided in two separate sub-regions for the
multi-criteria case.

3.3.2. Transitions between nodes

In their latest paper, Mavrotas and Diakoulaki have proposed an imple-
mentation of the Revised Simplex with Bounded Variables (RSBV) method
for MCBB algorithm, thanks to which it becomes easier to deal with binary
variables with upper bound, determined by 1. The transitions are as follows:

— By ind denote the number of a node, while by ilv the number of a level of
the B&B tree

— Let us suppose that the ind node is situated on the ilv level
— When the idealvector is derived at node ind, then the status of the simplex

tableau ties with the optimal solution of L - the last objective function
optimized.

— The indices of the non-basis columns which are allowed to take part in the
simplex operations are contained by the list cclist.

— The LP optimizations necessary to derive the ideal vector, are performed
consecutively with usage of a warm start rule.

3.3.3. Efficient points

The generation of each efficient point takes place at each leaf node of the
MCBB tree. An ad hoc generation approach (EFFTREE) is used, to derive
the set of efficient points, for each leaf node of MOLP sub-problems.

The EFFTREE method uses the RSBV method, with Evans-Steuer criterion
[25], and the second Zeleny’s criterion [31], for testing the non-basis variables
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efficiency.

The combination of both criteria let the number of the subroutine calls to the
Evans Steuer subproblem be reduced. The EFFTREE algorithm is developed
on the basis of the ADBASE method developed by Steuer and introduced as
well in the MOLP section of this chapter. However, it is significantly altered
to fit the MCBB algorithm in order to take account of the binary variables.
Since the binary character of these variables are obliged to remain unchanged
throughout the efficient extreme points’ generation process and thus the corre-
sponding columns are prevented from entering the basis using the information
existing in cclist.

The MCBB algorithm provides the generation of both supported and unsup-
ported efficient points, giving the complete efficient set of the Mixed 0-1 MOLP
problem.

3.3.4. PEP detection

After the termination of MCBB in Dex only the points are left, that are
not dominated by any other one in Dex.

Still there might occur situations when partially efficient points might be dom-
inated by a linear combination of other partially efficient extreme points in
Dex, while it is not dominated by any other PEP of efficient combinations. The
linear combination corresponds to a non-extreme efficient point of the efficient
combination.

The points, that occur to be dominated by some non-extreme efficient points,
are called pseudo-efficient points.

The test developed by Mavrotas and Diakoulaki for detecting the pseudo-efficient
points in Dex is based on the fact that, in the final nodes the decision space
of the corresponding MOLP subproblems has no discontinuities, since all the
binary variables have fixed values [19].

In consequence, at a leaf node the non-extreme efficient points might be ob-
tained from the appropriate linear combinations of the efficient extreme points
of this particular node.

The following procedure is performed. For all the efficient combinations in
Dex it is checked if the point P ∈ Dex is pseudo efficient, in other words, if
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there exists any linear combination L(EFFC(x)), which dominates point P. If
so, the point P is eliminated from Dex and the procedure is repeated for every
other point from Dex.

Examinination whether the point y = (y1, . . . , yp) ∈ Dex is dominated by a
linear combination of the efficient extreme points from an efficient combina-
tion X, let us assume that the particular efficient combination X has n efficient
extreme points x1, . . . , xn, where xn = (x1n, x2n, . . . , xpn) is the vector formed
by the values of the objective functions.

Mavrotas and Diakoulaki has introduced the following LP problem with λk
and εk as decision variables:

max ε1 + ε2 + · · ·+ εp

λ1x11 + λ2x12 + · · ·+ λnx1n − ε1 ≥ y1

· · ·
λ1xp1 + λ2xp2 + · · ·+ λnxpn − εp ≥ yp
λ1 + λ2 + · · ·+ λn = 1

When there does not exist any feasible solution, then there is no linear combi-
nation (λ1, λ2, . . . , λn) of the points x1, x2, . . . , xn. In other words, there does
not exist any non-extreme efficient point in X that could dominate y.

3.3.5. Implemention of an algorithm to a pure MOIP

All MOIP problems might be converted to an 0-1 MOIP, through the trans-
formation, if only y is an integer with an upper bound UB, then y can be
expressed as:

y = δ0 + 2δ1 + 4δ2 + 8δ3 + · · ·+ 2kδk

where δi are 0-1 variables and 2k ≤ UB ≤ 2k+1. Certainly, this approach is a
strong burden by an increase in the number of variables in the model.

3.3.6. Determination of alternative optima in the single
objective case

The MCBB algorithm provides the decision maker with all alternative so-
lutions with respect to the single objective case for the MIP.



71

Since the vast majority of the solvers only provides the first found integer
solution, the alternative solutions might be not derived.

Using the MCBB algorithm, the ideal vector calculation might be reduced to
a single LP case, and furthermore at the leaf nodes instead of the generation
of the all efficient points, is reduced to the derivation of the LP optimal value.

The list Dex of incumbent solutions, anlogously to the MOLP case will store
all “current” optimal solutions, thus afterwards it contains all alternative ones.

The same methodology might be applied to the following sensitivity analysis.
Let us assume that after obtaining an optimal solution z, we want to find all
solutions with some tolerance ∆z from z. A node is then fathomed, when:

zp ≤ z + ∆z,

where zp is the optimal solution of the LP subproblem at node p, and z stands
for the current incumbent solution.

If ∆z is a small negative value, nodes for which it holds that:

zp ≤ z

will not be fathomed.

Updating Dex follows analogously. All solutions zp ≤ z are stored for the nega-
tive ∆z. Within that framework after the MCBB termination a decision maker
is provided with the list of all possible alternative solutions within some small
tolerance in MIP problems.



Chapter 4

Call center: single-skill environment
model

The workload of the large and rapidly growing branch of industry, the call
center or even a contact center is incredibly hard to predict.

Workforce management

The workforce management deals with few phases of the labour allocation
process:

1. workload prediction - due to diversity of events that need to be taken into
account, a call volume estimation on the basis of historical data is extremely
difficult, but nevertheless results in the forecast of the arrival rate for each
interval of a time horizon.

2. staffing - minimum number of agents calculations needed to reach the ser-
vice level for each interval, using the Erlang formula.

3. shift schedulling - as to meet the service levels derived earlier, there might
be a huge variety of different shifts, depending on starting times, lengths
and the moments of the breaks.

4. rostering - shifts assignment to agents.

Due to uncertainty there always arise some fluctuations in anticipated call vol-
ume, thus schedules have to be updates in a continuous manner, traffic loads,
service levels (SL), to be able to adjust to alterations.
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The standard WFM approach, however has a lot of drawbacks. When it is
aimed at obtaining the minimum number of agents in each interval, it may
result in excessing the minimum of an overall service level. It is reasonable to
consider a compensation of the low SL intervals by those ones with a high SL.

Let λi be the arrival rate in interval i ∈ {1, . . . , T}, SLi(si) the SL as a function
of the number of agents, then the expected daily SL is given by:

SL =
T∑
i=1

λi∑T
j=1 λj

SLi.

In other words, it is reasonable to overstaff during busy periods and to un-
derstaff during quiet periods. This allows for more flexibility when scheduling,
leading to cost reductions. Such an approach would integrate the second and
third step of the decision process, namely determining the minimum levels st
and determining the shifts.

Shift scheduling

Shift scheduling constitutes a mathematical model for the optimal employ-
ment of personnel. Let us now consider a model for a single-skill environment,
proposed by Bhulai, Koole, and Pot [3]. The purpose of this is to implement
the sensitivity analysis tools presented in the previous chapter.

It is assumed that time is split into mutually independent T time periods.
In each period the system remains in equilibrium. For every time interval t a
number st is given representing the minimum number of employees needed in
interval t.

Arrivals

Call arrivals are usually modelled as an inhomogenous Poisson process, of
which parameters depend on time. Let us use as the rate function piecewise
constant rates for 60 minutes intervals: λt in period t ∈ T . Therefore, there is
no stationary situation, but as such a stochastic process converges quickly to
its equilibrium, it might be taken as an approximation.

Service times

Since exponential service times stand a good approximation within call
centers, let us assume that the service time has an expected distribution with
parameter µt.
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Service level

The service level is defined as the percentage of arrivals that waits less than
the acceptable waiting time (AWT) in the queue. The minimal requirement is
denoted by α. In practice, most of the time call centers choose α = 80% and
AWT = 20s. All calculations are made due to an Erlang C, which plays a
central role in call center management, all necessary formulas for calculations
are introduced in Appendix A.

The number of different shifts is denoted by K. When the shift is being used,
then the cost is produced. The aim is to choose a set of shifts, for which there
are minimal costs.

Integrated Method

To obtain an optimal solution, computation of both staffing levels and shift
scheduling might be integrated, by solving an IP model. An appropriate model
for multi-skill environment was proposed by Thompson. Bhulai, Koole and Pot
have proposed some modifications for the single-case model.

A new parameter γs,t was introduced, which denotes the expected number
of customers, that wait less than the AWT during interval t, when we schedule
s agents. We pose a restriction on the overall service level, which is defined as
the weighted average of the interval service level.

An additional binary decision ns,t denotes 1 if there are exactly s agents sched-
uled during interval t, and 0 otherwise. To ensure that in each interval t exactly
one of these variables is equal to 1, an additional constraint is proposed, which
is obtained by requiring nst ∈ {0, 1} and

∑S
s=0 nst = 1 for every t, with S the

maximum number of employees that can be scheduled.

The model takes the following form:

min
∑

k∈K ckxk∑
k∈K ak,txk =

∑
s∈S ns,ts t ∈ T∑

s∈S,t∈T λtns,tγs,t ≥ α
∑

t∈T λt∑
s∈S ns,t = 1 t ∈ T

xk ≥ 0 and integer k ∈ K
ns,t ∈ {0, 1} t ∈ T,

(4.1)
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where it is assumed that ak,t is set to 1 if shift k overlaps time interval t and 0
otherwise, futhermore xk denotes the number of agents working in shift k, and
ck is the cost associated with an agent working in shift k.

4.1. Implementation of Sensistivity Analysis

Let us introduce the model used for an integrated method to obtain an
optimal shift-scheduling (4.1). First of all, the time horizon in our problem is
divided into 17 distinct intervals, which represent each hour between 7-24.

The Matrix A represents all possible sorts of shifts, we would like to use in
our scheduling. Due to 17-hour day, we are obliged to get an optimal schedule,
we have decided to propose not only usual 4-, 8-, 6- 12- hour shifts but we
have introduced the more unusual shifts as 2-,3-,5-,7-, and 9-hour as well. The
reason is the unique beginning of work in the call centre, namely at 7 am,
which made us to fill the gap. Thus we have introduced possible 2-,3-,5-,7-,
and 9-hour shifts in the morning.

Furthermore, the matrix A consists of seven 4- hour shifts, the first one starts
at 8 am, and each next one begins 2 hours later. This scheme was proposed
also for 6-, 8- and 12-hour shifts, and gave us an adequate number of different
kinds of shifts.
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Let us now introduce the matrix A.

A =



1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1
1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0
0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0
0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0
0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0
0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1
1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0
0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0
0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0
0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0
0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0
0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0
0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0
0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0
0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1


The cost vector is simply proportional to the number of hours a given shift

has, thus the cost of a 4-hour shift is set to 4, and analogously for any other
kinds of shift:

c = (2 3 4 4 4 4 4 4 4 5
6 6 6 6 6 6 7 8 8 8
8 8 9 12 12 12)

Mosel Model

All calculations for our model were performed with Xpress-IVE 7.0 opti-
mizer with usage of an Xpress’ modelling language - Mosel.

The computational results were obtained on an Intel Pentium Dual CPU 1.73
GHz with 2 GB RAM.
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Let us now introduce the Mosel code for the main problem (4.1):

Objective sum(k in K) X(k)*C(k)

forall(t in T) sum(k in K) A(k,t)*X(k)= sum(s in S) (N(s,t)*s)

forall(t in T) sum(s in S) N(s,t)=1}

sum(s in S) sum(t in T) L(t)*N(s,t)*G(s,t)>= ALFA* sum(t in T) L(t)

forall(k in K) X(k) is\_integer

forall(t in T) forall(s in S) N(s,t) is\_binary

Minimize(Objective)

The Matrix A and the vector C are defined as in the previous subsection. The
Matrix G and the vector L were prepared in MS Excel using Erlang C fomulas
that are introduced in Appendix A. All the matrices and vectors were stored in
separate file, from which they were initialized during the process of the Mosel
algorithm.

In our model the dimensions of all matrices are as follows:

A ∈ {0, 1}26×17, c ∈ R26, X ∈ Z26, G ∈ R19×17, L ∈ R17, N ∈ {0, 1}19×17.

Our program had 35 different constraints, in other words, the main matrix of
the program had 35 rows. Furthermore, there were 349 variables, which means
that the main matrix had 349 columns.

4.1.1. Optimal Schedules Obtained by Solver

The Xpress-IVE solver only derives the first optimal solution of a B&B
algorithm, which is done relatively fast with in less than 1 second time. During
the calculation of the mentioned optima, we had stopped at each leaf node, and
after the LP relaxation had been solved, the basis was written in the memory.

When an optimal solution had been received, the solver loaded each basis
written in the memory, and it solved the entire problem for each basis sepa-
rately.

This simple procedure means that after an optimal solutions had been found,
the entire problem was solved at each node once again, and thanks to that,
we have obtained several alternative schedules with the same optimal value, in
other words we have received the set of all efficient solutions, described in Fig 1.
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A similar technique is used during Primal Analysis, thus the new approach
generating all possible efficient solutions stems from an idea of Primal Analysis.

4.1.2. Primal Analysis

The Primal Analysis was described in Chapter 3. It is only different with
previous reasoning in two points.

Namely, when the main problem was being solved, at each leaf nodes all vari-
ables which had had an integer value of the LP relaxation were written into
memory. Those variables are fixed to the found integer variables for each leaf
node separately.

The second issue is the fact, that after an optimal solution of the main problem
had been derived by a solver, the coefficients of the cost vector c were changed,
possibly they could have been altered as well all other coefficients. However,
for simplicity purposes we have changed only the mentioned cost vector.

After alteration of this vector, our MIP algorithm was solved at each leaf node.
The minimum objective value indicates an upper bound of the new problem
(with altered vector c.)

The perturbation of vector c is denoted by ∆c and takes form of:

∆c = (5 4.5 4 4 4 4 4 4 4 3.5
3 3 3 3 3 3 2.5 2 2 2
2 2 1.5 0 0 0).

Our new cost vector becomes the result of c+ ∆c:

c + ∆c = (7 7.5 8 8 8 8 8 8 8 8.5
9 9 9 9 9 9 9.5 10 10 10
10 10 10.5 12 12 12).

To compare the obtained results with a “real” optimal value of the new per-
turbed problem, we have solved the problem with the procedure described in
the previous subsection.

All results are depicted in Fig 2.
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Appendix A

Erlang C

Let us introduce some basic Erlang C formulas derived in [15]:

SL = P(WQ ≤ t) = 1− P(WQ > t) = 1− C(s, a)e−(sµ−λ)t,

where C(s, a) is the delay probability, provided by s servers and the offered
load a = λ

µ
. The C(s, a) might be easily calculated using Erlang B formulations:

C(s, a) =
sB(s, a)

(s− a(1−B(s, a)))
,

where B(s, a) stands for the blocking probability, which means that aB(s, a)
represents the rejected load, and furthermore a(1− B(s, a)) gives the formula
for the load that enters the system, in other words, it is the expected number
of the occupied servers.

Calculating B(s, a) is very easy thanks to the following, let N ∼ Poisson(a):

B(s, a) =
P(N = s)

P(N ≤ s)
,

and the Poisson distribution N with parameter λ is defined as follows:

P(N = n) =
λn

n!
e−λ.
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