
Dynamic Load Balancing
for
High Dimensional Systems

J.S. Janssen
December 2011

Dynamic Load Balancing
for

High Dimensional Systems

J.S. Janssen (3128474)
Utrecht University, Department of Mathematics

Telekom Innovation Laboratories

24 December 2011

Master’s Thesis

Supervisors: Dr. S. Bhulai, VU University Amsterdam
Dr. K. Dajani, Utrecht University
Dr. F. Ciucu, Telekom Innovation Laboratories/TU Berlin

Co-reader: Dr. M.C.J. Bootsma, Utrecht University

Summary

Load balancing is very relevant in networking, where incoming requests (jobs) have
to be divided over various servers by dispatchers. The goal is mostly to minimize
response times. Research in this field becomes ever more relevant by the current
trend where users generate an increasing amount of internet traffic and data centers
become larger and larger.
A commonly used load balancing algorithm that uses randomization and performs
well, is SQ(d). It sends an arriving job to the shortest of d queues, chosen uniformly
at random. In most research this d is kept fixed and its performance is analyzed
asymptotically in the number of servers. In this thesis we keep the number of servers
finite and apply the theory of Markov decision processes (MDPs) to the load bal-
ancing problem. We model the SQ(d) algorithm as a Markov reward process and
make it an MDP by introducing communication costs and allowing d to vary. Since
MDPs are not scalable, we came up with a heuristic coined Dynamic SQ(d), that
outperforms algorithms widely used in practice, such as SQ(2) and Join the Shortest
Queue, for a fairly broad range of parameter values.

Keywords: Randomized load balancing, SQ(d), supermarket model, Cloud comput-
ing, Markov decision processes, structural properties of the relative value function,
partial information models, heuristics.

3

Preface

In early 2010 I came up with the idea of writing my thesis abroad, preferably at
a company. After consulting several professors, it was clear to me that this would
not become an easy task. However, these warnings did not discourage me and af-
ter a long search and many disappointments, professor Sem Borst from Eindhoven
University of Technology gave me the contact details of Florin Ciucu from Telekom
Innovation Laboratories1/TU Berlin. I would like to thank Sem Borst for being so
helpful to someone he never met in person.

Fortunately, Florin was very interested in supervising mathematical students and
after some formalities he told me I could come to Berlin to write my master’s thesis.
Right from the start, I felt that Florin and I would get on well. A feeling that turned
out right, partly due to our shared sense of humor and love for playing and watch-
ing the beautiful game of football. Throughout my period in Berlin, Florin tried
to guide me in my first steps in the world of doing academic research. I will never
forget him saying: “You have to write mathematics, like Barcelona plays football”.
Florin, thank you very much for giving me the opportunity to come to Berlin and
for guiding me through a fantastic 7 months. I am sure we will meet in the future
and finally get to watch a football game together!

I also had to find a supervisor in the Netherlands. I consider myself very lucky to
have chosen the course Stochastic Optimization at the VU University Amsterdam
in September 2010, because this course was taught by associate professor Sandjai
Bhulai. His contagious enthusiasm and open-minded attitude spurred me on to ask
him to become my main supervisor in the Netherlands. Although not being a stu-
dent from his own university, he immediately agreed, for which I am very thankful.
I was very happy that after two months in Berlin, you proposed to change tack and
approach the problem using Markov decision processes. This gave me a real boost

1Until very recently, its name was Deutsche Telekom Laboratories.

4

since I finally had a concrete goal to work on. I want to thank you very much for
your overall supervision and hospitality, but also for all the knowledge you shared
with me outside the scope of mathematics.

My third supervisor is senior researcher Karma Dajani from Utrecht University.
Thank you for supervising me and helping with the sometimes unorthodox requests
from my side, for instance, doing my final presentation more than a month before
my actual graduation. I highly appreciate your flexibility in this respect. I also want
to thank Martin Bootsma, for taking the time to be second reader from Utrecht
University.

I want to thank Yi Lu, assistant professor at the University of Illinois at Urbana-
Champaign for taking the time to have a chat with me during her stay in Amsterdam
for the IFIP Performance conference last October.

Furthermore, I want to thank my parents and brother for their continuous support
and creating the perfect circumstances to flourish. Without you I would not have
started nor finished this study. I want to thank my girlfriend Annelie for her pa-
tience, understanding and love, and for accepting my absence during the time I was
in Berlin.

Finally, I want to thank Tomas Molenaars and Wouter Vink for their great friend-
ship during our study. I very much enjoy being with you guys! Special thanks go
to Wouter for designing the front cover of this thesis. My very final thanks goes to
KaYin Leung for being such a great study mate during my bachelor.

To close off, I would like to say that I would recommend going abroad to everyone!
Most likely you will have a fantastic time and get to know a new culture and lots
of new people, but also you learn to appreciate the things you have at home. More-
over, going abroad may result in unexpected events. For me this came in the form of
IAESTE, the International Association for the Exchange of Students for Technical
Experience, which I came accross in Berlin. This organization is something I could
have well used in the Netherlands in my search for an internship abroad and together
with Wouter I decided to set up IAESTE in Utrecht.

Have fun reading my thesis!

Jöbke Janssen Utrecht, December 2011

Contents

1 Introduction 1
1.1 Randomized load balancing . 1
1.2 Models and literature . 3
1.3 Research focus . 5
1.4 Thesis outline . 6

2 Theoretical background 7
2.1 Markov chains . 7
2.2 Markov reward chains . 9

2.2.1 Value iteration . 11
2.3 Markov decision chains . 12
2.4 Continuous time: (semi-)Markov processes 14

2.4.1 semi-Markov processes . 14
2.4.2 Markov processes . 14
2.4.3 Uniformization . 15

2.5 Computational issues . 15

3 Models 17
3.1 A Markov reward model for the SQ(2) policy 17
3.2 Generalizing: A Markov reward model for the SQ(d) policy 20
3.3 Markov decision model for a dynamic SQ(d) policy 24

4 Structural properties of the relative value function 27
4.1 Prepatory lemmas and notation . 28
4.2 Non-decreasingness . 32

5 Heuristics and results 39
5.1 Partial information model . 40
5.2 Heuristic approach . 42

6

5.2.1 Approximation step 1: Estimating the state variable 42
5.2.2 Results . 46
5.2.3 Approximation step 2: Getting rid of the MDP 51
5.2.4 Results . 54
5.2.5 Some ideas for improving Dynamic SQ(d) 56

5.3 Different service rates . 57
5.3.1 Results . 59

6 Conclusions, discussion and future research 67
6.1 Conclusions and discussion . 67
6.2 Future research . 69

References 73

Appendix 76
A.1 Convexity . 76
A.2 A Markov reward process for the Round Robin algorithm 93
A.3 Simulation . 94
A.4 Matlab code . 95

Chapter 1

Introduction

In this thesis we will apply the theory of Markov decision processes to the problem
of randomized load balancing. Most literature on randomized load balancing uses
asymptotic techniques to analyze the performance of different algorithms. In our
view, the theory of Markov decision processes can add to the existing literature, be-
cause of its flexibility and ability to characterize optimal policies in a non-asymptotic
setting. To the best of our knowledge this has not been done before and in this thesis
we will make a start in this direction.

1.1 Randomized load balancing

The main focus of this thesis is on ‘randomized load balancing’. Informally, ‘load
balancing’ is about dividing, as equally as possible, the load of jobs over various
servers. ‘Randomized’ refers to the fact that the algorithm that divides the load,
uses, in some way, randomization.
Load balancing is very relevant in networking, where incoming requests (jobs) have
to be divided over various servers by dispatchers. The goal is mostly to minimize
response times (time from the arrival of a job to its completion) or queue lengths.
Research in this field becomes ever more relevant by the current trend where users
generate an increasing amount of internet traffic and data centers become larger and
larger. In the new ‘cloud paradigm’, more and more data is stored online in the
so-called ‘cloud’, instead of being stored on our personal devices such as PC, laptop
or tablet. One can imagine that this increase in data traffic requires a more compre-
hensive infrastructure with very large data centers. To illustrate the importance of
load balancing, in [21] Amazon and Google predicted that an increase of 500ms in
response time for web search would result in a 1.2 % loss of users and revenue.

1

Chapter 1. Introduction

In general, networks can be very complex but in the mathematical models considered
for load balancing they are often represented as in Figure 1.1. This simplified repre-
sentation allows us to mathematically analyze the system and discover general rules
of thumb (supported by simulations) that can be applied when designing networks.

Figure 1.1: This is the simplified network representation that is often used when
modelling load balancing problems. The question mark illustrates where load bal-
ancing can make a difference.

In this thesis we will mainly concentrate on randomized load balancing as opposed
to deterministic load balancing. One reason for this is that, in most current data
centres, the number of servers is simply too large to apply a Join the Shortest Queue
(JSQ) policy blindly, since the required feedback of this deterministic algorithm
might not scale. Secondly, a simple deterministic algorithm such as Round Robin1

(RR) might result in arbitrarily long server queues when job sizes are not equal (in
particular when job sizes are stochastic).

Roughly, randomized load balancing models can be divided into two categories: dy-
namic (either open or closed) and static. In the static model, generally, there are a
fixed number of jobs (of the same size) that have to be distributed over the servers
and never leave the system. So when all jobs are divided over the servers, the task
is done. In case the jobs that complete service get recirculated in the system (the
total number of jobs remains fixed), we call this a closed dynamic model. This type
of model is not very much used in practice, therefore we focus on the open dynamic
model, where jobs arrive at the system according to some arrival process and leave
upon completion.

1The Round Robin algorithm sequentially assigns jobs to servers in a fixed order and then starts
over again. It does not require any feedback/communication.

2

1.2. Models and literature

1.2 Models and literature

The static and closed dynamic versions of randomized load balancing were first ana-
lyzed by Azar et al. [3] using the classical balls-and-bins model. In the balls-and-bins
model there are n balls that sequentially have to be divided over M bins, where each
ball is placed in the least loaded of d, d ≥ 1, bins chosen uniformly at random (ties
are broken arbitrarily). This ‘shortest queue’-like algorithm is called SQ(d) and is
intensively studied in randomized load balancing literature. The idea is that d should
remain low, to avoid high communication costs2, while performance is measured by
the number of balls in the fullest bin (the idea is that a ball represents a job, and
the fuller the bin, the longer jobs have to wait).
Azar et al. [3] showed that choosing d = 2 resulted in an exponential improvement
in performance over choosing d = 1. That is, the number of balls in the fullest bin is
exponentially higher when d = 1 compared to d = 2. Increasing d further, improves
the performance only slightly; the significant improvement occurs when going from
d = 1 to d = 2. Thus, at the cost of only a small increase in communication3, there
is an exponential improvement in performance. This phenomenon is also called ‘the
power of two’ and was first observed in [9]. Due to this power of two, SQ(2) is
the mostly used SQ(d) algorithm in practice. Independently, Mitzenmacher [14] and
Vvedenskaya et al. [24] generalized the result of Azar et al. to the open dynamic
version of the randomized load balancing problem. They use the so-called supermar-
ket model to analyze this system.

In the supermarket model, a job arrives at a collection of M subsystems (each con-
sisting of a server/processor and a queue) according to a Poisson process with rate
λ > 0. The jobs are assumed to be treated according to the first-in-first-out (FIFO)
principle and the service times at the M servers are taken to be all exponentially
distributed with mean µ > 0. For stability, the occupation rate ρ := λ

Mµ
is assumed

to be smaller than 1. See also Figure 1.2.

2Instead of ‘communication costs’ we will also use the term ‘sampling costs’. Sampling a bin
consists of requesting how many balls are present in a bin and receiving the answer. One can
imagine that increasing d will lead to an increase in communication costs, since more bins have to
be sampled before the ball is allocated to a particular bin. Note that this sampling time is not
explicitly taken into account in the models described here, but that implicitly d is imposed to be
as low as possible.

3In fact, just like RR, SQ(1) requires no communication at all since it assigns a ball to the bin
chosen uniformly at random, without having to compare with other bins. For this reason SQ(1) is
also called the Random algorithm.

3

Chapter 1. Introduction

Figure 1.2: The supermarket model. Jobs arrive at a collection of M subsystems,
each consisting of a server and a queue, according to a Poisson process with rate
λ > 0. Jobs are served according to the first-in-first-out principle and the service
times are exponentially distributed with mean µ > 0. For stability, the occupation
rate ρ := λ

Mµ
is assumed to be smaller than 1.

Many variations of the models and of the algorithms above have been investigated.
For instance, in [23] it is shown that breaking ties asymmetrically is better than
breaking ties arbitrarily. Mitzenmacher [16] investigates the use of old information
and shows how randomness can be of use there. In [17] and [22] it is proved that
only a small amount of memory (just like a small amount of choice) can drastically
improve the load balancing performance. Ganesh et al. [7] investigate load resam-
pling and migration strategies under a Processor Sharing (PS) service discipline4.
Clients initially attach to an arbitrary server, but may switch servers independently
at random instants of time in an attempt to improve their service rate.

In [14] and [15], instead of exponential service times, constant service times are con-

4In the PS service discipline, jobs divide the available processing speed among all jobs that
have been assigned to a particular server. The higher the number of jobs that have to share one
processor, the lower their actual service rate. This contrasts with the FIFO service discipline where
jobs are served in order of arrival.

4

1.3. Research focus

sidered. In [6], general service time distributions and service disciplines are treated
and adopting a particular asymptotic assumption yields very general results. In [20],
the authors made an attempt to generalize the above asymptotic results to more
general arrival processes and service times. They used a matrix-analytic approach to
extend the existing models to Markovian arrival processes and phase-type distribu-
tions. Recently, in [13] a completely new class of algorithms was proposed, namely
the class of Join the Idle Queue (JIQ) algorithms. The idea is that when servers are
empty, they inform the dispatcher about their idleness so that arriving jobs can al-
ways be sent to idle servers when available. It turns out that this class of algorithms
outperforms the class of SQ(d) algorithms.

All of the above results use asymptotics, letting the number of servers M go to
infinity. Certain techniques are used to bound the error between the finite and
infinite systems, using extensive simulations to support their claims.

1.3 Research focus

In this thesis we will make a start with introducing Markov decision processes to the
research of randomized load balancing. We focus on the SQ(d) algorithms using the
supermarket model as framework, but without using asymptotic techniques. Existing
literature emphasize the importance of keeping d as low as possible implicitly, but
does not make the influence of the corresponding communication costs concrete. This
is probably due to the fact that the communication costs are constant for a fixed d.
Instead of fixing d, we make it a decision variable, which can vary at every arrival,
depending on the costs anticipated. These costs obviously depend on the current
state of the system, i.e., the number of jobs in each subsystem, and the occupation
rate5. Contrary to the traditional algorithms, given an occupation rate we would like
to be able to adapt our choice of d to the current state of the system. That is, on the
basis of the information we get by sampling subsystems we want to choose a d that
best fits the situation, instead of blindly choosing d = 2 as is done mostly in practice.
To this end, we intend to investigate the trade-off between the communication costs
and the costs due to the waiting time in the queues. We think that by taking the
communication costs explicitly into account, we can show that varying d per arrival
on the basis of the anticipated costs, may lead to a better performance than when
restricting ourselves to SQ(2). Observe that this performance is measured not only in
terms of the queue sizes, but also in terms of the communication costs. Our ultimate

5The occupation rate is a measure for how busy the system is and is formally defined in Figure
1.2.

5

Chapter 1. Introduction

goal is to come up with an algorithm that outperforms the traditional algorithms,
such as RR, Random, SQ(2) and JSQ, over a broad range of parameter values.

1.4 Thesis outline

In Section 2 we will provide the theoretical background needed to understand the
models formulated in Section 3. Apart from modelling fixed SQ(d) algorithms as
Markov reward processes, we also come up with a Markov decision process (MDP)
that models an algorithm that dynamically chooses d per arrival. This MDP produces
the optimal d for every state of the system. In Section 4, structural properties of the
so-called relative value function of this MDP are investigated. Structural properties,
such as non-decreasingness and convexity, may lead to characterization of optimal
policies and a decrease in complexity of algorithms that solve the MDP, resulting is
lower computation times.
It is important to realize at this point, that for the large data centres we are interested
in, it is not feasible to keep track of the exact number of jobs in every subsystem.
That is, larger data centres would require more communication to stay up to date.
This may lead to congestion of the network, which we do not want because it generally
leads to delays. Therefore, throughout this thesis we must assume that we do not
have full information on the state of the system. That is, we assume that we do not
know exactly how many jobs are present in each subsystem . As a consequence, we
cannot directly use the MDP formulated in Section 3, because it uses full information.
Therefore, in Section 5 we will develop heuristics that estimate the state of the system
on the basis of the information available from earlier samples and use the optimal
d from the MDP that corresponds to their estimate. However, since MDPs are
generally not scalable6, we cannot directly use any output from the MDP in our
heuristic. Approximating an essential output variable from the MDP, results in a
heuristic that we will call “Dynamic SQ(d)”. This heuristic is scalable up to at least
M = 30 systems and outperforms traditional algorithms in certain scenarios. We
will close off with a conclusion and ideas for future research.

6With scalable we mean here that if the dimension of the problem is increased (in our case the
dimension relates to the number of servers in the system), the extra computation time does not
explode.

6

Chapter 2

Theoretical background

In this thesis we will make use of the theory of Markov reward chains and Markov
decision chains. Central in both these theories is the concept of Markov chains, to
which the following section is devoted1. After that we will discuss Markov reward
chains, followed by Markov decision chains. Subsequently, we will discuss how to
transform a Markov process into a Markov chain and we close off with some remarks
on computational issues.

2.1 Markov chains

A Markov chain is a discrete random process, where discrete refers in this thesis to
both the state space X (meaning the state space is finite or countable) and the set
of times2 t ∈ {0, 1, 2, . . .}. At fixed times, transitions take place from one state to
the next according to transition probabilities

p(x, y) ≥ 0,

with
x, y ∈ X and

∑
y∈X

p(x, y) = 1,

where p(x, y) should be interpreted as the probability that the chain moves to state
y given it is in state x. Let the random variable Xt denote the state at time
t ∈ {0, 1, 2, . . .} with distribution πt. Then, a Markov chain is a random process

1We will explain this theory along the lines of [19].
2Some authors also allow for time to take on continuous values. In this thesis we would refer to

this as a (semi-)Markov process.

7

Chapter 2. Theoretical background

that satisfies the Markov Property :

P (Xt+1 = x|X1 = x1, X2 = x2, . . . , Xt = xt) = P (Xt+1 = x|Xt = xt). (2.1)

That is, given the present state, the past and future states are independent. Conse-
quently, for t > 0,

πt(x) =
∑
y∈X

πt−1(y)p(y, x),

where π0 is given.
Note that we have defined the transition probabilities p(x, y) to be independent
of t. That is, p(x, y) := P (Xt+1 = y|Xt = x), for any t and hence the Markov
chain we consider in this thesis is called time-homogeneous or stationary. This time-
homogeneity allows the transitions to be described by a single time-independent
transition matrix, with entries Pxy := p(x, y). So it holds that πt = πt−1P from which
it follows that πt = π0P

t. This expression is the reason why we call pt(x, y) = P t
xy

the t-step transition probabilities. The vector π∗, for which it holds that

π∗ = π∗P, (2.2)

is called a stationary distribution3, since, if π0 = π∗, then πt = π∗ for all t. Note that
limt→∞ pt(x, y) → π∗(y) for all x. In the remaining part of this thesis, the stationary
distribution plays an important role, since we are interested in the long-term average
behavior of the systems we consider. In particular, we will assume that the system
behaves according to this stationary distribution4.
Under some conditions one can show this stationary distribution to exist and to be
unique. The first condition is that the state space X is finite:

Condition 1. |X | < ∞

In order to state the other conditions we first need some definitions, where we already
assume Condition 1.

Definition 1. A sequence of states z0, z1, . . . , zk−1, zk ∈ X with the property that
p(z0, z1), . . . , p(zk−1, zk) > 0 is called a path from z0 to zk of length k.

Definition 2. For a finite state space X , if there is at least one state x ∈ X , such
that there is a path from any state to x, then the chain is called unichain and state
x is called recurrent.

3Alternatively, one can say that the system is in a steady state, when it behaves according to a
stationary distribution.

4In the simulations we will do in Chapter 5, we will therefore use a so-called ‘warm-up’ period,
to make sure that the system is in its steady state.

8

2.2. Markov reward chains

Definition 3. If there is some recurrent state x for which the greatest common
divisor of all paths from x to x is 1, then the chain is called aperiodic.

We now formulate the second and final condition, which, together with Condition
1, forms sufficient conditions for the theorem below. We will assume these conditions
throughout this chapter.

Condition 2. The chain is aperiodic and unichain.

Now we have the following theorem which we state without proof.

Theorem 2.1.1. Under the above conditions and for some arbitrary distribution π0,
it holds that

lim
t→∞

πt = π∗,

where the distribution π∗ (also called the limiting distribution) is the unique so-
lution to system of Equations (2.2) together with the requirement that∑

x∈X

π∗(x) = 1, (2.3)

independent of π0.

Note that writing out the matrix Equation (2.2) gives

π∗(y) =
∑
x∈X

π∗(x)p(x, y), (2.4)

a system of |X | equations. The right-hand side of (2.4) is the probability that, start-
ing from stationarity, the chain is in state y the next time instant.
Theorem 2.1.1 allows for an iterative procedure to compute π∗; multiplying some
initial distribution repetitively with P , until sequential outcomes do not differ more
than some given ε > 0, is called forward recurrence.

2.2 Markov reward chains

We can extend the Markov chain from the previous section by attaching direct re-
wards to the states. So for every state x ∈ X we have r(x) ∈ R, the direct award
that is obtained each time state x is visited. In this setting, we are not interested in
the distribution of Xt, but rather we are interested in Er(Xt), and particularly in its

9

Chapter 2. Theoretical background

limit for t → ∞, as we are interested in the average long term performance of the
chain. This limit is given by

g =
∑
x∈X

π∗(x)r(x), (2.5)

allowing it to be computed by calculating π∗ first and then taking the expectation of
r, or by simulating Xt and then computing

∑T−1
t=0 r(Xt)/T → g a.s. However, when

at a later stage we want to include actions, we will need an alternative method since
actions have influence on future behaviour and under simulation/forward recursion
only the history is known. Thus, we will need a backward recursion method that
takes the future into account.
To this end, let VT (x) be the total expected reward up to 0, . . . , T − 1 when starting
at 0 in x:

VT (x) =
T−1∑
t=0

∑
y∈X

pt(x, y)r(y) = E
T−1∑
t=0

r(Xt), (2.6)

with X0 = x. Note that

∑
x∈X

π∗(x)VT (x)︸ ︷︷ ︸
starting in stationarity

=
∑
x∈X

π∗(x)
T−1∑
t=0

∑
y∈X

pt(x, y)r(y) =
T−1∑
t=0

∑
y∈X

∑
x∈X

π∗(x)pt(x, y)︸ ︷︷ ︸
=π∗(y) by (2.2)

r(y)

=
T−1∑
t=0

∑
y∈X

π∗(y)r(y)︸ ︷︷ ︸
=:g by (2.5)

= gT. (2.7)

Now define

V (x) := lim
T→∞

[VT (x)− gT]. (2.8)

Then V (x) is the total expected difference in reward between starting in x (definition
VT (x)) and starting in stationarity (see (2.7)). Since limt→∞ pt(x, y) → π∗(y) for all
x and Equation (2.5) holds, we see from (2.6) that limT→∞ VT (x)/T = g.
We can calculate VT+1(x) in two different ways. On the one hand,

VT+1(x) = VT (x) +
∑
y∈X

πT (y)r(y),

10

2.2. Markov reward chains

for π0 with π0(x) = 1. Using (2.5) and Theorem 2.1.1 (i.e. πT → π∗), we have

VT+1(x) = VT (x) + g + o(1), (2.9)

where o(1) → 0 for T → ∞5. On the other hand, we have the following recursive
formula:

VT+1(x) = r(x) +
∑
y∈X

p(x, y)VT (y). (2.10)

Combining expressions (2.9) and (2.10) yields

VT (x) + g + o(1) = r(x) +
∑
y∈X

p(x, y)VT (y).

Subtracting gT from both sides and taking T → ∞ gives the so-called Poisson
equations :

V (x) + g = r(x) +
∑
y∈X

p(x, y)V (y). (2.11)

Equation (2.11) does not have a unique solution, since if V is a solution, then also
V +C is. To get a unique solution, we can either add the condition

∑
y∈X π∗(y)V (y) =

0 (this conserves the interpretation of V (x) being the expected difference in reward
between starting in state x and starting in stationarity), or we could take V (x0) = 0
for some reference state x0 (here the above mentioned interpretation of V does not
hold)6. Under the conditions from Section 2.1, Proposition 8.2.1 in [19] states that
the resulting g is independent of the initial state.

2.2.1 Value iteration

In general, Equation (2.11) is hard to solve. To this end, often a recursion algorithm
that exploits recursion (2.10), is used to find V and g. This algorithm is called value
iteration and the idea is as follows. Since

VT+1(x)− VT (x) = VT (x) + g + o(1)− VT (x) = g + o(1) → g,

and

VT (x)− VT (y) = [VT (x)− gT]− [VT (y)− gT] → V (x)− V (y), (2.12)

5f(T) ∈ o(1) if limT→∞
f(T)

1 = 0.
6For our computations later in this thesis, we choose the latter option, since this is the simpler

of the two and since we are mainly interested in g.

11

Chapter 2. Theoretical background

for T → ∞, we can obtain all values we are interested in, by computing VT for
T large enough7. We compute VT using (2.10), where for initialization one usually
takes V0 ≡ 0. The iteration ends when, for some prefixed ε > 0 and for all x ∈ X , it
holds that there exists a g such that

g − ε

2
≤ VT+1(x)− VT (x) ≤ g +

ε

2
,

for some T . This is equivalent to

span(VT+1(x)− VT (x)) ≤ ε.

See Appendix A.4 for a concrete example of the value iteration algorithm.

2.3 Markov decision chains

Finally, we add decisions to the Markov reward chain, turning it into a Markov
decision chain. The decisions (also called actions) come from a decision space D
and the idea is that depending on the state Xt ∈ X , a decision Dt ∈ D is selected
according to some policy R : X → D, that is, Dt = R(Xt). Consequently, both
the transition probabilities and the rewards depend on the decisions. So we have
p(x, d, y) and r(x, d), the probability of going from x to y and the reward in state
x, respectively, when decision d is taken. In this thesis we will make the assumption
that the decision space is finite:

Condition 3. |D| < ∞.

Moreover, we have to adapt condition 2 as follows:

Condition 4. For every fixed policy R, the chain is unichain and aperiodic (the
recurrent state may depend on R).

Define V R
T (x) as the total expected reward in 0, . . . , T−1, under policy R when start-

ing at time 0 in x. We are now interested in finding the policy that maximizes the av-
erage expected long-run reward, i.e., we are interested in finding arg maxR limT→∞ V R

T (x)/T .
Note that this maximum is well defined because the number of different policies is at

7To compute V (x), we take y = x0 in (2.12), with V (x0) = 0.

12

2.3. Markov decision chains

most |X ||D| < ∞. By the very definition of optimality, it holds that for the optimal
policy R∗

r(x, R∗(x)) +
∑
y∈X

p(x, R∗(x), y)V R∗
(y) = max

d∈D
{r(x, d) +

∑
y∈X

p(x, d, y)V R∗
(y)}

Also, by the Poisson equations (2.11):

V R∗
(x) + gR∗

= r(x, R∗(x)) +
∑
y∈X

p(x, R∗(x), y)V R∗
(y).

Combining the above two equations we find the so-called optimality equations or
Bellman equations :

V R∗
(x) + gR∗

= max
d∈D

{
r(x, d) +

∑
y∈X

p(x, d, y)V R∗
(y)

}
. (2.13)

Note that

R∗(x) ∈ argmax
d∈D

{
r(x, d) +

∑
y∈X

p(x, d, y)V (y)}

}
.

We can find the optimal policy R∗ by extending the value iteration algorithm to
Markov decision chains, by including decisions in the recursion of equation (2.10):

VT+1(x) = max
d∈D

{
r(x, d) +

∑
y∈X

p(x, d, y)VT (y)

}
. (2.14)

The same stop criterion as in the Markov reward case is used and the optimal policy
R∗ is recovered by choosing for each x ∈ X :

R∗(x) ∈ argmax
d∈D

{
r(x, d) +

∑
y∈X

p(x, d, y)VT (y)}

}
,

with T the iteration number for which the stop criterion was fulfilled.
In Sections 8.5.2-8.5.4 of [19], it is proven that under conditions 1, 3 and 4, the value
iteration algorithm converges to an ε-optimal solution.

13

Chapter 2. Theoretical background

2.4 Continuous time: (semi-)Markov processes

In this section we will generalize the above theory to the case where the time it takes
to move from a state x to the next is a random variable T (x), instead of being equal
to 1. We define τ(x) := ET (x), the expectation of T (x), where we assume that
0 < τ < ∞. For general random variables T (x), this is called a semi-Markov process.
When T (x) is exponentially distributed it is called a Markov process. We will see
that Markov processes are convenient to work with because we can transform them
so that the previous theory on discrete Markov chains becomes relevant again.

2.4.1 semi-Markov processes

If we look at the semi-Markov process only at the jump times (the moments it changes
state), then we observe the so-called embedded Markov chain. Let this Markov chain
have stationary distribution π∗. Additionally, consider the stationary distribution
over time, i.e., the time-limiting distribution that the chain is in a certain state, call
it ν∗. Then ν∗ is specified by:

ν∗(x)

ν∗(y)
=

τ(x)π∗(x)

τ(y)π∗(y)
,

from which one can easily find

ν∗(x) =
τ(x)π∗(x)∑

y∈X τ(y)π∗(y)
. (2.15)

2.4.2 Markov processes

In the special case that all transition times T (x) are exponentially distributed, we
have a Markov process. However, a Markov process is often defined through its
transition rates λ(x, y). Thus, the time until the process moves from x to y is ex-
ponentially distributed with rate λ(x, y), unless a transition to another state occurs
first. Since the minimum of independent exponentially distributed random variables
is again exponentially distributed, with as rate the sum of the constituent rates,
we find that T (x) is exponentially distributed with rate

∑
y∈X λ(x, y). Moreover,

p(x, y) = λ(x, y)/
∑

z∈X λ(x, z). Defined this way, Markov processes are indeed spe-
cial cases of semi-Markov processes.

14

2.5. Computational issues

2.4.3 Uniformization

As mentioned above, we can transform Markov processes such that we can use the
theory of discrete Markov chains again. This concept is called uniformization (see
Section 11.5 of [19]). The idea is as follows. In general not all T (x) need to be
equally distributed for all x, but adding ‘dummy’ transitions to make the rates out
of states constant, makes this possible. Indeed, let γ be such that

∑
y∈X λ(x, y) ≤ γ

for all x ∈ X 8. Define a new process with rates λ′(x, y) as follows. Firstly, take
λ′(x, y) = λ(x, y) for all x 6= y. In each state x with

∑
y∈X λ(x, y) < γ, add a dummy

transition from x to x such that the rates sum up to γ: λ′(x, x) = γ −
∑

y 6=x λ(x, y)
for all x ∈ X . This newly constructed process has expected transition times τ ′

such that τ ′(x) = 1/γ for all x ∈ X . Now it follows from Equation (2.15) that
π′∗ = ν ′∗ because τ ′(x) = τ ′(y) for all x, y ∈ X , and we can use the theory on Markov
chains above. The concept of uniformization easily generalizes to Markov reward
and Markov decision process.

2.5 Computational issues

Most sytems in real life seem finite, but many models in mathematical applications
have a countable (and thus infinite) state space. Reasons for this are for instance
that infinite systems behave nicer than finite systems or that bounds are not exactly
known. For instance, in queueing systems we often assume an infinite buffer length
because the exact buffer length is assumed to be large but not known exactly. Al-
though in reality infinite buffers do not exist, the countable state space often allows
for nice mathematical formulas. Also, the Markov reward and decision models we
initially formulate in Chapter 3 assume a countable state space.
However, although we have good reasons to prefer infinite state spaces in certain
cases, we need a finite state space as soon as we want to compute performance mea-
sures or optimal policies. Concretely, we have to change a countable state space X ,
into a finite state space X̄ (i.e., |X̄ | < ∞) to make computations possible. Although
this adaptation may seem as a restriction, it fortunately brings us in the situation
of the theory developed earlier in this chapter. Moreover, in this way we basically
model the same problem, but then with finite buffers. The way we approach this in
this thesis is as follows.

Given a model with countable state space X and transition probabilities p, we ap-

8Since we assume that X is finite, as a consequence we know that the transition rates are
bounded.

15

Chapter 2. Theoretical background

proximate it by a series of models with finite state spaces XK , such that XK ⊂ XK+1

and limK→∞XK = X . Let the Kth model have transition probabilities pK , given as
follows. For each x ∈ XK

pK(x, y) = p(x, y) for x 6= y ∈ XK ,

pK(x, y) = 0 for y 6∈ XK ,

pK(x, x) = p(x, x) +
∑

y 6∈XK

p(x, y).

Note that in the model with transition probabilities pK , there are no transitions from
XK to X \ XK . We call K the truncation level of the model.
The performance measure of the approximating models should, for large enough K,
converge to the performance measure of the original model (i.e., for large enough K,
boundary effects should become negligible). There is however, relatively little theory
about these types of results. In practice one compares gK with gK+1 for increasing
K, until this difference is small enough.

Remark 1. Curse of dimensionality

Apart from the computational issues discussed above, Markov decision processes suf-
fer from the so-called curse of dimensionality. To explain this phenomenon, assume
a model with state space X = {(x1, . . . , xM)|xi = 0, 1, . . . , K}. The total number of
different states is then |X | = (K + 1)M , which grows exponentially in the dimension
M . Since most practical problems have multi-dimensional state spaces, this phe-
nomenon really poses a problem. Indeed, for the practical execution of the value
iteration algorithm we need in memory at least one double for every state, resulting
in, for M = K = 10, ±100 GB of memory9, without even thinking about the pro-
cessing requirements that would be necessary.

As we are interested in the performance of high dimensional systems in this the-
sis, one of the biggest challenges will be to find a way of dealing with this scalability
problem.

9See [5].

16

Chapter 3

Models

In this chapter we use the Markov decision theory developed in Chapter 2 to model
different algorithms in the supermarket model setting. Firstly, we will model the
SQ(2) policy as a Markov reward process and extend this to the SQ(d) policy. Sec-
ondly, we introduce decisions and formulate a Markov decision process that models
an SQ(d) algorithm that chooses d dynamically. This results in an optimal policy,
i.e., for every state x, the MDP chooses the optimal d. Since for a fixed d the com-
munication costs are constant, we will only include these costs when formulating the
Markov decision process, since d is not fixed there. Finally, we show that the MDP
indeed outperforms fixed d policies and illustrate the ‘power of two’, to which we
refered in the introduction.
For completeness, in Appendix A.2 we formulate a Markov reward process for the
Round Robin algorithm.

3.1 A Markov reward model for the SQ(2) policy

We start with the SQ(2) policy. Recall that, for an arriving job, this policy uniformly
samples d = 2 queues and assigns the job to the subsystem with the least number of
customers. We introduce a multidimensional Markov reward process to model this
system. In this model, we define the state variables a bit differently than might be
expected. This choice of definition will, however, be of convenience when defining
the transition probabilities below.

Let xi be the number of customers in the ith shortest queue, x = (x1, . . . , xM) ∈ NM
0 .

Note that this implies that

x1 ≤ x2 ≤ · · · ≤ xM . (3.1)

17

Chapter 3. Models

Hence we define the state space X as follows

X = {s ∈ NM
0 |s1 ≤ s2 ≤ · · · ≤ sM}.

Our goal is to minimize the maximum queue length1, so we should choose the cost
function as

c(x) := xM .

We now want to calculate the transition probabilities of going from one state x to
a new x′. We will uniformize the system and scale the parameters without loss of
generality such that λ+Mµ = 1. This allows us to interpret the rates as probabilities.

First we discuss the transition probabilities for when a job arrives. Here the some-
what odd choice of state variables comes in handy. Note that due to the scaling,
we have that with probability λ a job arrives. Recall that at an arrival, we sample
d = 2 subsystems and send the job to the shortest of the two. If we want to send the
job to the ith smallest subsystem, then this subsystem should be among the d = 2
sampled subsystems. The other sampled subsystem must be any subsystem with
a larger number of jobs. Due to the ordering of x as in (3.1), this last subsystem
is any j > i. Since, with probability 1

M
, we pick subsystem i first and then, with

probability M−i
M−1

, any j > i, we have that the probability that an arriving job is sent
to subsystem i is

2(M − i)

M(M − 1)
, (3.2)

where the 2 in front comes from the fact that we can also first pick any j > i (with
probability M−i

M
) and then pick i (with probability 1

M−1
). So the probability that a

job arrives and is sent to subsystem i is

2λ
M − i

M(M − 1)
. (3.3)

Next, we consider the departure probabilities, which are much simpler. Let I {xi > 0}
denote the indicator function of the event that xi > 0. Since the probability of a
departure is µ

∑M
i=1 I{xi > 0} (jobs can only leave a non-empty subsystem), the

1Throughout this thesis, with ‘queue length’ we will always mean the total number of jobs
in a subsystem. That is, the number of jobs in the queue waiting to be served, plus the job in
service. Minimizing the maximum queue length makes sure that the dispatcher balances the load
equally over all subsystems, since otherwise the maximum queue length would increase. Alternative
objective functions, such as minimizing the average queue length, are of course also possible.

18

3.1. A Markov reward model for the SQ(2) policy

probability of a departure from subsystem i is µI{xi > 0}.
Finally, the transition probabilities due to the uniformization are

1−

(
λ + µ

M∑
i=1

I {xi > 0}

)
,

which basically represents a transition from x to x (so no arrival or departure). Note
that this probability is only positive in states with idle servers.
Before giving the corresponding Poisson equations, we should observe the following.
Let ei be the ith unit vector and note that it might occur that x+ei (representing an
arrival to subsystem i) or x− ei (representing a departure from subsystem i) results
in a new state variable that does not obey (3.1). For example, say M = 4 and
x = (1, 2, 2, 5). Then x′ = x + e2 = (1, 3, 2, 5), but x′2 > x′3, which contradicts (3.1).
Similarly, x′′ = x − e3 = (1, 2, 1, 5), which again contradicts (3.1), since x′′2 > x′′3. A
possible way of dealing with this, is to apply a sorting function σ, which sorts any
x ∈ NM

0 such that it satisfies (3.1). This results in the following Poisson equations

V (x) + g = xM + λ
M−1∑
i=1

2

M

M − i

M − 1
V (σ(x + ei))

+ µ
M∑
i=1

I {xi > 0}V (σ(x− ei)) (3.4)

+

[
1−

(
λ + µ

M∑
i=1

I {xi > 0}

)]
V (x),

where σ(x′) denotes that, possibly, necessary sorting has been applied to x′ in order
to ensure that (3.1) is satisfied. Note that it might happen that σ(x+ej) = σ(x+ek)
for j, k = 1, . . . ,M and j 6= k or σ(x− ej) = σ(x− ek) for j, k = 1, . . . ,M and j 6= k.
This does, however, not change anything in the above Poisson equations. That
is, the probability of going to, say, state x′ = σ(x + ei), is just the sum over all
2λ
M

M−j
M−1

, j = 1, . . . ,M such that σ(x + ej) = x′ (and similarly if x′ = σ(x − ei)).

19

Chapter 3. Models

Thus, we will perform value iteration with the following recursion

Vn+1(x) = xM + λ

M−1∑
i=1

2

M

M − i

M − 1
Vn(σ(x + ei))

+ µ
M∑
i=1

I {xi > 0}Vn(σ(x− ei)) (3.5)

+

[
1−

(
λ + µ

M∑
i=1

I {xi > 0}

)]
Vn(x).

Initially, one usually takes V0 = 0.

3.2 Generalizing: A Markov reward model for the

SQ(d) policy

Generalizing SQ(2) to SQ(d) comes down to changing the transition probabilities for
an arriving job. Following a similar reasoning as in the previous section for equation
(3.2), the probability that given an arriving job, the job is sent to the ith smallest
queue is

k(M, i, d) :=
d(M − i)(M − i− 1) · · · (M − i− d + 2)

M(M − 1) · · · (M − d + 1)
, (3.6)

for i ≤ M−d+1, d ∈ {2, . . . ,M}. Note that for d = 2 this indeed simplifies to (3.2).
For d = 1, i ≤ M this probability should be 1

M
. Moreover, k(M, i, d) is not defined

for i > M − d + 1 but should equal 0. Therefore, it is better to rewrite k(M, i, d) as

k(M, i, d) :=

{
d (M−i)!(M−d)!

(M−i−d+1)!M !
if i ≤ M − d + 1,

0 otherwise,
(3.7)

20

3.2. Generalizing: A Markov reward model for the SQ(d) policy

for all d ∈ {1, . . . ,M}. Lemma 3.2.1 below shows that these are indeed probabilities.
The corresponding Poisson equations (compare with (3.4)), then generalizes to

V (x) + g = xM + λ
M−d+1∑

i=1

k(M, i, d)V (σ(x + ei))

+ µ

M∑
i=1

I {xi > 0}V (σ(x− ei)) (3.8)

+

[
1−

(
λ + µ

M∑
i=1

I {xi > 0}

)]
V (x).

Hence, we will perform value iteration with the following recursion

Vn+1(x) = xM + λ
M−d+1∑

i=1

k(M, i, d)Vn(σ(x + ei))

+ µ
M∑
i=1

I {xi > 0}Vn(σ(x− ei)) (3.9)

+

[
1−

(
λ + µ

M∑
i=1

I {xi > 0}

)]
Vn(x).

We have to make an important comment at this point.

Remark 2.

When using the transition probabilities k(M, i, d) as defined in (3.7), it seems as
if two subsystems with an equal number of jobs do not have equal probability of
receiving an arriving job. That is, due to the fact that we sort our state variables
(even if two subsystems have an equal number of jobs), one is placed after the other
and hence gets a different probability assigned by k(M, i, d). For instance, let M = 4,
d = 2 and x = (1, 4, 4, 6). Then x2 = 4 = x3, and both subsystems should have equal
probability of receiving an arriving job. However, k(4, 2, 2) = 1

3
6= 1

6
= k(4, 3, 2). The

reason why this does not pose any problems in the models above, is again the fact
that we apply sorting. Indeed, note that in both cases, the resulting x′ = σ(x + ei)
is the same for i = 2, 3. That is, x′ = σ(x + e2) = σ(x + e3) = (1, 4, 5, 6).
In unsorted systems (as we will consider in Chapter 5), the k(M, i, d) can be used to
compute the real probability for a subsystem to receive an arriving job. To this end,
let y for the moment be the state variable in an unsorted system, e.g., y = (4, 6, 1, 4).

21

Chapter 3. Models

Define pM
i (y, d) as the probability that an arriving job is sent to subsystem i in state

y = (y1, . . . , yM) when SQ(d) is applied. Let Si(y) be the set of subsystems with
the same number of jobs as subsystem i, i.e., Si(y) = {j|yi = yj}. For example,
S1(y) = {1, 4} and S2(y) = {2}. Then, the observation∑

j∈Si(y)

k(M, j, d) =
∑

j∈Si(y)

pM
j (y, d), (3.10)

will lead to a concrete expression of pM
i (y, d) below. To illustrate (3.10), consider

again x = (1, 4, 4, 6) and assume d = 2. Note that S1(x) = {1} , S2(x) = S3(x) =
{2, 3} and S4(x) = {4}. Hence, it should hold that subsystems 2 and 3 have the
same probability of receiving an arriving job, i.e., p4

2(x, 2) = p4
3(x, 2). Observe that

p4
1(x, 2) = 1

2
, p4

4(x, 2) = 0 and indeed p4
2(x, 2) = p4

3(x, 2) = 1
4

should hold. Finally,
k(4, 1, 2) = 1

2
, k(4, 4, 2) = 0 and recall k(4, 2, 2) = 1

3
6= 1

6
= k(4, 3, 2). Then it can

easily be seen that (3.10) holds for i = 1, 4 and also for i = 2, 3, since

p4
2(x, 2) + p4

3(x, 2) =
1

4
+

1

4
=

1

2
=

1

3
+

1

6
= k(4, 2, 2) + k(4, 3, 2).

This leads to the following definition.

Definition 4. Fix M > 0, d ∈ {1, . . . ,M} and i ∈ 1, . . . ,M . Given a (not neces-
sarily sorted) state y, the probability that an arriving job is sent to subsystem i in
state y = (y1, . . . , yM) when SQ(d) is applied, is

pM
i (y, d) :=

1

|Si(y)|
∑

j∈Si(y)

k(M, j, d), (3.11)

where Si(y) = {j|yi = yj} and k(M, j, d) is defined in (3.7). For ease of notation we
will often write pi(y, d) instead of pM

i (y, d).

The following Lemma states that the k(M, i, d) defined in (3.7) are probabilities,
from which it directly follows that the pi(y, d) are probabilities.

Lemma 3.2.1. Given M > 0. Then the k(M, i, d) are probabilities, i.e., 0 ≤
k(M, i, d) ≤ 1 for d ∈ {1, . . . ,M} and i ≤ M − d + 1, and

M−d+1∑
i=1

k(M, i, d) = 1, (3.12)

for all d ∈ {1, . . . ,M}.

22

3.2. Generalizing: A Markov reward model for the SQ(d) policy

Proof. First of all, note that all terms involved are non-negative, since d ≤ M and
i ≤ M − d + 1 (recall 0! = 1). Hence, k(M, i, d) ≥ 0. Next, observe that k(M, i, d)
can also be written as

k(M, i, d) =

(
M−i
d−1

)(
M
d

) .

To show that k(M, i, d) ≤ 1, it thus suffices to show that
(

M−i
d−1

)
≤
(

M
d

)
holds2. To

this end, observe that
(

M−i
d−1

)
≤
(

M−1
d−1

)
, since i ≥ 1 and fk(n) :=

(
n
k

)
is increasing in

n for fixed k ≤ n. The equality
(

n
k

)
= n

k

(
n−1
k−1

)
then yields(

M − i

d− 1

)
≤
(

M − 1

d− 1

)
≤ d

M

(
M

d

)
≤
(

M

d

)
,

since d ≤ M .
Finally, we have to show that (3.12) holds. Well,

Σ :=
M−d+1∑

i=1

k(M, i, d)

=
M−d+1∑

i=1

d
(M − i)!(M − d)!

(M − i− d + 1)!M !

= d
(M − d)!

M !

M−d+1∑
i=1

(M − i)!

(M − i− d + 1)!

(d− 1)!

(d− 1)!

= d(d− 1)!
(M − d)!

M !

M−d+1∑
i=1

(M − i)!

(M − i− d + 1)!(d− 1)!

=
d!(M − d)!

M !

M−d+1∑
i=1

(
M − i

d− 1

)

=

(
M

d

)−1 M−d+1∑
i=1

(
M − i

d− 1

)
.

So to prove that Σ is equal to 1, it should hold that(
M

d

)
=

M−d+1∑
i=1

(
M − i

d− 1

)
. (3.13)

2In fact, we do not need to show that k(M, i, d) ≤ 1 directly, since it follows immediately from
k(M, i, d) ≥ 0 together with

∑M−d+1
i=1 k(M, i, d) = 1.

23

Chapter 3. Models

To this end, we will use induction over M ≥ d and the standard recursion (see [1],
p. 822) (

n

k

)
=

(
n− 1

k − 1

)
+

(
n− 1

k

)
, for all n, k > 0, (3.14)

with initial values
(

n
0

)
= 1 for all integers n ≥ 0, and

(
0
k

)
= 0 for all integers k > 0.

For M = d, we have that
(

M
d

)
=
(

d
d

)
= 1 =

(
d−1
d−1

)
=
∑M−d+1

i=1

(
M−i
d−1

)
. Now suppose

that for M > d (3.13) holds. Then, for M + 1:(
M + 1

d

)
(3.14)
=

(
M

d− 1

)
+

(
M

d

)
=

(
M

d− 1

)
+

M−d+1∑
i=1

(
M − i

d− 1

)
︸ ︷︷ ︸

by the induction hypothesis

=
M+1−d+1∑

i=1

(
M + 1− i

d− 1

)
,

which proves (3.13) and thus (3.12).

3.3 Markov decision model for a dynamic SQ(d)

policy

In the previous sections we have not taken the costs of communication into account
since these costs are fixed for a fixed d. If we, however, let go of a fixed SQ(d)
policy and let the algorithm choose the number of queues sampled at every arrival
dynamically, we have a dynamic SQ(d) policy. In order for this to make sense,
we need to take into account the cost of communication. Firstly, we still have the
regular costs due to the maximum queue length xM . Let these costs be captured
by the function f1(xM). Let the cost of communication be given by a function of d,
say f2(d) (f1 and f2 should be some sort of utility functions, having a common unit
of cost). Note that increasing d will lead to extra costs immediately through f2(d),
but will generally have a diminishing effect on f1(xM), since the opportunity cost
of sampling fewer queues is that xM and hence f1(xM) have a higher probability of
increasing. Thus there is obviously a trade-off between the two, something which a
Markov decision process is able to take into account.

24

3.3. Markov decision model for a dynamic SQ(d) policy

The resulting optimality equation will be very similar to the Poisson equations of
the fixed SQ(d) policy. Basically, we extend Equation (3.8) by minimizing over d,
which comes down to:

V (x) + g = min
d∈D

{
f2(d) + λ

M−d+1∑
i=1

k(M, i, d)V (σ(x + ei))

}

+ f1(xM) + µ
M∑
i=1

I {xi > 0}V (σ(x− ei)) (3.15)

+

[
1−

(
λ + µ

M∑
i=1

I {xi > 0}

)]
V (x).

Consequently, we can perform value iteration with the recursion

Vn+1(x) = min
d∈D

{
f2(d) + λ

M−d+1∑
i=1

k(M, i, d)Vn(σ(x + ei))

}

+ f1(xM) + µ
M∑
i=1

I {xi > 0}Vn(σ(x− ei)) (3.16)

+

[
1−

(
λ + µ

M∑
i=1

I {xi > 0}

)]
Vn(x).

Remark 3.

As mentioned in Chapter 2, in practice we will truncate the state space X . Hence the
state space is finite, as is the action space D = {1, . . . ,M}. Due to the uniformization
we applied, there is a path from x to x of period 1 and our model is aperiodic. Since
for a stable system and every policy R, the empty state x = (0, . . . , 0) is recurrent3,
our model is unichain. Recall that since conditions 1, 3 and 4 from Chapter 2 are
satisfied, value iteration will give us the ε-optimal solution.

Remark 4. Optimality of the MDP and the ‘power of two’

In Figure 3.1, we compare fixed SQ(d) policies with the MDP, that chooses d dy-
namically. The optimality of the MDP is illustrated. To make the comparison fair,
the cost functions of the Markov reward processes that model the fixed SQ(d) algo-
rithms, have been adapted, such that also the (fixed) communication costs are taken
into account.
In Figure 3.2 the power of 2 is illustrated.

3Indeed, for every state y, there exists a path to x. The simplest path would be the one with
only departures.

25

Chapter 3. Models

Figure 3.1: The MDP that chooses d dynamically outperforms the fixed SQ(d) al-
gorithms. Here we have taken f1(xM) = xM and f2(d) = d, but this result holds in
greater generality.

Figure 3.2: Illustration of the ‘power of two’ for different occupation rates and M = 8.
We have taken f1(xM) = xM and f2(d) = d, but the idea that the biggest gain in
performance is when going from d = 1 to d = 2, holds in greater generality.

26

Chapter 4

Structural properties of the
relative value function

In this section we will investigate structural properties (such as increasingness) of
the relative value function V for the the Dynamic SQ(d) model. In general, once
such properties are proven, this can lead to characterization of the optimal policy
(see for instance [25]). If such a characterization (e.g., a threshold policy) has been
proven, this might in turn lead to a faster execution of the value iteration algorithm,
since one can, instead of optimizing over all possible policies, restrict optimization
to only those policies that have the same characteristics as the optimal policy.
Secondly, note that the value iteration algorithm attempts to find the global optimum
of the relative value function V . Recall that for a convex function it holds that
a local optimum is also a global optimum. Therefore, by showing convexity and
exploiting this property, it might be possible to develop a faster algorithm to solve
the optimality equation.
The two above mentioned arguments are the main reason that structural properties
are investigated. In our case, we expect V to be convex and non-decreasing (see
Figure 4.1). We have managed to prove non-decreasingness of this relative value
function; its proof you find below. Unfortunately, we have not yet been able to
prove convexity using standard methods. Hence, either it is not convex anyway, or
new techniques have to be developed to prove convexity of V for our model. The
attempts that we have made in this regard can be found in Appendix A.1.

27

Chapter 4. Structural properties of the relative value function

Figure 4.1: Convexity of the relative value function V in the three dimensional case,
where we truncated the state space at K = 10. At the boundary, it does not all
look convex, but we expect this to be due to boundary effects as a consequence of
truncating the state space. That is, if we take K = 15 instead, it looks all convex
around the value 10.

4.1 Prepatory lemmas and notation

Before proving non-decreasingness, we will give some prepatory lemmas and intro-
duce notation. Throughout this section we assume that x is sorted, that is, σ(x) = x,
with σ the sorting algorithm, used in for instance Equation (3.15). The statement
in the first lemma is very obvious, but good to establish nevertheless.

Lemma 4.1.1.
a) The mapping x 7→ σ(x + ej) is non-decreasing for all j ∈ {1, . . . ,M}. That is,
for every j ∈ {1, . . . ,M} there is a k∗ ∈ {j, . . . ,M} such that (σ(x + ej))k∗ > xk∗

and for all k ∈ {1, . . . ,M}, k 6= k∗, it holds that (σ(x + ej))k = xk for this j.
b) Similarly, the mapping x 7→ σ(x− ej) is non-increasing for all j ∈ {1, . . . ,M}.
That is, for every j ∈ {1, . . . ,M} there exists a k∗∗ ∈ {1, . . . , j} such that (σ(x −
ej))k∗∗ < xk∗∗ and (σ(x− ej))k = xk for all k ∈ {1, . . . ,M}, k 6= k∗∗.

28

4.1. Prepatory lemmas and notation

In other words, adding or subtracting ej to x for a particular j ∈ {1, . . . ,M} only
changes (increases and decreases, respectively) x, after sorting, in one position (in
position k∗ and k∗∗, respectively): σ(x + ej) = x + ek∗ and σ(x− ej) = x− ek∗∗.

Proof. We will only show the first case, as the second case goes similarly.
First note that σ(x + eM) = x + eM , hence for j = M we have k∗ = M . Now fix
j ∈ {1, . . . ,M − 1}. Note that σ(x + ej) 6= x + ej if and only if xj = xj+1. Now we
distinghuish two cases.
Case 1: Suppose xj < xj+1, then k∗ = j, since (σ(x+ej))j = (x+ej)j = xj +1 > xj

and for all k 6= j it holds that (σ(x + ej))k = (x + ej)k = xk.
Case 2: Suppose xj = xj+1 = . . . = xm for some j < m ≤ M . Then, by definition
of the sorting function σ, it follows that σ(x + ej) = x + em and thus

(σ(x + ej))k =

{
xk + 1 if k = m,

xk otherwise.

So in this case k∗ = m.

In the proofs that follow later, for fixed j, we will have to make use of the following
variables constantly. For notational convenience we already define them here.

Definition 5. Given x, we define, for fixed j, the variables j, xj, j and xj as follows.
By Lemma 4.1.1 we have that

σ(x + ej) = x + ej,

for j with j ≤ j ≤ M , the maximum index such that xj = xj (i.e., j is the k∗ of
Lemma 4.1.1 here). Define xj := x + ej and note that it satisfies σ(xj) = xj, i.e., xj

is ordered.
Similarly,

σ(x− ej) = x− ej,

for j with 1 ≤ j ≤ j the minimum index such that xj = xj (i.e., j is the k∗∗ of

Lemma 4.1.1 here). Also xj := x− ej is ordered.

Obviously, j ≤ j ≤ j. Note that for σ(x− ej) to exist, we must assume that xj ≥ 1
and hence also xj ≥ 1 and xj ≥ 1 holds, since xj = xj = xj.

The variables involved in Lemma 4.1.1 and Definition 5 above are illustrated in Fig-
ures 4.2 and 4.3.

The following lemma is explicitly needed in the proof of non-decreasingness of the
relative value function (Theorem 4.2.1).

29

Chapter 4. Structural properties of the relative value function

Lemma 4.1.2. Fix some n ≥ 0. Given that

Vn(σ(x + ej))− Vn(x) ≥ 0 (4.1)

for all x ∈ X , with j = 1, . . . ,M , then

Vn(σ(σ(x + ej)− ei))− Vn(σ(x− ei)) ≥ 0 (4.2)

and
Vn(σ(σ(x + ej) + ei))− Vn(σ(x + ei)) ≥ 0 (4.3)

for all x ∈ X , with i, j ∈ {1, . . . ,M}.

Proof. We will only prove (4.2) as the proof of (4.3) is similar. Fix i and j. Basically,
we have to show that the left hand side of (4.2) is equal to

Vn(σ(x∗ + eh))− Vn(x∗), (4.4)

for some x∗ ∈ X and h ∈ {1, . . . ,M}, because then we can use (4.1).
We will assume that indices l exist with xl = xj ± 1. In particular, we will assume
that 1 < j < M . If this is not the case, the proof will only become easier.
Define, x∗ := σ(x−ei). By Lemma 4.1.1 we know that there exists an i with 1 ≤ i ≤ i
such that σ(x − ei) = x − ei (i.e., we take x∗ := xi). Now it remains to show that
σ(σ(x+ ej)− ei) = σ(x∗+ eh) for some h ∈ {1, . . . ,M}. Recall from Definition 5 the
variable xj = σ(x + ej) = x + ej. Now we have two cases.

Case 1: xj

j
= xj

M

Then

σ(σ(x + ej)− ei) = σ(x + ej − ei)

=

{
x + ej − ej if i ≥ j

x + ej − ei if i < j

=

{
x if i ≥ j

x− ei + ej if i < j

=

σ(x∗ + ej) if i > j

σ(x∗ + ei) if i = j

σ(x∗ + ej) if j ≤ i < j, j < j

σ(x∗ + ej+1) if j ≤ i < j, j = j

σ(x∗ + ej) if i < j.

(4.5)

30

4.1. Prepatory lemmas and notation

In the second equality, we use for the case i < j that the k∗∗ from Lemma 4.1.1 is
the same (namely i) for both x and x + ej when subtracting ei.

The last equality follows after identifying that for i < j, three cases arise. In cases
j ≤ i < j, j < j or i < j we have that the k∗ from Lemma 4.1.1 is the same (namely

j) for both x and x∗ when adding ej. In case j ≤ i < j, j = j however, this is not

so. In order to get j as the k∗ for x∗ we should add ej+1 instead of ej (note that in
this case xj = xj+1 because j < j).
For the case i > j one has to recognize that σ(x∗+ej) = σ(x−ei+ej) = x−ei+ei = x,
where the second equality follows because the k∗ of Lemma 4.1.1 is i for state x− ei

when adding ej. We could also not have split up this case from the case i = j, but
we have done this nevertheless for later use in the proof of Lemma A.1.1.
So for the cases i > j or j ≤ i < j, j < j or i < j we have that h = j gives us (4.4).

For the case i = j we take h = i to get (4.4) and for the case j ≤ i < j, j = j we
take h = j + 1.
The case where i > j, is illustrated in Figure 4.4.

Case 2: xj

j
< xj

M

In this case there exists an m > j such that σ(xj + em) = xj + em. Compared to the
first case, not much changes; only for i > m we should again recognize (as for the
case i < j) that the k∗∗ from Lemma 4.1.1 is the same (namely i) for both x and
x + ej when subtracting ei. So we get

σ(σ(x + ej)− ei) = σ(x + ej − ei)

=

σ(x∗ + ej) if j < i ≤ m

σ(x∗ + ei) if i = j

σ(x∗ + ej) if j ≤ i < j, j < j

σ(x∗ + ej+1) if j ≤ i < j, j = j

σ(x∗ + ej) if i < j and i > m.

and (4.4) follows similarly as in Case 1.

Note that since in both cases the value of h for all i except for i = j and j ≤ i <

j, j = j are the same, we could have taken them together (and we needed not have
distinguished between Case 1 and Case 2 either), but because there are differences
in analysis in order to come to this h, we presented them distinctly.

In order to present the proofs of Theorem 4.2.1 below and Conjecture A.1.1 in the
appendix more compactly, we have the following definition.

31

Chapter 4. Structural properties of the relative value function

Definition 6. For x ∈ X , d ∈ D, n ≥ 0 and given M > 1, we define

T n
d (x) := f2(d) + λ

M−d+1∑
i=1

k(M, i, d)Vn(σ(x + ei)),

with k(M, i, d) = d (M−i)!(M−d)!
(M−i−d+1)!M !

.

4.2 Non-decreasingness

The following theorem establishes the property of non-decreasingness of the relative
value function V .

Theorem 4.2.1. For non-decreasing f1, it holds that V is non-decreasing, i.e.,
V (σ(x + ej))− V (x) ≥ 0 for all x ∈ X and j = 1, . . . ,M .

Proof. We will prove this by induction on n in Vn. Take V0(x) = 0 for all x. Then
obviously, V0(x) is non-decreasing for all x. Now assume that Vn(x) is non-decreasing,
i.e., Vn(σ(x + ej))− Vn(x) ≥ 0. Then, for n + 1 we have the following.

Vn+1(σ(x + ej))− Vn+1(x) = f1((σ(x + ej))M)− f1(xM)︸ ︷︷ ︸
A

(4.6)

+ µ

M∑
i=1

I{(σ(x + ej))i > 0}Vn(σ(σ(x + ej)− ei))−
M∑
i=1

I{xi > 0}Vn(σ(x− ei))︸ ︷︷ ︸
B

+

[
1− (λ + µ

M∑
i=1

I{(σ(x + ej))i > 0})

]
Vn(σ(x + ej))−

[
1− (λ + µ

M∑
i=1

I{xi > 0})

]
Vn(x)︸ ︷︷ ︸

C

+ min
d∈D

T n
d (σ(x + ej))−min

d∈D
T n

d (x)︸ ︷︷ ︸
D

.

Note that for A it holds that for f1 non-decreasing

f1((σ(x + ej))M)− f1(xM) ≥ 0,

since (σ(x + ej))M ≥ xM by Lemma 4.1.1.
For B and C we distinguish two cases. Recall from Definition 5 that σ(x+ej) = x+ej.

32

4.2. Non-decreasingness

Case 1: xj > 0
Looking at B it holds that (σ(x + ej))i ≥ xi and hence

I{(σ(x + ej))i > 0} ≥ I{xi > 0},

implying

B ≥
M∑
i=1

I{xi > 0} [Vn(σ(σ(x + ej)− ei))− Vn(σ(x− ei))] .

By the induction hypothesis and Lemma 4.1.2 this is larger than or equal to 0.
For C we notice that since xj > 0 it holds that

I{xi > 0} = I{(σ(x + ej))i > 0}.

Hence

C =

[
1− (λ + µ

M∑
i=1

I{(σ(x + ej))i > 0}

]
(Vn(σ(x + ej))− Vn(x)) ,

which is again larger than or equal to 0 because of the induction hypothesis and the
fact that [

1−

(
λ + µ

M∑
i=1

I{(σ(x + ej))i > 0}

)]
≥ 0.

Case 2: xj = 0
For B, we could in principle use the same argument as for Case 1. However, we need
to approach it differently because we will need to compensate a term from C. We
write

B ≥
∑
i6=j

I{xi > 0} [Vn(σ(σ(x + ej)− ei))− Vn(σ(x− ei))]

+ I{xj + 1 > 0}︸ ︷︷ ︸
=1

Vn(σ(σ(x + ej)− ej)︸ ︷︷ ︸
=x

)− I{xj > 0}︸ ︷︷ ︸
=0

Vn(σ(x− ej))

≥Vn(x),

33

Chapter 4. Structural properties of the relative value function

where we have again used the induction hypothesis and Lemma 4.1.2. For C we can
write in this case

C =

[
1− (λ + µ

M∑
i=1

I{(σ(x + ej))i > 0})

]
(Vn(σ(x + ej))− Vn(x))

−µ I{xj = 0}︸ ︷︷ ︸
=1

Vn(x)

≥− µVn(x),

where we have used the induction hypothesis and Lemma 4.1.2 in the last inequality.
Taking the left-over terms of B and C together gives 0, hence also µB + C ≥ 0 in
this case.

With regard to D, note that for

d∗ ∈ argmin
d∈D

{T n
d (σ(x + ej))},

it holds that
min
d∈D

T n
d (x) ≤ T n

d∗(x)

and thus
−min

d∈D
T n

d (x) ≥ −T n
d∗(x).

Hence

D ≥ T n
d∗(σ(x + ej))− T n

d∗(x)

= (f2(d
∗)− f2(d

∗)) + λ

[
M−d∗+1∑

i=1

k(M, i, d∗) (Vn(σ(σ(x + ej) + ei))− Vn(σ(x + ei)))

]
≥ 0,

by the induction hypothesis and Lemma 4.1.2. Taking all this together, it follows
that

Vn+1(σ(x + ej))− Vn+1(x) ≥ 0,

which is what we wanted to prove, since by taking n →∞ the result follows:

0 ≤ lim
n→∞

Vn+1(σ(x + ej))− Vn+1(x)

= lim
n→∞

[Vn+1(σ(x + ej))− g(n + 1)]− [Vn+1(x)− g(n + 1)]

= lim
n→∞

[Vn+1(σ(x + ej))− g(n + 1)]− lim
n→∞

[Vn+1(x)− g(n + 1)]

= V (σ(x + ej))− V (x),

34

4.2. Non-decreasingness

where we have used (2.8) in the last equality.

35

Chapter 4. Structural properties of the relative value function

Figure 4.2: Illustration of some of the variables involved in Lemma 4.1.1 and Defi-
nition 5. In A) some x ∈ X is depicted. In B) we see x + ej and in C) we see how
k∗ is defined. Here j = k∗. Finally in D) we find xj := σ(x + ej) = x + k∗.

36

4.2. Non-decreasingness

Figure 4.3: Illustration of some of the variables involved in Lemma 4.1.1 and Defi-
nition 5. In A) some x ∈ X is depicted. In B) we see x − ej and in C) we see how
k∗∗ is defined. Here j = k∗∗. Finally in D) we find xj := σ(x− ej) = x− k∗∗.

37

Chapter 4. Structural properties of the relative value function

Figure 4.4: Illustration of the proof that for the case xj

j
= xj

M and i > j, it holds

that there exists an h ∈ {1, . . . ,M} such that σ(σ(x + ej) − ei) = σ(x∗ + eh), with
x∗ = x− ei. In this case h = j suffices.

38

Chapter 5

Heuristics and results

In the previous chapters we have throughout assumed that we had complete infor-
mation on the state of the system. That is, at all times we knew exactly the number
of customers in every subsystem. Consequently, we knew at all times the maximum
number of customers over all subsystems and hence the associated costs. An MDP
which has complete information, is called a Markov decision process with full infor-
mation. An example is the MDP we formulated in Chapter 3 for the dynamic SQ(d)
policy. As stated in the introduction, this is not the case we are interested in. That
is, we want to investigate the case where we do not have complete state information,
but we can only use what we know from previous decisions and samples. These
kind of MDPs are also called Markov decision processes with partial information. In
Section 5.1 we formulate such an MDP for the dynamic SQ(d) policy and show how
to transform this MDP with partial information into an equivalent MDP with full
information. Note, however, that this MDP with full information is not the same
as the one we formulated in Chapter 3, since there the states really represented the
number of jobs in each subsystem, whereas here, the states will be a distribution over
the number of jobs in each subsystem. Simply stated, this distribution represents
our ‘guess’ of how many jobs are present in each subsystem.
However, as mentioned in Section 2.5, Markov decision models suffer from the so-
called ‘curse of dimensionality’ and are not scalable1 in practice. For Markov decision
processes with partial information this is even worse, as will become clear below.
In Section 5.2 we try to deal with this scalability problem in different ways and fi-
nally come up with a scalable algorithm that outperforms SQ(2) and JSQ for certain
scenarios in the case without complete information.

1Recall that with not being ‘scalable’, we mean here that as we increase the number of subsys-
tems, the corresponding computations will become infeasible.

39

Chapter 5. Heuristics and results

5.1 Partial information model

In this section we model the dynamic SQ(d) algorithm –in the case where we do not
have complete information– as a Markov decision proces with partial information.
The key to formulating an MDP with partial information is that we have to come up
with an appropriate state space. To this end, we distinguish between the state of the
model (with state space X)and the state of the algorithm (with information state
space P) that represents the information we have. The information state is actually
a distribution on X (it is also called the belief state, since this distribution is our
belief of what state the model is in). Next to this, we have an observation space Zd,
which in our case represents the exact number of jobs in the d subsystems that are
sampled. The observation space depends on d, the decision, which stands for the
number of subsystems sampled. Thus,the decision space is the same as before, i.e.,
D = {1, . . . ,M}.
Remark that the information state holds all information on all observations up to the
current time. Thus, it is observable (meaning, in a sense, that we have full informa-
tion), it only depends on the observations, and the Markov property holds. Hence,
in our setting, the information state can theoretically be used to solve the problem:
Starting with some (well-chosen) prior distribution, the information state is updated
every time unit in a Bayesian manner. By using the value iteration algorithm with
P as state space, we can compute the optimal policy, given the initial distribution.
This observation is formalized in Theorem 4.1 of [10], which states that there exists
a full information model that is equivalent to every partial information model (i.e.,
the same optimal costs and an optimal policy in the full information model is also
optimal in the partial information model), under some conditions that hold in our
case.
Practically, however, note that for state space X , the information state is given by
P = [0, 1]|X |, which is an |X |-dimensional space, with each information state variable
a probability. In particular, P is not countable and we would certainly have to dis-
cretize the state space to make computations possible. However, where discretization
of the interval [0, 1] could make computations possible for small state spaces, for our
problem with multidimensional state variables this is infeasible.
Despite these practical challenges, let us give the partial information model of our
problem anyway. As mentioned, we will to this end use Theorem 4.1 of [10], from
which the following general framework follows. Given are a state space X , a deci-
sion space D, a transition probability function p and a cost function c. With the
observation space Zd we define the so-called observation probabilities q(x, d, z) as
the probability of observing z in state x when taking action d. We will now define

40

5.1. Partial information model

transition probabilities p̃(u, d, v) and cost function c̃(u, d), with u, v ∈ P and d ∈ D,
for the Markov decision process with P as state space and D as decision space. Given
a d ∈ D and a z ∈ Zd, the transition probabilities are given by

p̃(u, d, v) =
∑
x∈X

∑
y∈X

u(x)p(x, d, y)q(y, d, z),

for v such that

v(y) =

∑
x∈X u(x)p(x, d, y)q(y, d, z)∑

x∈X
∑

x′∈X u(x)p(x, d, x′)q(x′, d, z)
,

and v(y) = 1 if the denominator is equal to 0. Define this v as Ty(u, d, z). Note that
we have assumed that, for u, different observations z lead to different v. If, for fixed
(u, d), there are different observations z and z′ such that Ty(u, d, z) = Ty(u, d, z′),
then we should define p̃ as

p̃(u, d, v) =
∑
x∈X

∑
y∈X

u(x)p(x, d, y)q(y, d, z)I{Ty(u, d, z) = v},

with, as before, I{.} the indicator function.

In order to complete our particular full information model for the dynamic SQ(d)
Markov decision process with partial information, we should give the following spec-
ifications to the above.

The state space X :=
(
NK

0

)M
,

the decision space D := {1, . . . ,M} ,

the observation space Zd :=
(
NK

0 ×D
)d

, (5.1)

the information space P := [0, 1]|X | and

the observation probabilities q(x, d, z) :=
d!

M(M − 1) · · · (M − d + 1)
,

where NK
0 := {0, 1, . . . , K}. The observation space Zd is of the form given, because

for every sample we want to know the number of jobs (∈ NK
0) in the subsystem (∈ D)

sampled. For the observation probabilities, recall that q(x, d, z) is the probability
of observing z ∈ Zd, given that the system is in x ∈ X and d ∈ D subsystems are
sampled. There are

(
M
d

)
= M !

(M−d)!d!
possibilities to choose d subsystems out of M , so

the probability to choose one particular combination is

q(x, d, z) =
1(
M
d

) =
(M − d)!d!

M !
=

d!

M(M − 1) · · · (M − d + 1)
.

41

Chapter 5. Heuristics and results

5.2 Heuristic approach

As remarked in the previous section, it is practically infeasible to compute an optimal
policy for the full information model (5.1) above. Even after discretization, the
sheer dimensionality of our framework prohibits this. We could circumvent these
computational problems to some extent by choosing a heuristic approach. To this
end, we will decouple the computations into

Phase A: The approximation of the model state;

Phase B: The determination of a good corresponding policy.

We will first focus on Phase A, where we will treat the computation of the information
state. With this information state, we will be able to approximate the state of the
model. The idea of the heuristic is that given this approximated state of the model
(Phase A), it uses the MDP from Chapter 3 to come to a hopefully good policy
for that approximated state (Phase B). This decoupling mechanism will be the first
approximation step. Since the resulting heuristic will not be scalable either due to
the complexity of the MDP it uses, in the second approximation step we focus on
lowering the computation time in Phase B. To do so, we will approximate the relative
value function V of the MDP involved. This results in a heuristic that is scalable up
to at least 30 subsystems.
In the remaining part of this section, in our search for a well-performing policy in
Phase B given the outcomes of Phase A, we will call the resulting policy simply the
“corresponding policy”. It should be clear that we want this corresponding policy
to be as good as possible.
Contrary to what we did previously, here we do not sort our model states. This is
not needed because we will not use the transition probabilities defined in Chapter 3.
Moreover, the generalization to different service rates will be more natural later on.

5.2.1 Approximation step 1: Estimating the state variable

In this section, we will explain the decoupling mechanism, which is a first step to
a scalable heuristic. Initially, our focus is on Phase A where we concentrate on
the information space, that basically is a distribution over all possible model states.
Secondly, we will give different options of how to use the resulting distribution from
Phase A in Phase B.

42

5.2. Heuristic approach

Phase A
Assume we have M subsystems with buffer length K, i.e., the total number of pos-
sible jobs waiting in the queue plus the job in service is maximally2 K. We define
two M -dimensional vectors τ = (τ1, . . . , τM) and s = (s1, . . . , sM) to be able to keep
track of the distribution we are interested in. τi denotes the time since subsystem i
was last sampled and si denotes the number of jobs in subsystem i at the moment it
was last sampled. Instead of keeping a distribution over all possible states directly,
we will keep M distributions over the number of jobs for each subsystem. This sec-
ond option is more general and allows for more different options when it comes to
calculating a policy in Phase B. In this case, given vectors τ and s, at an arrival we
could calculate per subsystem the probability that there are j = 0, 1, . . . , K jobs in
the subsystem using the following observation.
Since we assume that we start with an empty system, and because τ and s are
updated at every arrival using the information we get by sampling subsystems, the
biggest challenge is to estimate how many jobs have left since the last time a sub-
system was sampled. Due to the exponential service times with rate µ, we can think
of service events being given in terms of a Poisson process with rate µ, such that
an event in the Poisson process corresponds to a job having finished service if the
subsystem is nonempty and is just dummy otherwise. Let A(t) be the number of
Poisson events in the interval (0, t]. As we know from the counting process of a
Poisson process, A(t) is Poisson distributed and

qk(t) := P (A(t) = k) = e−µt (µt)k

k!
.

So given τ = (τ1, . . . , τM) and s = (s1, . . . , sM), at an arrival we have that in sub-
system i, si − k jobs are present with probability qk(τi), if si − k > 0 and 0 jobs are
present otherwise. The probability that 0 jobs are present, happens with probability
1−

∑si−1
j=0 qj(τi).

Using this technique and the resulting distribution per subsystem, we can

I Calculate the most likely x, denoted xl;

II Calculate the expected x, denoted xe,

where x is the model state we do not know, but want to estimate in some way.
Calculating xl is done by taking per subsystem the number of jobs that has high-
est probability. On the other hand, calculating xe is done by taking the expected

2In Chapter 2, K was called the truncation level. We need this here because we use the optimal
policy of the MDP from Chapter 3, which has been calculated using a truncation level K.

43

Chapter 5. Heuristics and results

value of the number of jobs per subsystem and rounding each to the nearest in-
teger3. Both method I and II are illustrated in Figure 5.1. Furthermore, from
the M distributions per subsystem, we could also compute the distribution over all
possible model states, since the distributions per subsystem are independent, given
vectors τ and s. That is, the probability that according to this distribution, the
model state x is some particular y, denoted P (x = y), can be computed as follows:
P (x = y) = P (x1 = y1) · · ·P (xM = yM), where P (xi = yi) is the probability that in
subsystem i there are yi jobs present. Denote this distribution Q. The way distri-
bution Q can be computed, is also illustrated in Figure 5.1.

Figure 5.1: In this figure you find an illustration of methods I and II mentioned
in the text. We have two subsystems in this example and for both subsystems a
distribution over the number of jobs in the subsystem is given. Method I takes for
both subsystems the most likely number of jobs, which then gives the most likely x.
In this case this would result in 3 jobs in subsystem 1, and 2 jobs in subsystem 2, since
these appear with highest probability in their respective columns, i.e., xl = (3, 2).
Method II calculates the expected number of jobs in both subsystems, which gives
the expected x. So in this case this results in [0 + 0.2 + 0.6 + 1.2] = [2] = 2
jobs in subsystem 1, and [0 + 0.3 + 1] = [1.3] = 1 job in subsystem 2, where [.]
is the rounding function. So, xe = (2, 1). Note that xl 6= xe in this case, i.e.,
these methods may give a different result. Finally, to illustrate how distribution
Q can be computed, recall that P (x = y) = P (x1 = y1)P (x2 = y2), hence e.g.,
P (x = (3, 0)) = 0.4 ∗ 0.2 = 0.08 and P (x = (1, 2)) = 0.2 ∗ 0.5 = 0.1.

Phase B
Given the distributions that represent the information state from Phase A, we can

3One can also round it up or down, but in our tests we did not observe a significant improvement
when doing so.

44

5.2. Heuristic approach

do different things to calculate a corresponding policy. Firstly, we already saw two
different ways of how the distribution could be used to come to an estimated x, (see
also Figure 5.1). Let this estimated x be denoted x̂ (so x̂ = xl or x̂ = xe may hold).
To illustrate how we could use x̂ to come to a corresponding policy, consider the
following.
Let us assume that we consider a system with M subsystems, Poisson arrivals with
rate λ and exponential service times with rate µ, equal for all subsystems. Note
that we want to run our dynamic SQ(d) policy and want to analyze this system in
the case where we do not have complete information. To do so, we would like to
use the MDP we formulated in Chapter 3. Recall that if we choose a truncation
level K, then this MDP would give us an optimal policy for the case with complete
information. That is, the results of the MDP give us a mapping

x 7→ d∗(x), (5.2)

where d∗(x) is the optimal number of samples in model state x. However, two things
should be dealt with in order to be able to use this mapping. Firstly, the state
space of the MDP from Chapter 3 consists of sorted model states x only. That is,
d∗(.) is only defined on X := {z ∈ NM

0 |z1 ≤ z2 ≤ · · · ≤ zM}. So to be able to use
this mapping, we should make sure that x ∈ X . Secondly, contrary to the setting
in which the MDP in Chapter 3 is defined, we are interested in the case where we
do not have complete information. Taking the above observations into account and
combining x̂ with mapping d∗ immediately gives us two options for our heuristic:

1. Calculate xl at every arrival and sample d∗(σ(xl)) subsystems; we call this
heuristic “heurlike”.

2. Calculate xe at every arrival and sample d∗(σ(xe)) subsystems; we call this
heuristic “heurexp”.

Remark 5.

The way we have used the MDP from Section 3, in fact comes down to the following.
In the corresponding optimality equations (see (3.15)), we see that mapping (5.2)
hinges on the expression

min
d∈D

{
f2(d) + λ

M−d+1∑
i=1

k(M, i, d)V (σ(x + ei))

}
. (5.3)

45

Chapter 5. Heuristics and results

So basically, calculating d∗(x̂) for the above-defined heuristics comes down to calcu-
lating

argmin
d∈D

{
f2(d) + λ

M−d+1∑
i=1

k(M, i, d)V (σ(σ(x̂) + ei))

}
, (5.4)

for x̂ = xl or x̂ = xe, respectively. Hence, given V , we have

d∗(x) := argmin
d∈D

{
f2(d) + λ

M−d+1∑
i=1

k(M, i, d)V (σ(x + ei))

}
, (5.5)

for x ∈ X .

Observe that both heuristics do not fully exploit the power of the distribution from
Phase A. Indeed, instead of taking d∗(xl) or d∗(xe), we could also take E [d∗(x)],
where E is the expectation with respect to Q:

E [d∗(x)] :=
∑

y

P (x = y) argmin
d∈D

{
f2(d) + λ

M−d+1∑
i=1

k(M, i, d)V (σ(σ(y) + ei)))

}
.

(5.6)

Note that in the argument of V we had to put σ(y) instead of just y, since y ∈ X
does not necessarily hold. Thus, a third option for our heuristic would be:

3. Calculate Q at every arrival and sample E [d∗(x)] subsystems; we call this
heuristic “heurexpvalue”.

We expect this heuristic to outperform the other two, because it takes full advantage
of the information available, since it weighs the optimal policy of the MDP with the
distribution from phase A.

5.2.2 Results

To sum up, we have got three candidates for our heuristic at the moment:

1. Heuristic “heurlike”, that calculates xl at every arrival and subsequently sam-
ples d∗(σ(xl)) subsystems;

2. Heuristic “heurexp”, that calculates xe at every arrival and subsequently sam-
ples d∗(σ(xe)) subsystems;

46

5.2. Heuristic approach

3. Heuristic “heurexpvalue”, that calculates Q at every arrival and subsequently
samples E [d∗(x)] subsystems; we call this heuristic “heurexpvalue”.

It is very interesting to compare the performance of these algorithms with the opti-
mal policy of the MDP from Chapter 3, because this gives an idea as to how far from
optimal these heuristics perform. Furthermore, comparing these heuristics with stan-
dard algorithms from literature (such as Round Robin, Random, SQ(2) and JSQ),
will give us insight in whether choosing d dynamically rather than fixed, will indeed
lead to better performance.

First of all, we have to specify a cost function and a truncation level K. In general,
we assume that the cost function is of the form f1(xM)+ f2(d), with xM the number
of jobs in the subsystem with the highest number of jobs (conform Chapter 3). For
our computations we assume throughout this thesis a linear cost function of the form
w1xM + w2d, where we fix w2 = 1 and vary w1. Since we expect the waiting time
due to the queue sizes in the subsystems to be longer than the waiting time due to
sampling4, we vary w1 only for values such that w1 > w2.
With regard to the truncation level K, as mentioned in Chapter 2, we have to choose
a K such that the difference between gK and gK+1 is small enough, where gK and
gK+1 are the long term average cost of the MDP when we use truncation level K
and K + 1, respectively. For M = 4 subsystems and w1 = 5, we found taking

K = 11 sufficient, since then the relative difference, gK+1−gK

gK , is < 1% for occupation

rates ρ = 0.7, 0.8 and < 2% for ρ = 0.9. This is illustrated in Table 5.1. For lower
occupation rates the relative difference will only be smaller and even lower values of
K would suffice.

Remark 6.

As mentioned earlier, since we use the MDP to calculate a policy, we have to trun-
cate the state space, so that it is finite. In our heuristics however, this truncation
level K might be exceeded. In such cases, it may happen that si > K for some
i ∈ {1, . . . ,M} and we will then take si = K instead. This might have consequences
for the accuracy of the heuristics, in particular if the truncation level K is chosen
too small.

To get an idea of the performance of the three heuristics, let us look at the case
with M = 4 subsystems and w1 = 5. In the left picture of Figure 5.2 you see the

4This idea was supported by Y. Lu, main author of [13], in a conversation we had with her at
the IFIP Performance conference in Amsterdam last October.

47

Chapter 5. Heuristics and results

ρ gK gK+1 gK+1−gK

gK (%)

0.7 10.9557 10.9558 9.1277e-004
0.8 13.7529 13.7606 0.0560
0.9 19.6732 19.9457 1.3851

Table 5.1: Comparing gK with gK+1 for various occupation rates ρ.

performance of the heuristics compared to the optimal performance of the MDP. In
the right picture we depict the relative difference of the heuristics with the MDP.
The relative difference is defined as gh−gMDP

gMDP
, where gh is the long term average cost

of the heuristic and gMDP the long term average cost of the MDP. One can see that
up to an occupation rate of ρ = 0.8, all three heuristics perform within a 10 % bound
from optimal. Moreover, it can be seen that from the three heuristics “heurexpvalue”
performs best, as expected.

Figure 5.2: Performance of the three heuristics “heurlike”, “heurexp” and “heurex-
pvalue” compared to the performance of the MDP from Chapter 3, for M = 4 and
w1 = 5. In the picture on the left the performance is given in terms of the long term
average costs, whereas in the picture on the right, the relative difference (in %) of
the three heuristics with respect to the MDP is depicted.

In Figure 5.3 we compare Round Robin (RR), SQ(1) (=Random), SQ(2) and Join
the Shortest Queue (JSQ) with the MDP and see that for medium to high occupation
rates, RR and SQ(1) perform very poorly. Since this bad performance also holds for
other sets of parameters and since from experience we know that most systems have
an occupation rate ρ ∈ [0.7, 0.8], we will exclude RR and SQ(1) from comparison in
the remaining part of this thesis.

48

5.2. Heuristic approach

Noteworthy is that RR outperforms all other algorithms (also the MDP) for low
occupation rates. This does not conflict with the optimality of the MDP however,
since the MDP is only optimal within the class of SQ(d)-like policies, to which RR
does not belong. Intuitively, it is not hard to reason why RR outperforms the other
algorithms for low occupation rates. Indeed, for low occupation rates it is reasonable
to assume that every time a job is assigned to a subsystem according to RR, it most
likely finds an idle server (so in fact we say that it is reasonable to assume that
the service time of a job is generally smaller than M interarrival times). Hence,
the lack of communication is only advantegeous here because it does not bring any
additional sampling costs, while at the same time there is generally no (or negligible)
extra waiting time due to the queue sizes.

Figure 5.3: Performance of RR, SQ(1), SQ(2), JSQ compared to the MDP from
Section 3, for M = 4 and w1 = 5. In the picture on the left the performance is
given in terms of the long term average costs, whereas in the picture on the right,
the relative difference (in %) of the four algorithms with respect to the MDP is
depicted.

Finally, we compare our heuristics with SQ(2) and JSQ, as these are the most com-
monly used SQ(d)-related algorithms used in practice. In Figure 5.4 we see that for
these parameters, our heuristics perform fairly well over the whole range of occupa-
tion rates, except perhaps for ρ = 0.9.
Since we are not interested in systems with only M = 4 servers, we will not draw
any definite conclusions from the given results in this section. However, these results
do give some interesting insights, from which we can learn in our search for a well-
performing heuristic for higher dimensional systems. In particular, we find that all
three proposed heuristics perform fairly well, but that “heurexpval” performs best,
as expected. The heuristics compete with standard algorithms such as SQ(2) and
JSQ over the whole range of occupation rates.

49

Chapter 5. Heuristics and results

Figure 5.4: The performance of the three heuristics “heurlike”, “heurexp” and “heur-
expvalue” compared to the performance of SQ(2) and JSQ, measured in terms of the
relative difference with respect to the MDP from Section 3, for M = 4 and w1 = 5.

With regard to scalability however, these heuristics cannot be used directly, since
they all use the MDP from Chapter 3, which is not suitable for high dimensional
systems. Therefore, in the next section we will come up with a scalable heuristic on
the basis of the ideas developed in this section.
Apart from the fact that we cannot use the MDP in Phase B, we should also take
a closer look at the computation time in Phase A. Whereas “heurlike” requires the
explicit computation of the M distributions of the subsystems, and “heurexpvalue”
even requires the computation of distribution Q5, “heurexp” only requires to com-
pute the expectation of the number of jobs per subsystem, which comes down to
computing

max (si − µτi, 0) (5.7)

per subsystem, since the expectation of a Poisson process with parameter µ in the
interval [0, τi] is µτi. So this grows linearly in M . Conclusively, despite not being
the best performing of the three heuristics, the idea of “heurexp” is most suitable to
work with in higher dimensional systems.

5To illustrate why this poses a problem, take the truncation level K = 2. For this relatively
low truncation level, already 2M computations are needed to compute Q. That is, the number of
computations grows exponentially in M and explodes for large M .

50

5.2. Heuristic approach

5.2.3 Approximation step 2: Getting rid of the MDP

From the previous section we have learnt that in Phase A it is most suitable, with
respect to computation time, to compute xe at every arrival. Moreover, we have
observed that in Phase B we cannot use the MDP from Chapter 3 to compute a
corresponding policy6. Hence, we have to come up with a solution to compute a
reasonable policy differently, without using the MDP. To this end, observe that for
M = 1 the supermarket model reduces to a regular M/M/1 queue, and the relative
value function, denoted V MM1, has a closed form expression (see [4]):

V MM1(l) =
l(l + 1)

2(µMM1 − λMM1)
, (5.8)

where λMM1 is the arrival rate, µMM1 the service rate and l ∈ N0 represents the
number of jobs in the system. Recall that pj(x, d) is the probability that, in state
x when applying SQ(d), an arriving job is sent to subsystem j. So the arrival rate
for subsystem j is λpj(x, d). We can use the above to approximate the relative value
function V of the MDP of Chapter 3, for M > 1 as follows:

V (x) =
M∑

j=1

V MM1(x, j), (5.9)

where

V MM1(x, j) :=
xj(xj + 1)

2(µ− λpj(x, d))
, (5.10)

for fixed d ≤ M and pj(x, d) as defined in Definition 4. It is important to observe
that V MM1 depends on the complete state x and not only on one of its components.
That is, the arrival rate for subsystem j is dependent on the number of jobs in the
other subsystems. We will come back to this below. Given (5.9), we can adjust (5.5)
to

d∗(x) := argmin
d∈D

{
f2(d) + λ

M−d+1∑
i=1

k(M, i, d)
M∑

j=1

V MM1(σ(x + ei), j)

}
, (5.11)

for x ∈ X .
We want to emphasize that the interdependencies of the subsystems, when applying

6Because we will not use the MDP anymore, we do not have to truncate the state space either.

51

Chapter 5. Heuristics and results

SQ(d) policies with d > 1, is one of things that make these algorithms very hard
to analyze. These dependencies become increasingly significant for higher values of
d, since more subsystems will be sampled. Also, the higher the occupation rate ρ,
the better JSQ performs (in terms of the number of jobs waiting in the subsystems).
In the approximation (5.9) of V , these interdependencies are merely accounted for
through pi(x, d). Therefore, contrary to the “heurexp” algorithm in the previous
section, we do not simply compute xe and subsequently sample d∗(σ(xe)) subsystems
at every job arrival. Instead, after computing d∗ ≡ d∗(σ(xe)), we compute

d∗∗ = b(1− ρ)d∗ + ρMc , (5.12)

to account for the comments made above. That is, for higher occupation rates
we expect d∗ to be lower than it should be, since in its calculation we expect it
to underestimate the interdependencies between the subsystems. Therefore, after
computing d∗ we apply the Bernouilli-like weighing (5.12) of d∗ and M , to correct
for this anticipated underestimation. Subsequently, d∗∗ subsystems are sampled. The
resulting heuristic comes down to the following:

Calculate xe at every arrival and sample d∗∗ = b(1− ρ)d∗(σ(xe)) + ρNc sub-
systems; we call this heuristic “Dynamic SQ(d)”.

We could also have rounded (1 − ρ)d∗ + ρM up or to the nearest integer, instead
of rounding it down. For our purposes, the conservative choice of rounding it down
gave the best results.

Remark 7. Complexity

Before looking at the performance of our Dynamic SQ(d) heuristic in the section
below, we would like to make a comment on the complexity of the algorithm. Since
we want to apply the heuristic to high dimensional systems (i.e., large M), the
complexity should not be too high. In order to analyze the complexity, it is also
important to take into account what should be stored in memory. Apart from the
1 ×M vectors τ and s, it it sensible to compute k(M, i, d) for all i, d ∈ {1, . . . ,M}
up front and store these values in memory7 (M ×M matrix). Then, the Dynamic
SQ(d) has the following complexity. At every arrival:

7One might also consider computing all possible pi(x, d) up front. However, it does not scale
to store these values since we do not truncate the state space here. Moreover, even if the state
space was finite, then there would be an exponential number of possible states x. Hence we do not
compute them up front but calculate them when needed.

52

5.2. Heuristic approach

+ It takes O(M) computations to calculate xe;

+ It takes O(M log M) computations to sort xe;

+ It takes O(M4 log M) computations to calculate d∗(x), for x ∈ X :

O(M log M): Calculating σ(x + ei) for fixed i and x ∈ X ,

+O(M): Calculating pj(σ(x + ei), d) for fixed d, i, j and x ∈ X ,

∗O(M): We sum over j ∈ {1, . . . ,M},
∗O(M): We sum over i ∈ {1, . . . ,M − d + 1},

∗O(M): We do this for every d ∈ {1, . . . ,M}.

+ It takes O(1) to calculate d∗∗;

+ It takes O(M) to apply SQ(d∗∗);

+ It takes O(M) to update τ and s.

Conclusively, the Dynamic SQ(d) heuristic is an algorithm with polynomial com-
plexity O(M4 log M), where we have assumed that the sorting algorithm σ(.) has
complexity O(M log M). Possibly, in this specific case we can bring down the com-
plexity of the sorting algorithm to O(M), yielding an overall complexity of O(M4).

Although the Dynamic SQ(d) heuristic has a polynomial complexity, its order is quite
high. Due to this, simulations for very large M will still be rather computationally
intensive. For this reason, we have restricted ourselves to M = 30 in the simulations
we have done. Reducing the complexity would allow for simulations for much higher
M .

Remark 8. Accuracy

The information state we compute in Phase A at every arrival, is in fact a proba-
bility distribution that represents the likelihood that the process is in a particular
state8. In general, the accuracy of these information states tends to deteriorate as
the process progresses due to accumulated errors. In our case however, the accuracy
of the information state tends to improve as more subsystems are sampled. In fact,
whenever a subsystem is sampled, all probability mass is concentrated on the true
number of jobs in that subsystem. Thus, the higher the value of d in SQ(d), the more

8For Dynamic SQ(d) we do not compute the complete distribution, but just its expectation.

53

Chapter 5. Heuristics and results

subsystems are sampled and consequently the higher the accuracy of the information
state, which in turn should improve the performance of the heuristic. Obviously, on
the other hand increasing d has the consequence of increasing communication costs.

5.2.4 Results

In this section we will compare Dynamic SQ(d) with the algorithms SQ(2) and JSQ9

for a system with M = 30 subsystems. Furthermore, we will distinguish between
three different scenarios, representing different types of networks. Concretely, we
will look at w1 = 5, w1 = 40 and w1 = 80. For w1 = 5 communication costs are
relatively high, whereas for w1 = 80 they are relatively low.
In Figure 5.5 we give the results of this comparison. It can be concluded that the
Dynamic SQ(d) heuristic outperforms standard algorithms SQ(2) and JSQ for the
scenarios with relatively low communication costs (i.e., w1 = 40, 80), whereas for sce-
narios where the communication costs are relatively high (w1 = 5), SQ(2) performs
considerably better than our heuristic. In fact, our heuristic is a hybrid version of
SQ(2) and JSQ, since it chooses all its values between d = 2 and d = M10.

Conclusively, from Figure 5.5 it can be concluded that choosing d dynamically (ac-
cording to the Dynamic SQ(d) algorithm) instead of statically, gives good results
in scenarios where communication costs are relatively low11. Also, remark that as
the occupation rate increases, the Dynamic SQ(d) algorithm moves to a JSQ policy
more and more.

As can be seen in Figure 5.5, Dynamic SQ(d) does not perform well for all scenarios.
That is, it does not perform very well in the scenario where communication cost are
relatively high, and we think it is because of the way d is computed. Indeed, after
calculating d∗, we compute d∗∗ according to formula (5.12), which we give here again,
for convenience:

d∗∗ = b(1− ρ)d∗ + ρMc .

9As we have seen before, RR and SQ(1) perform generally very badly. This is also the case for
the sets of parameters considered in this section, hence we have left them out of the comparison.

10d = 1 will hardly be chosen by Dynamic SQ(d), due to the way d∗∗ is computed. This will be
illustrated later on.

11This conclusion is obviously dependent on the cost function we have chosen. However, we
expect that also for more realistic cost functions this conclusion remains valid, but this would have
to be investigated in future research.

54

5.2. Heuristic approach

Thus, if M is large, it dominates the computation of d∗∗ and small values for d∗∗ are
not possible, even for low occupation rates. For instance, assume M = 30, ρ = 0.1
and d∗ = 1. Then d∗∗ = b0.9 + 3c = 3 is the minimum value for d∗∗12, whereas
choosing d = 1 or d = 2 may be sufficient with respect to minimizing the maximum
queue length, for low occupation rates ρ. In the scenario where communication
costs are relatively low, choosing a higher d does not cost as much in relative terms
and balancing the load well is of much higher importance. Consequently, Dynamic
SQ(d) performs better in these cases. If M is even larger, the just described ef-
fect will become ever more prominent. Thus, although we had good arguments to
support computing d∗∗ as in (5.12), in some cases there might be a need to adapt
this formula. An extreme case would be to omit computing d∗∗ and apply Dynamic
SQ(d) with d∗ anyway, despite the arguments given. Some initial tests (see Figure
5.6) show that in the scenarios given above, this adapted version of Dynamic SQ(d)
outperforms Dynamic SQ(d) for quite some occupation rates. Ideally, there should
be a trade-off between the two extremes and this could be topic of future research.
Since this observation should be experimented with extensively, in the rest of this
thesis we continue with the Dynamic SQ(d) algorithm as given.

It is not the first time that a dynamic SQ(d) policy has been proposed. In [6] the
so-called “d-adaptive algorithm” is suggested. In order to explain this algorithm, let
f(k) be a positive integer-valued, non-decreasing function of k. For every arrival, do
the following:

1. Choose a subsystem at random.

2. Suppose this subsystem has k jobs. Sample f(k) additional subsystems so that
the total number of samples equals f(k) + 1.

3. Send the arrival to the shortest of these f(k) + 1 queues, breaking ties at
random.

In [6] f(k) = k and f(k) = k2 are suggested, for which the performance is shown in
Figure 5.7. For the first scenario, in contrast to Dynamic SQ(d), for low occupation
rates the d-adaptive algorithm does not suffer from having to choose too high d’s, and
it is the best performing algorithm considered. However, for the other two scenarios,
the d-adaptive algorithms (just like SQ(2) and JSQ) are outperformed by Dynamic
SQ(d). In these scenarios, we expect that this improved performance is due to the

12This specific example also shows why we have chosen to round down instead of rounding up or
rounding to the nearest integer in the computation of d∗∗.

55

Chapter 5. Heuristics and results

fact that for higher occupation rates it is more important to choose a good value
of d. Since Dynamic SQ(d), contrary to the other algorithms considered, takes into
account information from the past, it is better capable of choosing a good d than
the other algorithms, that do not take the past into account.
Two remarks are in place here. Firstly, the d-adaptive algorithm seems to have
the same performance for both f(k) = k and f(k) = k2 for low occupation rates.
Obviously, for low occupation rates it is very likely that the subsystem sampled
initially has k = 0 or k = 1 jobs, and both algorithms perform the same since
k = k2 in these cases. Secondly, the d-adaptive algorithm in fact uses two rounds
of communication, which is something we have not taken into account in the cost
function we have used here. Indeed, first sampling one subsystem and subsequently
f(k) others will most likely cost more time than sampling f(k) + 1 straight away.
The current cost function is not capable of taking this into account.

5.2.5 Some ideas for improving Dynamic SQ(d)

We want to finish this section by proposing two ideas for improvement of the Dy-
namic SQ(d) algorithm. The first has to do with reducing its complexity, and the
second with improving its performance.

In Remark 7 we discussed the complexity of Dynamic SQ(d). We saw that one
of the O(M) terms when computing d∗ in (5.11), was due to minimizing over d ∈
{1, . . . ,M}. Our idea is that if we could show that d∗ only takes on certain values for
certain parameters, then we could minimize over this set instead. To illustrate this
idea, in Table 5.2 we have kept track of the value of d∗ computed for the Dynamic
SQ(d) algorithm for M = 30, w1 = 40 and ρ = 0.1, 0.5 and 0.9. The corresponding
values of d∗∗ are also given. We see that for ρ = 0.1 it is the case that d∗ takes on
only the values 1, 2 and 3. For ρ = 0.5 and ρ = 0.9, however, there is not such a
clear interval of values of d∗ that are used. What might help us though, is that when
calculating d∗∗, different values of d∗ may be mapped to one value of d∗∗. How we
could exactly use these ideas might be investigated in future research.

ρ = 0.1 ρ = 0.5 ρ = 0.9

Values of d∗ 1-3 2-15, 17,20,23,28,30 1-30
Values of d∗∗ 3-5 16-23, 25, 26, 29, 30 27-30

Table 5.2: All values of d∗ that are used by Dynamic SQ(d) for M = 30, w1 = 40
and ρ = 0.1, 0.5 and 0.9, and the corresponding d∗∗.

56

5.3. Different service rates

The second idea has to do with the way we use the information we have. Up till now,
we have restricted ourselves to allowing an arriving job to go only to one of the d
sampled subsystems. Since we calculate the expected number of jobs at every arrival,
we could also use this information to send a job to one of the subsystems outside the
sample of SQ(d). We call the algorithm that follows this idea SQ+(d). In Figure
5.8 we have experimented a bit with this for SQ(2) and SQ+(2), but more research
is needed here. We can see that SQ+(2) performs only better than SQ(2) for high
occupation rates. One idea to improve its performance for lower occupation rates,
is to also take the variance into account, since the higher the variance, the higher
the uncertainty about the expectation. If two subsystems have the same expected
number of jobs, but the variance for one of them is higher, it may be sensible to send
the job to the one with the lowest variance. These ideas may also be investigated
further in future research.

5.3 Different service rates

Contrary to the situation we have discussed so far, in this section we will consider
our Dynamic SQ(d) heuristic for the supermarket model with unequal service rates,
which represents reality better. That is, instead of assuming µ1 = µ2 = · · · = µM ≡ µ
for some µ > 0, in this section we allow for µi 6= µj, i 6= j. Consequently, we should
no longer take the maximum queue length as part of our costs, since we have different
service rates. Instead, we should look at the remaining work per subsystem, which
is defined as the number of jobs in the subsystem, divided by the service rate, i.e.,
xi/µi

13. Now we have two options to continue:

1. We could assume that the service rates are known to the decision maker (i.e.,
the dispatcher in our case). This corresponds to what we have assumed before
in this thesis, since the service rates are used in the calculation of V MM1 (see
expression (5.10)), which is part of the computations for the Dynamic SQ(d)
algorithm. In order for Dynamic SQ(d) to be used in this setting, we have to
slightly adapt it. Calculating xe can be done similarly to (5.7). That is, given
vectors τ and s, we can compute

max (si − µiτi, 0) (5.13)

for every subsystem, which yields xe. Lastly, only the computation of V MM1(x, j)

13Recall that due to memoryless property of the exponentional service rates, it does not matter
how long the job is service has already been processed.

57

Chapter 5. Heuristics and results

should be changed slightly, compared to (5.10). Here,

V MM1(x, j) :=
xj(xj + 1)

2(µj − λpj(x, d))
, (5.14)

with pj(x, d) as defined in (3.11).

2. We could assume that the service rates are not known. In this situation we
could estimate the service rates while controlling the system, by keeping a
distribution for these service rates per subsystem. A commonly used distribu-
tion for this purpose is the Gamma distribution, because it is closed under a
Bayesian update in this case. These distributions could then be used to cal-
culate the expected values of V MM1(xe, j), for each j. That is, given xe, we
could compute Eµj

[
V MM1(xe, j)

]
for each j ∈ {1, . . . ,M}, where Eµj

denotes
the expectation with respect to the distribution for service rate µj.

We will continue here with the first option, although the second option is also very
interesting as it might reflect reality better. This involves considerably more re-
search, however, and might be a topic for future research. A good reference is [12].

We have to emphasize that the SQ(d)-related algorithms send a job to a particular
subsystem on the basis of the number of jobs per subystem, rather than on the re-
maining work per subsystem. The algorithm that bases its decision on the remaining
work per subsystem is called “Least Loaded of d queues” (denoted LL(d)). In the
case where all service rates are equal, SQ(d) and LL(d) are equivalent. Consequently,
making the step to modelling the supermarket model with different service rates, also
requires making a choice between applying SQ(d) or LL(d). LL(d) should outperform
SQ(d), because it uses more information on the real workload per subsystem. Figure
5.9 supports this claim by showing it for d = 2 as well as for Dynamic SQ(d) and
Dynamic LL(d), where Dynamic LL(d) is the straightforward generalization of Dy-
namic SQ(d). That is, instead of computing pi(x, d), one needs to compute pi(x

µ, d),
where xµ represents the remaining workload per subsystem, i.e., xµ

i = xi/µi. Then,
after computing d∗∗, instead of applying SQ(d∗∗) it applies LL(d∗∗).

Given this observation, it is advisable to continue with Dynamic LL(d) instead of
Dynamic SQ(d). For completeness, and because it might be relevant for the case
where the service rates are not known, we have considered both in the section on
results below.

58

5.3. Different service rates

5.3.1 Results

In this section we will, similarly to Section 5.2.4, compare the Dynamic SQ(d) algo-
rithm with SQ(d) and JSQ. However, here the servers are divided in three groups of
ten servers. The service rate for the first group of servers is 0.5, that of the second
group 1, and for the last group 1.5. Furthermore, we will compare the Dynamic
LL(d) algorithm with LL(d) and LL(30).
In Figure 5.10 we see that for different service rates, Dynamic SQ(d) performs better
compared to SQ(2) and JSQ, than for the case with equal service rates, in particular
for w1 = 5. This is not surprising, since Dynamic SQ(d) exploits the knowledge
about the different service rates when determining d∗∗ (see Equations (5.13) and
(5.14)), whereas SQ(d) policies do not take into account any knowledge about the
service rates. Similar to the case with equal service rates, one can see that for w1 = 5
and low occupation rates, also here Dynamic SQ(d) suffers from choosing to high
values of d due to the way d∗∗ is computed.
For Dynamic LL(d), this observation is less beneficial since LL(d) policies do take
the service rates into account when sampling the subsystems. It is only in the de-
termination of d∗∗ that Dynamic LL(d) might outwit static LL(d) policies. This
situation is similar to the situation with equal service rates, as can also be seen in
the performance comparison in Figure 5.11.

59

Chapter 5. Heuristics and results

Figure 5.5: Performance of the Dynamic SQ(d) heuristic compared with SQ(2) and
JSQ, for M = 30 and w1 = 5 (top left), w1 = 40 (top right) and w1 = 80 (bottom). In
the first scenario (corresponding to relatively high communication costs), Dynamic
SQ(d) does not perform very well compared to the other two, but in the other
two scenarios (corresponding to relatively low communication costs), it outperforms
SQ(2) and JSQ.

60

5.3. Different service rates

Figure 5.6: Performance of the Dynamic SQ(d) heuristic compared to its adapted
version, for M = 30 and w1 = 5 (top left), w1 = 40 (top right) and w1 = 80 (bottom).
In the adapted version, instead of using d∗∗ to perform SQ(d) with, it uses d∗. For
completeness, SQ(2) and JSQ are also given.

61

Chapter 5. Heuristics and results

Figure 5.7: Performance of the d-adaptive algorithm with f(k) = k and f(k) = k2

compared with the Dynamic SQ(d) heuristic and SQ(2) and JSQ, for M = 30 and
w1 = 5 (top left), w1 = 40 (top right) and w1 = 80 (bottom).

62

5.3. Different service rates

Figure 5.8: Comparison of the performance of SQ(2) and SQ+(2), for M = 30 and
w1 = 5 (top left), w1 = 40 (top right) and w1 = 80 (bottom).

63

Chapter 5. Heuristics and results

Figure 5.9: In this picture the observation that LL(d) should outperform SQ(d) is
illustrated for d = 2, as well as for Dynamic SQ(d) and Dynamic LL(d).

64

5.3. Different service rates

Figure 5.10: Performance of the Dynamic SQ(d) algorithm compared to SQ(2) and
JSQ, for M = 30 and w1 = 5 (top), w1 = 40 (middle) and w1 = 80 (bottom), in
the case with different service rates. The servers are divided in three groups of ten
servers. The service rate for the first group of servers is 0.5, that of the second group
1, and for the last group 1.5.

65

Chapter 5. Heuristics and results

Figure 5.11: Performance of the Dynamic LL(d) algorithm compared to LL(2) and
LL(30), for M = 30 and w1 = 5 (top), w1 = 40 (middle) and w1 = 80 (bottom), in
the case with different service rates. The servers are divided in three groups of ten
servers. The service rate for the first group of servers is 0.5, that of the second group
1, and for the last group 1.5.

66

Chapter 6

Conclusions, discussion and future
research

In this chapter we provide some conclusions and ideas for future research. Most of
these observations have already been mentioned in the main text, but we summarize
and extend them here.

6.1 Conclusions and discussion

To the best of our knowledge, this is the first time that the theory of Markov decision
processes has been applied to the topic of randomized load balancing in the way we
do in this thesis. We have shown that Markov decision theory is suitable as modelling
tool in this area and that it can add to the existing literature because it refrains from
asymptotics and allows for more flexibility in the approach of randomized load bal-
ancing. With the latter we mean in our particular case that Markov decision theory
allowed us to let go of the fixed SQ(d) policies that are mostly studied in literature.
Using Markov decision theory, we could investigate the influence of communication
costs explicitly, something which has not been done before, as far as we know. By
making the costs a weighted sum of these communication costs and the costs due to
the queue lengths, we were able to show that choosing d dynamically outperforms
choosing a fixed d, at least when it is done according to the optimal policy of the
corresponding MDP. Since this MDP uses full information and is not scalable to high
dimensions, we could not use this optimal policy directly. However, as we saw that
learning about the system and choosing d dynamically could have a positive effect
on the performance, we decided to make a heuristic that exploits this idea. To deal
with the partial information issue, we developed a framework to estimate the state

67

Chapter 6. Conclusions, discussion and future research

of the system at every arrival. Subsequently, we approximated the optimal policy
of the MDP by using that the relative value function of an M/M/1 queue has a
closed form expression. The resulting heuristic, coined Dynamic SQ(d), outperforms
traditional algorithms such as Round Robin, Random, SQ(2) and Join the Shortest
Queue (JSQ) for the scenarios where communication costs are relatively low. Al-
though its complexity is polynomial, its order is quite high, namely O(M4 log M),
with M the number of servers in the system. In contrast, SQ(d) algorithms have a
complexity of O(M). This relatively high complexity of Dynamic SQ(d) is a direct
consequence of our idea to use the information from sampling to determinine a good
d. In practice this computation time really adds to the total response time. This
is something which the cost function we used is not able to take into account and
which we have thus not considered in this thesis. Consequently, it is very important
to try to reduce this complexity.

In the above, we have throughout assumed that we had full information about the
parameters of the supermarket model. That is, we assumed that λ and µ are known
to the dispatcher. When extending our models to the case with different service
rates, the question of whether the service rates are known to the dispatcher, be-
comes crucial since the number of jobs in a subsystem is generally not equivalent
to the remaining workload in the subsystem anymore. In case the service rates are
known, we see that for the scenario where communication costs are relatively high,
Dynamic SQ(d) performs much better than in the case with equal service rates,
relative to SQ(2) and JSQ. This is due to the fact that Dynamic SQ(d) takes the
information about the service rates into account whereas SQ(d) does not. When
comparing Dynamic LL(d) with LL(d) policies, this advantage vanishes to some ex-
tend, and the Dynamic LL(d) performs comparable to Dynamic SQ(d) for the case
with equal service rates.
In case the service rates are not known, which is probably the most realistic case,
we could try to estimate the service rates and it becomes very interesting to see
whether our heuristic can benefit enough from the information it uses to outperfom
the traditional algorithms in this case too. We have postponed investigating this to
future research.

With regard to the cost function, due to its particular structure it will, for fixed
occupation rate, behave differently for different system sizes. Recall that the cost
function is of the form w1xM +w2d. The first part, w1xM , is approximately constant
in M , since for fixed occupation rate, intuitively the maximum queue length xM will
probably not change very much for different M . Consequently, w1xM will not change

68

6.2. Future research

very much when increasing M from say M = 4 to M = 30. The second part of the
costs, w2d, may change much more, since d ∈ {1, . . . ,M} and d may thus take on
value M . w2d scales linearly in d, whereas in practice one might expect f2(d) to be a
concave function in d. That is, since the dispatcher samples subsystems in parallel,
one expects the incremental cost of sampling one subsystem more, small compared
to the cost of sampling only 1 subystem. Studying more realistic cost structures can
be done in future research. In these more sophisticated cost functions, also the com-
plexity of calculating a good d for Dynamic SQ(d), should be included, as mentioned
above.
In order to make the computation time of the optimal policy of the MDP feasible
for higher dimensions, it is worthwile studying structural properties of its relative
value function V . Showing non-decreasingness and convexity of V can be used to
compute the optimal policy of the MDP with lower complexity. We have managed
to prove non-decreasingness and expect V to be convex as well, but we have not
yet succeeded proving this using standard techniques. New techniques may have to
be developed for this. Although the MDP uses full information and may still not
be scalable up to the dimensions we are interested in, improving computation speed
might be of great use in reducing the complexity of our heuristics as well.

The main conclusion we can draw from this thesis is that although in practice often
SQ(2) is chosen to perform the load balancing in large systems, in certain scenarios
it pays off to also consider communication costs and choose d dynamically, using the
information we receive from sampling. This has led to a promising heuristic that is
scalable up to M = 30 subsystems. We believe this heuristic can be the basis for a
well performing heuristic that is scalable to even larger systems (M > 100).

6.2 Future research

During the course of writing this thesis I have come across many things that are
worthwile studying in future research. I will list them below.

• In Chapter 5 we already considered the supermarket model with different ex-
ponential service rates. It would be very interesting to extend this further
to general service distributions and arrival processes. Also, the FIFO service
discipline might swopped for another, perhaps more realistic, service discipline
such as Processor Sharing (PS).
With regard to generalizing the service distributions, it would be natural to
first look at phase-type distributions, since these are closed in the set of all non-

69

Chapter 6. Conclusions, discussion and future research

negative distributions and fairly easily modelled using Markov decision theory.
However, extending to these phase-type distributions might come at the cost
of adding additional dimensions to the state space and therefore increasing the
complexity of the MDP.

• Instead of minimizing the maximum queue length as part of our cost objective,
it might be good to look at other cost objectives as well. We can think of e.g.,
minimizing the average queue length, which also leads to minimizing response
times but may result in a slightly different way of doing so and thus giving new
insights.

• Instead of the linear cost function we have considered, taking a more sophis-
ticated cost structure (i.e., non-linear) might be more realistic and may yield
new insights. It would be interesting to see whether the conclusions we have
drawn still hold for different cost functions. In particular if we include the
computation time for computing a good d in Dynamic SQ(d) in this cost func-
tion.

• It remains an open question whether the relative value function of the MDP we
formulated in Chapter 3 in indeed convex. New techniques may be developed
to prove this.

• Another way of dealing with the curse of dimensionality of MDPs, is by apply-
ing approximate dynamic programming. This consists of combining statistical
learning (e.g., regression or neural networks), simulation and combinatorial op-
timization. The idea is that we approximate the relative value function V by
for instance a polynomial function. A good reference in this area is [18].

• In the formulation of the Markov reward and Markov decision models in Chap-
ter 3, we assumed a sorted state space. As a consequence, amongst other things,
the transition probabilities had a fairly simple form. If we do not sort the state
space, the model will change and perhaps become more difficult to formulate,
but this may lead to new insights as well.

• We have opted in this thesis to solve the Poisson equation (3.8) and optimality
equation (3.15) using value iteration, as explained in Section 2.2.1. We could
also have used linear programming to formulate and solve the problem, but this
is generally hard if not impossible as the system to solve has |X| independent
equations, where |X| = ∞ if we do not truncate the state space. Nevertheless,
it might be worthwhile to look into this.

70

6.2. Future research

• As mentioned in Section 5.3, if the service rates are unknown we could use
techniques to estimate these service rates by keeping a distribution for every
service rate. A good reference in this area is [12].

• In contrast with standard literature, we have included communication costs in
the cost objective. Alternatively, instead of one cost objective that weighs the
communication costs and the queue size costs, we could reformulate the model
such that it has two objective functions. Usually, minimizing one objective
under constraints on the other objective is the way to go. Concretely, we
would be minimizing the maximum queue length under constraints on the
communication costs. This could lead to an algorithm that samples all servers
and waits for a fixed period (such that the communication constraint is not
violated) and applies SQ(d), where d in this case would be the number of servers
that have given feedback within the fixed period of time. A good reference to
these constrained Markov decision chains is [2].

• More investigation into the SQ+(d) algorithm that we proposed in Section
5.2.5, might result in algorithms that combine the simplicity of SQ(d) with the
estimation techniques used in Dynamic SQ(d).

• In Section 5.2.5 we also proposed keeping track of the values of d∗ computed by
Dynamic SQ(d). If a pattern can be distinguished in this respect, this might
lead to a reduction in complexity of Dynamic SQ(d) since the minimization
can be done over a smaller set than D = {1, . . . ,M}.

• In Section 5.2.4 we saw that the computation of d∗∗ in case M is large, resulted
in high values of d∗∗, which particularly decreased performance for low occu-
pation rates. Future research might be devoted to finding a formula for d∗∗

so that Dynamic SQ(d) also performs well for this range of occupation rates,
without losing too much performance in the scenarios where it performs well
already.

• Finally, we should test the Dynamic SQ(d) algorithm with real data.

71

Affiliation

Jöbke Janssen
Ina Boudier Bakkerlaan 69 IV
3582 VV Utrecht, The Netherlands
Telephone: +31653548705
E-mail: jobkejanssen@gmail.com
Student number: 3128474

72

References

[1] M. Abramowitz and I. Stegun. Handbook of Mathematical Functions, with For-
mulas, Graphs, and Mathematical Tables, volume 55. 1972.

[2] E. Altman. Constrained Markov Decision Processes. Chapman and Hall, 1999.

[3] Y. Azar, A. Broder, A. Karlin, and E. Upfal. Balanced allocations. Siam J.
Comput, 29(1):180–200, 1999.

[4] S. Bhulai. Markov Decision Processes: the control of high-dimensional systems.
PhD thesis, Vrije Universiteit Amsterdam, 2002.

[5] S. Bhulai and G. Koole. Stochastic Optimization. VU University Amsterdam,
Department of Mathematics, 2010.

[6] M. Bramson and B. Lu, Y. Prabhakar. Randomized load balancing with general
service time distributions. Sigmetrics, 2010.

[7] A. Ganesh, S. Lilienthal, D. Manjunath, A. Proutiere, and F. Simatos. Load
balancing via random local search in closed and open systems.

[8] R. Jain. Art of Computer Systems Performance Analysis Techniques For Ex-
perimental Design Measurements Simulation And Modeling. Wiley Computer
Publishing, John Wiley and Sons, Inc., 1991.

[9] R. Karp, M. Luby, and F. Meyer auf der Heide. Efficient pram simulation on
a distributed memory machine. Proc. 24th Annual ACM Symposium on the
Theory of Computing, pages 318–326, 1992.

[10] G. Koole. A transformation method for stochastic control problems with partial
observations. Systems and Control Letters, 35:301–308, 1998.

[11] G. Koole. Monotonicity in markov reward and decision chains: Theory and
applications. Foundations and Trends in Stochastic Systems, (1):1–76, 2006.

73

References

[12] P. Kumar. A survey of some results in stochastic adaptive control. SIAM
Journal of Control and Optimization, 23:329–380, 1985.

[13] Y. Lu, Q. Xie, G. Kliot, A. Geller, J. Larus, and A. Greenberg. Join-idle-
queue: A novel load balancing algorithm for dynamically scalable web services.
Performance Evaluation, 68:1056–1071, 2011.

[14] M. Mitzenmacher. The Power of Two Choices in Randomized Load Balancing.
PhD thesis, Harvard University, 1991.

[15] M. Mitzenmacher. On the analysis of randomized load balancing schemes. The-
ory of Computing Systems, 31:361–386, 1999.

[16] M. Mitzenmacher. How useful is old information? IEEE Transactions on
Parallel and Distributed Systems, 11(1), 2000.

[17] M. Mitzenmacher, D. Shah, and D. Prabhakar. Load balancing with memory.
The 43rd Annual IEEE Symposium on Foundations of Computer Science, 2002.
Proceedings., pages 799–808, 2002.

[18] W. Powell. Approximate Dynamic Programming: Solving the Curses of Dimen-
sionality (2nd Edition). Wiley Series in Probability and Statistics, 2011.

[19] M. Puterman. Markov Decision Processes: Discrete Stochastic Dynamic Pro-
gramming. Wiley Interscience, John Wiley and Sons, Inc., 1994.

[20] L. Quan-Lin, C. John, and Y. Wang. A matrix-analytic solution for randomized
load balancing models with phase-type service times. Information Systems,
2011. Submitted.

[21] E. Schurman and J. Brutlag. The user and business impact of server delays,
additional bytes and http chunking in web search. O’Reilly Velocity Web, 2009.

[22] D. Shah and B. Prabhakar. The use of memory in randomized load balancing.
Proceedings of the ISIT, page 125, 2002.

[23] B. Vocking. How asymmetry helps load balancing. IEEE Symp. Found. Comp.
Sci, pages 131–140, 1999.

[24] N. Vvedenskaya, R. Dobrushin, and F. Karpelevich. Queueing system with
selection of the shortest of two queues: an asymptotic approach. Problems of
Information Transmission, 32:15–27, 1996.

74

References

[25] R. Yang. Adaptive Resource Allocation in High-Performance Distributed Multi-
media Computing. PhD thesis, VU University Amsterdam, 2011.

75

Appendix

A.1 Convexity

As has been mentioned in Chapter 4, we expect the relative value function V , of
the dynamic SQ(d) algorithm, to be convex. However, our attempts using standard
techniques to prove this property, have not yet been successful. It can be concluded
that either V is not convex anyway, or new techniques must be developed to prove
convexity in this case. In this appendix we will show the different standard ways
that we have used to try to prove convexity.

Convexity of a function f : NM
0 → R is generally defined as

f(x + ej)− 2f(x) + f(x− ej) ≥ 0,

for all 1 ≤ j ≤ M and all x ∈ NM
0 such that xj ≥ 1 (see also [11]). In our case,

convexity of the relative value function V comes down to

V (σ(x + ej))− 2V (x) + V (σ(x− ej)) ≥ 0,

for all 1 ≤ j ≤ M and all x ∈ X such that xj ≥ 1.

In what follows, we need the following lemma.

Lemma A.1.1. Fix some n ≥ 0. Given that

Vn(σ(x + ej))− 2Vn(x) + Vn(σ(x− ej)) ≥ 0, (A.1)

for all x ∈ X such that xj ≥ 1, with j = 1, . . . ,M , also

Vn(σ(σ(x + ej)− ei))− 2Vn(σ(x− ei)) + Vn(σ(σ(x− ej)− ei)) ≥ 0 (A.2)

and

Vn(σ(σ(x + ej) + ei))− 2Vn(σ(x + ei)) + Vn(σ(σ(x− ej) + ei)) ≥ 0, (A.3)

for i ∈ {1, . . . ,M}, i 6= j, j, j, with j and j as defined in Definition 5.

76

A.1. Convexity

Proof. We will only prove (A.2) as the proof of (A.3) is similar. Fix j and i 6= j, j, j.
Basically, we have to show that the left hand side of (A.2) is equal to

Vn(σ(x∗ + eh))− 2Vn(x∗) + Vn(σ(x∗ − eh), (A.4)

for some x∗ ∈ X and h ∈ {1, . . . ,M}, because then we can use (A.1).
We will assume that indices l exist with xl = xj ± 1. In particular, we will assume
that 1 < j < M . If this is not the case, the proof will only become easier.
Similarly to Lemma 4.1.2, we define x∗ := σ(x− ei). Recall that by Lemma 4.1.1 we
know that there exists an i with 1 ≤ i ≤ i such that σ(x− ei) = x− ei (i.e., we take
x∗ := xi). From Lemma 4.1.2 we have that for i > j or j ≤ i < j, j < j or i < j we

can take h = j to get σ(σ(x + ej)− ei) = σ(x∗ + eh). For the case j ≤ i < j, j < j
taking h = j+1 suffices. What remains to show is that σ(σ(x−ej)−ei) = σ(x∗−eh)
with h as above for the corresponding i 6= j, j, j. Recall from Definition 5 the
variables xj = σ(x + ej) = x + ej and xj = σ(x− ej) = x− ej. Then, very similarly
to how we derived (4.5) in Lemma 4.1.2, we get

σ(σ(x− ej)− ei) = σ(x− ej − ei)

=

x− ej − ei if i > j

x− ej − ei if i < j

x− ej − ej+1 if j < i ≤ j

=

{
x− ei − ej if i > j or i < j

x− ei − ej+1 if j < i ≤ j

=

σ(x∗ − ej) if i > j or i < j

σ(x∗ − ej) if j < i ≤ j, j < j

σ(x∗ − ej+1) if j < i ≤ j, j = j.

So for i > j or i < j as well as for j < i ≤ j, j < j we can take h = j to get (A.4).

For j < i ≤ j, j = j we can take h = j + 1, since j < j.

Using the Lemma above, we will use standard techniques to show how convexity of
the relative value function V is usually proven. In our case this has not yet succeeded,
but our attempts may serve as a basis for further research.

Conjecture A.1.1. For convex f1, it holds that V is convex, i.e.,
V (σ(x + ej)) − 2V (x) + V (σ(x − ej)) ≥ 0 for all x ∈ X such that xj ≥ 1, with
j = 1, . . . ,M .

77

Appendix

(Sketch of proof). We will use induction on n in Vn. Take V0(x) = 0 for all x. Then
obviously, V0(x) is convex for all x ∈ X . Now assume that Vn(x) is convex, i.e.,

Vn(σ(x + ej))− 2Vn(x) + Vn(σ(x− ej)) ≥ 0.

Then, for n + 1 we have the following.

Vn+1(σ(x + ej))− 2Vn+1(x) + Vn+1(σ(x− ej)) = [f1(σ(x + ej)M)− 2f1(xM) + f1(σ(x− ej)M)]

+ µ

(
M∑
i=1

I{(σ(x + ej))i > 0}Vn(σ(σ(x + ej)− ei))

)
︸ ︷︷ ︸

A1

−2µ

(
M∑
i=1

I{xi > 0}Vn(σ(x− ei))

)
︸ ︷︷ ︸

A2

+ µ

(
M∑
i=1

I{(σ(x− ej))i > 0}Vn(σ(σ(x− ej)− ei))

)
︸ ︷︷ ︸

A3

+

(
1− (λ + µ

M∑
i=1

I{(σ(x + ej))i > 0})

)
Vn(σ(x + ej))︸ ︷︷ ︸

B1

−2

(
1− (λ + µ

M∑
i=1

I{xi > 0})

)
Vn(x)︸ ︷︷ ︸

B2

+

(
1− (λ + µ

M∑
i=1

I{(σ(x− ej))i > 0})

)
Vn(σ(x− ej))︸ ︷︷ ︸

B3

+

[
min
d∈D

T n
d (σ(x + ej))− 2 min

d∈D
T n

d (x) + min
d∈D

T n
d (σ(x− ej))

]
︸ ︷︷ ︸

C

.

Note that for convex f1, the first term in square brackets is ≥ 0.

78

A.1. Convexity

A1, A2 and A3 can be dealt with as follows.

A1 + A2 + A3 =

µ

∑
i6=j

I{xi > 0}Vn(σ(σ(x + ej)− ei)) + I{xj + 1 > 0}︸ ︷︷ ︸
=1

Vn(σ(σ(x + ej)− ej))︸ ︷︷ ︸
=Vn(x)

−2µ

∑
i6=j

I{xi > 0}Vn(σ(x− ei)) + I{xj > 0}︸ ︷︷ ︸
=1

Vn(σ(x− ej))

+µ

∑
i6=j

I{xi > 0}Vn(σ(σ(x− ej)− ei)) + I{xj − 1 > 0}Vn(σ(σ(x− ej)− ej))

=µ

 ∑
i6=j,j,j

I{xi > 0}︸ ︷︷ ︸
≥0

Vn(σ(σ(x + ej)− ei))− 2Vn(σ(x− ei)) + Vn(σ(σ(x− ej)− ei))︸ ︷︷ ︸
≥0 by the induction hypothesis and Lemma A.1.1

+µ
[
Vn(x)− 2Vn(σ(x− ej)) + I{xj − 1 > 0}Vn(σ(σ(x− ej)− ej))

]

+µ
[
Vn(σ(σ(x + ej)− ej))I{j 6= j}+ Vn(σ(σ(x + ej)− ej))I{j 6= j}

]

−2µ
[
Vn(σ(x− ej))I{j 6= j}+ Vn(σ(x− ej))I{j 6= j}

]
+µ
[
Vn(σ(σ(x− ej)− ej))I{j 6= j}+ Vn(σ(σ(x− ej)− ej))I{j 6= j}

]
≥µ
[
Vn(x)− 2Vn(σ(x− ej)) + I{xj − 1 > 0}Vn(σ(σ(x− ej)− ej))

]
+I{j 6= j}µ

[
Vn(σ(σ(x + ej)− ej))− 2Vn(σ(x− ej)) + Vn(σ(σ(x− ej)− ej))

]︸ ︷︷ ︸
I

+I{j 6= j}µ
[
Vn(σ(σ(x + ej)− ej))− 2Vn(σ(x− ej)) + Vn(σ(σ(x− ej)− ej))

]
︸ ︷︷ ︸

II

.

79

Appendix

I and II are both ≥ 0. This can be seen as follows.
For I, remark that σ(x− ej) = σ(x− ej). Also,

σ(σ(x+ej)−ej) = σ(x+ej−ej) = x+ej−ej = x−ej+ej = σ(x−ej+ej) = σ(σ(x−ej)+ej),

where in the second equality, it has been used that the k∗∗ from Lemma 4.1.1 is the
same (namely j) for x and x + ej, when subtracting j, because j 6= j. In the third

and fourth equalities it has also been used that j 6= j and that the k∗ from Lemma
4.1.1 is the same (namely j) for both x and x − ej, when subtracting j. Moreover,
x− ej + ej ∈ X and thus σ(x− ej + ej) = x− ej + ej. Concluding,

I =
[
Vn(σ(xj + ej)))− 2Vn(xj) + Vn(σ(xj − ej))

]
,

with xj = σ(x − ej) ∈ X , as defined in Definition 5. So I ≥ 0 by the induction
hypothesis.

For II, note that σ(x− ej) = σ(x− ej). Also,

σ(σ(x+ej)−ej) = σ(x+ej−ej) = x+ej−ej = x−ej+ej = σ(x−ej)+ej = σ(σ(x−ej)+ej),

where in the second equality it has been used that the k∗∗ from Lemma 4.1.1 is the
same (namely j) for both x and x+ ej when subtracting ej, since j 6= j. In the third
equality it has been used that j is also the k∗∗ for x when subtracting j. In the last

equality it has been used that the k∗ from Lemma 4.1.1 is the same (namely j) for
x and σ(x− ej) when adding j. Hence,

II =
[
Vn(σ(xj + ej)))− 2Vn(xj) + Vn(σ(xj − ej))

]
,

which is ≥ 0 by the induction hypothesis, since xj ∈ X .

Furthermore,

B = B1 + B2 + B3 =

(
1− (λ + µ

M∑
i=1

I{xi > 0})

)
(Vn(σ(x + ej))− 2Vn(x) + Vn(σ(x− ej)))︸ ︷︷ ︸

≥0 by the induction hypothesis

+ µI{xj = 1}Vn(σ(x− ej))

≥ µI{xj = 1}Vn(σ(x− ej)),

80

A.1. Convexity

where we have used that
M∑
i=1

I{(σ(x− ej))i > 0} =
M∑
i=1

I{xi > 0} − I{xj = 1},

and that I{(σ(x + ej))k > 0} = I{xk > 0} for all k ∈ {1, . . . ,M}, since we have
assumed xj ≥ 1 and hence also xj ≥ 1.

Distinguishing the following two cases yields convexity of the remaining terms from
A and B.

Case 1: xj > 1
In this case

A ≥ µ
[
Vn(x)− 2Vn(σ(x− ej)) + Vn(σ(σ(x− ej)− ej))

]
= µ

[
Vn(σ(xj + ej))− 2Vn(xj) + Vn(σ(xj − ej))

]
which is ≥ 0 by the induction hypothesis. The remaining term for B vanishes, since
I{xj = 1} = 0. Hence A + B ≥ 0.

Case 2: xj = 1
In this case

A + B ≥µ [Vn(x)− 2Vn(σ(x− ej))]︸ ︷︷ ︸
from A

+ µVn(σ(x− ej))︸ ︷︷ ︸
from B

= µ [Vn(x)− Vn(σ(x− ej))]

= µ

 Vn(σ(xj + ej))− Vn(xj)︸ ︷︷ ︸
≥0 due to non-decreasingness

 ,

where we have used that σ(xj + ej) = σ(x− ej + ej) = x.

Recall T n
d (x) from Definition 6. For C it holds that

C =

[
min
d∈D

T n
d (σ(x + ej))− 2 min

d∈D
T n

d (x) + min
d∈D

T n
d (σ(x− ej))

]
≥ T n

d∗1
(σ(x + ej))− T n

d∗1
(x)−

[
T n

d∗2
(x)− T n

d∗2
(σ(x− ej))

]
,

81

Appendix

where d∗1 ∈ argmind∈D{T n
d (σ(x+ej))} and d∗2 ∈ argmind∈D{T n

d (σ(x−ej))}. If d∗1 = d∗2,
we are done since we can use the induction hypothesis straight away. If d∗1 6= d∗2 we
will need the concept of sub- and supermodularity of the relative value function to
show convexity. Submodularity of a function f : NM

0 → R is generally defined as

f(x) + f(x + ei + ej) ≤ f(x + ei) + f(x + ej),

for all 1 ≤ i < j ≤ M and all x ∈ NM
0 (see also [11]). In our case, submodularity of

the relative value function V comes down to

V (σ(x− ej)) + V (σ(x + ei)) ≤ V (σ(σ(x− ej) + ei)) + V (x),

for all 1 ≤ i, j ≤ M and all x ∈ X such that xj ≥ 1. For supermodularity, the
inequality sign should be reversed. If a function is both sub- as well as supermodular,
it is called modular.

If d∗1 6= d∗2, we have

C = T n
d∗1

(σ(x + ej))− T n
d∗1

(x)−
[
T n

d∗2
(x)− T n

d∗2
(σ(x− ej))

]
=

f2(d
∗
1)− f2(d

∗
1) + λ

M−d∗1+1∑
i=1

k(M, i, d∗1) (Vn(σ(σ(x + ej) + ei))− Vn(σ(x + ei)))

−

f2(d
∗
2)− f2(d

∗
2) + λ

M−d∗2+1∑
i=1

k(M, i, d∗2) (Vn(σ(x + ei))− Vn(σ(σ(x− ej) + ei)))

=λ

M−d∗1+1∑
i=1

k(M, i, d∗1) (Vn(σ(σ(x + ej) + ei))− Vn(σ(x + ei)))

−λ

M−d∗2+1∑
i=1

k(M, i, d∗2) (Vn(σ(x + ei))− Vn(σ(σ(x− ej) + ei)))

(A.5)

Now we will change something to the way we treated B. To this end, note that
since k(M, i, d) are probabilities and sum to 1, we can write in B instead of λ also

82

A.1. Convexity

λ
∑M−d+1

i=1 k(M, i, d) for a d ∈ {1, . . . ,M}. Hence, we can do the following.

A + B ≥1− (λ

M−d∗2+1∑
i=1

k(M, i, d∗2) + µ

M∑
i=1

I{xi > 0})

 (Vn(σ(x + ej))− 2Vn(x) + Vn(σ(x− ej)))

=

(
1− µ

M∑
i=1

I{xi > 0}

)
(Vn(σ(x + ej))− 2Vn(x) + Vn(σ(x− ej)))

− λ

M−d∗2+1∑
i=1

k(M, i, d∗2) (Vn(σ(x + ej))− 2Vn(x) + Vn(σ(x− ej)))

≥− λ

M−d∗2+1∑
i=1

k(M, i, d∗2) (Vn(σ(x + ej))− 2Vn(x) + Vn(σ(x− ej))) . (A.6)

Using (A.5) and (A.6) we can write

A + B + C ≥

λ

M−d∗1+1∑
i=1

k(M, i, d∗1) (Vn(σ(σ(x + ej) + ei))− Vn(σ(x + ei)))

− λ

M−d∗2+1∑
i=1

k(M, i, d∗2)[Vn(σ(x + ej))− Vn(x)+

+ Vn(σ(x− ej)) + Vn(σ(x + ei))− Vn(σ(σ(x− ej) + ei))− Vn(x)︸ ︷︷ ︸
≤0 if V submodular

]

≥ λ

M−d∗1+1∑
i=1

k(M, i, d∗1) (Vn(σ(σ(x + ej) + ei))− Vn(σ(x + ei)))

− λ

M−d∗2+1∑
i=1

k(M, i, d∗2)︸ ︷︷ ︸
=1

(Vn(σ(x + ej))− Vn(x))︸ ︷︷ ︸
independent of i

= λ

M−d∗1+1∑
i=1

k(M, i, d∗1)

Vn(σ(σ(x + ej) + ei))− Vn(σ(x + ei))− Vn(σ(x + ej)) + Vn(x)︸ ︷︷ ︸
≥0 if V supermodular

 .

83

Appendix

So if V is both sub- as well as supermodular (i.e., if V is modular), then also in the
case that d∗1 6= d∗2 we have proven convexity.

In order for the above proof to be relevant to us, we should prove that V is modular.
However, Figure A.1 shows that V is neither super- nor submodular. Conclusively,
the above arguments will not lead to a complete proof, although it does show the
standard techniques usually employed to proof convexity of V .

Figure A.1: Testing structural properties for M = 4, K = 10, w1 = 5, w2 = 1, keeping
variables x3 and x4 fixed to value 5.

Note that, apart from assuming d∗1 6= d∗2, we did not need to assume any other
conditions on d∗1 and d∗2. In what follows, we will distinghuish different cases in
which either we assume d∗1 < d∗2 or vice versa. In order to keep things as simple as
possible, we will now consider the case where the number of servers, M , is equal to 2.
Unfortunately, like for the general case, we have not yet been able to prove convexity

84

A.1. Convexity

for this two-dimensional case either. So we again consider Conjecture A.1.1 and show
that the assumptions we make, conflict with the results we get from Figure A.1. In
particular, we avoid using sub- or supermodularity, since Figure A.1 already excludes
these properties.
In this two-dimensional case, we will change notation slightly. A state is represented
by (x, y) ∈ X , where x ≤ y. In order to show that the assumptions we have to
make conflict with the results we get from tests, it suffices to assume that x < y− 1.
This assumption, that ensures that we do not have to sort the state variables in the
reasoning below, allows for a simpler analysis. Furthermore, we will only focus on
term C in the proof of Conjecture A.1.1, since the other terms we got rid of in the
general case already1.

Proof. We will consider four different cases. Recall that in the induction hypothesis
we assume that Vn is convex.

Case 1a): d∗1 = 1, d∗2 = 2, j = 1

C =

[
min
d∈D

T n
d (σ(x + 1, y))− 2 min

d∈D
T n

d (x, y) + min
d∈D

T n
d (σ(x− 1, y))

]
=
(
T n

d∗1
(x + 1, y)− T n

d∗1
(x, y)

)
−
(
T n

d∗2
(x, y)− T n

d∗2
(x− 1, y)

)
=

1

2
(Vn(x + 2, y)− Vn(x + 1, y)) +

1

2
(Vn(x + 1, y + 1)− Vn(x, y + 1))

− (Vn(x + 1, y)− Vn(x, y))

=
1

2
(−3Vn(x + 1, y) + 2Vn(x, y)− Vn(x, y + 1) + Vn(x + 1, y + 1) + Vn(x + 2, y))

≥1

2
(Vn(x + 1, y + 1) + Vn(x, y)− Vn(x, y + 1)− Vn(x + 1, y)) ,

where in the last inequality convexity is used. That is

1

2
Vn(x + 2, y)− Vn(x + 1, y) +

1

2
Vn(x, y) ≥ 0.

Note, however, that we are left with supermodularity, of which we know that it does
not hold.

1Of course it might be that we have to use the other terms in combination with term C in order
to arrive at a proof. We have tried doing this too, but these attempts did not bring us very far.
Therefore, we have omitted them here.

85

Appendix

Case 1b): d∗1 = 1, d∗2 = 2, j = 2

C =

[
min
d∈D

T n
d (σ(x, y + 1))− 2 min

d∈D
T n

d (x, y) + min
d∈D

T n
d (σ(x, y − 1))

]
=
(
T n

d∗1
(x, y + 1)− T n

d∗1
(x, y)

)
−
(
T n

d∗2
(x, y)− T n

d∗2
(x, y − 1)

)
=

1

2
(Vn(x + 1, y + 1)− Vn(x + 1, y)) +

1

2
(Vn(x, y + 2)− Vn(x, y + 1))

− (Vn(x + 1, y)− Vn(x + 1, y − 1))

=
1

2
(−3Vn(x + 1, y) + 2Vn(x + 1, y − 1)− Vn(x, y + 1) + Vn(x + 1, y + 1) + Vn(x, y + 2))

≥1

2
(−Vn(x + 1, y) + Vn(x + 1, y − 1)− Vn(x, y + 1) + Vn(x, y + 2)) ,

which is not a standard structural property. In the last inequality, again convexity
is used. That is, 1

2
Vn(x + 1, y + 1)− Vn(x + 1, y) + 1

2
Vn(x + 1, y − 1) ≥ 0.

So in the case where d∗1 = 1, d∗2 = 2, we would at least need supermodularity to prove
convexity, but Figure A.1 shows that V is certainly not supermodular. Moreover,
in the case where j = 2, we are left with terms that do not construct a structural
property that is standard (see also [11]) and would thus need further investigation
to check whether it holds.

Case 2a): d∗1 = 2, d∗2 = 1, j = 1

C =

[
min
d∈D

T n
d (σ(x + 1, y))− 2 min

d∈D
T n

d (x, y) + min
d∈D

T n
d (σ(x− 1, y))

]
=
(
T n

d∗1
(x + 1, y)− T n

d∗1
(x, y)

)
−
(
T n

d∗2
(x, y)− T n

d∗2
(x− 1, y)

)
= (Vn(x + 2, y)− Vn(x + 1, y))

−
(

1

2
(Vn(x + 1, y)− Vn(x, y)) + (Vn(x, y + 1)− Vn(x− 1, y + 1))

)
=

1

2
(−3Vn(x + 1, y) + 2Vn(x + 2, y) + Vn(x, y)− Vn(x, y + 1) + Vn(x− 1, y + 1))

≥1

2
(Vn(x + 2, y)− Vn(x + 1, y)− Vn(x, y + 1) + Vn(x− 1, y + 1)) ,

which is not a standard structural property. In the last inequality, convexity applied
to 1

2
Vn(x + 2, y)− Vn(x + 1, y) + 1

2
Vn(x, y) is used.

86

A.1. Convexity

Case 2b): d∗1 = 2, d∗2 = 1, j = 2

C =

[
min
d∈D

T n
d (σ(x, y + 1))− 2 min

d∈D
T n

d (x, y) + min
d∈D

T n
d (σ(x, y − 1))

]
=
(
T n

d∗1
(x, y + 1)− T n

d∗1
(x, y)

)
−
(
T n

d∗2
(x, y)− T n

d∗2
(x, y − 1)

)
= (Vn(x + 1, y + 1)− Vn(x + 1, y))

−
(

1

2
(Vn(x + 1, y)− Vn(x + 1, y − 1)) + (Vn(x, y + 1)− Vn(x, y))

)
=

1

2
(−3Vn(x + 1, y) + 2Vn(x + 1, y + 1) + Vn(x + 1, y − 1) + Vn(x, y + 1) + Vn(x, y))

≥1

2
(Vn(x + 1, y + 1) + Vn(x, y)− Vn(x, y + 1)− Vn(x + 1, y)) ,

where in the last inequality convexity is used. That is

1

2
Vn(x + 1, y + 1)− Vn(x + 1, y) +

1

2
Vn(x + 1, y − 1) ≥ 0.

Note, however, that we are again left with supermodularity.
Conclusively, in both cases we would need supermodularity to prove convexity, which
conflicts with Figure A.1. Hence, this approach will not give us the desired proof of
convexity either.

Finally, we have yet another different approach. Firstly, note that SQ(2) is, in the
two-dimensional case, equivalent to JSQ. Since we study the dynamic version of
SQ(d), in the optimality equation there will also be terms corresponding to JSQ.
So, in this two-dimensional case, we can approach the problem slightly differently
than before, using the fact that the relative value function of JSQ is convex. Next to
terms corresponding to JSQ, also terms that correspond to suboptimal transitions
of SQ(1) may be present. In the analysis below we have indicated to which of both
the terms involved refer.

(Sketch of proof). Before we start with the analysis, we should, next to non-decreasingness,
convexity and sub- and supermodularity, first introduce two other structural prop-
erties. Superconvexity of a function f : NM

0 → R is generally defined as

f(x + ei) + f(x + ei + ej) ≤ f(x + ej) + f(x + 2ei),

for all 1 ≤ i, j ≤ M, i 6= j and all x ∈ NM
0 (see also [11]). For superconcavity, the

inequality sign should be reversed. Now we distinghuish again the four different cases

87

Appendix

we have considered above.

Case 1a): d∗1 = 1, d∗2 = 2, j = 1

C =

[
min
d∈D

T n
d (σ(x + 1, y))− 2 min

d∈D
T n

d (x, y) + min
d∈D

T n
d (σ(x− 1, y))

]
=
(
T n

d∗1
(x + 1, y)− T n

d∗1
(x, y)

)
−
(
T n

d∗2
(x, y)− T n

d∗2
(x− 1, y)

)
=

1

2
(Vn(x + 2, y)− Vn(x + 1, y))︸ ︷︷ ︸

JSQ

+
1

2
(Vn(x + 1, y + 1)− Vn(x, y + 1))︸ ︷︷ ︸

suboptimal

− (Vn(x + 1, y)− Vn(x, y))︸ ︷︷ ︸
JSQ

+
1

2
(Vn(x + 2, y)− Vn(x + 1, y))− 1

2
(Vn(x + 2, y)− Vn(x + 1, y))︸ ︷︷ ︸

=0 (dummy term)

= Vn(x + 2, y)− 2Vn(x + 1, y) + Vn(x, y)︸ ︷︷ ︸
≥0 by convexity

+
1

2
(Vn(x + 1, y) + Vn(x + 1, y + 1)− Vn(x + 2, y)− Vn(x, y + 1))︸ ︷︷ ︸

≥0 if V is superconcave

≥0

88

A.1. Convexity

Case 1b): d∗1 = 1, d∗2 = 2, j = 2

C =

[
min
d∈D

T n
d (σ(x, y + 1))− 2 min

d∈D
T n

d (x, y) + min
d∈D

T n
d (σ(x, y − 1))

]
=
(
T n

d∗1
(x, y + 1)− T n

d∗1
(x, y)

)
−
(
T n

d∗2
(x, y)− T n

d∗2
(x, y − 1)

)
=

1

2
(Vn(x + 1, y + 1)− Vn(x + 1, y))︸ ︷︷ ︸

JSQ

+
1

2
(Vn(x, y + 2)− Vn(x, y + 1))︸ ︷︷ ︸

suboptimal

− (Vn(x + 1, y)− Vn(x + 1, y − 1))︸ ︷︷ ︸
JSQ

+
1

2
(Vn(x + 1, y + 1)− Vn(x + 1, y))− 1

2
(Vn(x + 1, y + 1)− Vn(x + 1, y))︸ ︷︷ ︸

=0 (dummy term)

= Vn(x + 1, y + 1)− 2Vn(x + 1, y) + Vn(x + 1, y − 1)︸ ︷︷ ︸
≥0 by convexity

+
1

2
(Vn(x, y + 2) + Vn(x + 1, y)− Vn(x, y + 1)− Vn(x + 1, y + 1))︸ ︷︷ ︸

≥0 if superconvex

≥0.

So in the case where d∗1 = 1, d∗2 = 2, we find that we need two conflicting (in the strict
sense) properties, namely superconcavity and superconvexity. Moreover, Figure A.1
shows that V is certainly not strictly superconcave, but probably superconvex.

89

Appendix

Case 2a): d∗1 = 2, d∗2 = 1, j = 1

C =

[
min
d∈D

T n
d (σ(x + 1, y))− 2 min

d∈D
T n

d (x, y) + min
d∈D

T n
d (σ(x− 1, y))

]
=
(
T n

d∗1
(x + 1, y)− T n

d∗1
(x, y)

)
−
(
T n

d∗2
(x, y)− T n

d∗2
(x− 1, y)

)
= (Vn(x + 2, y)− Vn(x + 1, y))︸ ︷︷ ︸

JSQ

−

1

2
(Vn(x + 1, y)− Vn(x, y))︸ ︷︷ ︸

JSQ

+ (Vn(x, y + 1)− Vn(x− 1, y + 1))︸ ︷︷ ︸
suboptimal

− 1

2
(Vn(x + 1, y)− Vn(x, y)) +

1

2
(Vn(x + 1, y)− Vn(x, y))︸ ︷︷ ︸

=0 (dummy term)

= Vn(x + 2, y)− 2Vn(x + 1, y) + Vn(x, y)︸ ︷︷ ︸
≥0 by convexity

+
1

2
(Vn(x, y + 1) + Vn(x + 1, y)− Vn(x− 1, y + 1)− Vn(x, y))︸ ︷︷ ︸

≥0 by applying non-decreasingness twice

≥0.

90

A.1. Convexity

Case 2b): d∗1 = 2, d∗2 = 1, j = 2

C =

[
min
d∈D

T n
d (σ(x, y + 1))− 2 min

d∈D
T n

d (x, y) + min
d∈D

T n
d (σ(x, y − 1))

]
=
(
T n

d∗1
(x, y + 1)− T n

d∗1
(x, y)

)
−
(
T n

d∗2
(x, y)− T n

d∗2
(x, y − 1)

)
= (Vn(x + 1, y + 1)− Vn(x + 1, y))︸ ︷︷ ︸

JSQ

−

1

2
(Vn(x + 1, y)− Vn(x + 1, y − 1))︸ ︷︷ ︸

JSQ

+ (Vn(x, y + 1)− Vn(x, y))︸ ︷︷ ︸
suboptimal

− 1

2
(Vn(x + 1, y)− Vn(x + 1, y − 1)) +

1

2
(Vn(x + 1, y)− Vn(x + 1, y − 1))︸ ︷︷ ︸

=0 (dummy term)

= Vn(x + 1, y + 1)− 2Vn(x + 1, y) + Vn(x + 1, y − 1)︸ ︷︷ ︸
≥0 by convexity

+
1

2
(Vn(x, y) + Vn(x + 1, y)− Vn(x, y + 1)− Vn(x + 1, y − 1))︸ ︷︷ ︸

≥0 if superconcave

≥0.

So also in this second case we need superconcavity of V to prove convexity. However,
as mentioned before, Figure A.1 shows that V is certainly not superconcave.
Conclusively, we can say that this approach will not give us the desired proof of
convexity either.

Properties of d∗1, d
∗
2 and k(M, i, d)

Recall d∗1 ∈ argmind∈D{T n
d (σ(x + ej))} and d∗2 ∈ argmind∈D{T n

d (σ(x − ej))}, for a
j = 1, . . . ,M . In the proofs we have considered above, we distinguished between
different cases with regard to d∗1 and d∗2. That is, we assumed d∗1 < d∗2 or vice
versa. In might be useful to be able to prove that only one of them holds. In order
to possibly arrive at such properties, it is worthwhile studying k(M, i, d). Recall

k(M, i, d) = d (M−i)!(M−d)!
(M−i−d+1)!M !

in the minimizing expression of the optimality equation

(3.15). However, doing a simple test for N = 2 and truncation level K = 7 gives the
result in Figure A.2, and shows that both d∗1 < d∗2 and d∗1 > d∗2 as well as d∗1 = d∗2

91

Appendix

might occur.
Nevertheless, it might be worthwhile looking into properties of k(M, i, d) anyway. It
can be shown that for fixed i and M , k(M, i, d) is increasing in d for d ≤ dM−i+1

i
e and

decreasing for d > dM−i+1
i

e. It can also be shown that k(M, i, d)/d = (M−i)!(M−d)!
(M−i−d+1)!M !

is decreasing in d. We have summarized these properties in the lemma below. See
also Figure A.3. Due to the non-linear and non-monotone structure of k(M, i, d) we
have not been able to exploit these properties.

Lemma A.1.2. Given M ≥ 1 and i = 1, . . . ,M , the following holds:

1. The function k(M, i, d) := d (M−i)!(M−d)!
(M−i−d+1)!M !

is increasing in d for d ≤ dM−i+1
i

e
and decreasing for d > dM−i+1

i
e, with d ≤ M − i + 1.

2. The function k(M, i, d)/d is decreasing in d, with d ≤ M − i + 1.

Proof. For the first part, we would like to investigate the difference
k(M, i, d + 1) − k(M, i, d). For k(M, i, d + 1) to be larger than 0 we must assume
d ≤ M − 1 and i ≤ M − d. Then,

k(M, i, d + 1)− k(M, i, d) =
(M − i)!

M !

(
(d + 1)

(M − d− 1)!

(M − i− d)!
− d

(M − d)!

(M − i− d + 1)!

)
=

(M − i)!

M !

(
(d + 1)

(M − d− 1)!

(M − i− d)!
− d

(M − d)(M − d− 1)!

(M − i− d + 1)(M − i− d)!

)
=

(M − i)!(M − d− 1)!

M !(M − i− d)!︸ ︷︷ ︸
A

(
(d + 1)− d

(M − d)

(M − i− d + 1)

)
︸ ︷︷ ︸

B

.

Note that for d ≤ M − 1 and i ≤ M − d it holds that A ≥ 0. Consequently,

k(M, i, d + 1)− k(M, i, d) ≥ 0 ⇐⇒ B ≥ 0

⇐⇒ (d + 1)− d
(M − d)

(M − i− d + 1)
≥ 0

⇐⇒ (d + 1)(M − i− d + 1) ≥ d(M − d)

⇐⇒ M − i + 1 ≥ di

⇐⇒ d ≤ M − i + 1

i
.

92

A.2. A Markov reward process for the Round Robin algorithm

Since d must be an integer 1 ≤ d ≤ M − 1, we have that k(M, i, d) is increasing
for d ≤

⌈
M−i+1

i

⌉
and decreasing for d >

⌈
M−i+1

i

⌉
, where it must be noted that if⌈

M−i+1
i

⌉
= 1, it is strictly decreasing.

For the second part we look at

k(M, i, d + 1)

d + 1
− k(M, i, d)

d
=

(M − i)!

M !

(
(M − d− 1)!

(M − i− d)!
− (M − d)!

(M − i− d + 1)!

)
=

(M − i)!

M !

(
(M − d− 1)!(M − i− d + 1)− (M − d)!

(M − i− d + 1)!

)
≤0,

since (M − d− 1)!(M − i− d + 1) ≤ (M − d)! and all other terms involved are ≥ 0.
So k(M, i, d)/d is decreasing in d.

A.2 A Markov reward process for the Round Robin

algorithm

For the sake of completeness, we show in this appendix how to formulate a Markov
reward process for the Round Robin (RR) algorithm, despite not being very practical
for high dimensional systems.
Recall that the RR algorithm does not need any information about the number of
jobs per subsystem, but just assigns jobs sequentially to all subsystem and repeats
this when all subsystems have been given a job.
Let X = (N0)

M be the state space. For x ∈ X , xi represents the number of jobs in the
subsystem that received a package i arrivals ago. According to the RR algorithm, an
arriving job had to be assigned to subsystem M . In order to keep this representation
of xi intact, we need the following function that makes sure that after an arrival all
xi, i = 1, . . . ,M − 1 shift one position to the right and xM becomes x1. That is,
define γ : X → X as γ(x) = x̃ with x̃i = xi−1, i = 2, . . . ,M , and x̃1 = xM . So if
we apply this function to x after an arrival, then indeed xi represents the number of
jobs in the subsystem that received a package i arrivals ago. Using γ, we can specify
the transition probabilities.

p(x, x′) =

λ if x′ = γ(x + eM)

µI{xi > 0} if x′ = x− ei

1− (λ + µ
∑M

i=1 I{xi > 0}) if x′ = x

0 otherwise.

(A.7)

93

Appendix

Since we want to minimize the largest queue length, we take as cost function c(x) =
maxi=1,...,M{xi}. The corresponding Poisson equation is

V (x) + g =c(x) + λV (γ(x + eM)) (A.8)

+ µ
M∑
i=1

I{xi > 0}V (x− ei) (A.9)

+

[
1− (λ + µ

M∑
i=1

I{xi > 0})

]
V (x). (A.10)

A.3 Simulation

In Chapter 5 we used simulation to compare performance of different algorithms. In
this appendix we will elaborate a bit more on the specifics of the simulations we have
done.
Firstly, we have used simulation using the method of batch means. That is, for
each algorithm we simulated N = 200000 events (an event is either an arrival or
a departure) of which the first n0 = 50000 were not taken into account (warm-up
period) and the rest is divided over m = 30 batches consisting of n = 5000 events
each. In each batch, the maximum queue length2 is recorded at each event and the
result is time-averaged. This results in 30 so-called batch means x̄i, i = 1, . . . ,m.
We checked whether the size of the warm-up period and the batches we took were
big enough, using the theory in [8]. To this end we had to look at the variance of
x̄ = (x̄1, . . . , x̄m),

Var(x̄) :=
1

m− 1

m∑
i=1

(x̄i − ¯̄x)2,

where ¯̄x := 1
m

∑m
i=1 x̄i, and the autocovariance between two consecutive batch means,

Cov(x̄i, x̄i+1) :=
1

m− 2

m−1∑
i=1

(x̄i − ¯̄x)(x̄i+1 − ¯̄x).

This is illustrated for the SQ(2) algorithm for M = 4, w1 = 5 and ρ = 0.8 in Figure
A.4 and Table A.1. In hindsight it seems that a warm-up period of 50000 is definitely
long enough, but that the batch size could have been taken longer. However this

2Recall that with maximum queue length we mean the job in service plus the jobs waiting in
the queue.

94

A.4. Matlab code

would also have entailed simulating more events N , because of a subsequent decrease
in the number of batches m. That is, if m is too low, the corresponding confidence
interval would become too wide. Although this brings about longer computation
times, it is something that should be taken into account in future research.
For the values we have specified above, the corresponding 95% confidence interval is
generally within 3% of the point estimates.

Batch size n Autocovariance Variance Autocovariance Variance
N=150 000 N=150 000 N=1 000 000 N=1 000 000

1 52.5508 54.5760 55.6153 57.6285
2 64.9076 67.5144 55.3310 57.9171
5 54.3898 58.5357 52.6441 56.8291
10 42.9124 49.3942 45.5388 51.9287
50 34.1890 49.5394 26.5533 41.9205
100 19.1208 39.5084 14.9437 34.1000
200 6.0185 23.9124 7.7577 26.7631
500 2.2055 14.1991 2.3615 14.9272
1000 0.6065 8.2286 0.6978 6.8537
2000 -0.1580 2.9695 -0.0378 4.7194
2500 -0.2641 2.6083 0.0878 2.9222
5000 0.3267 1.3477 0.0738 1.5612
10000 0.1122 0.6932 0.0481 0.8002
25000 -0.3380 0.4564 0.0138 0.3835

Table A.1: Given are the autocovariance and variance of simulations of SQ(2), with
M = 4, w1 = 5 and ρ = 0.8. We compare N = 200000 to N = 1000000 for
various batch sizes, with n0 = 50000. In [8] it is explained that the batch size n
should be such that the autocovariance of the batch means is small compared to
their variance. In our simulations we computed N = 200000 events and took a batch
size of n = 5000. In the corresponding columns of this table, one might notice that
taking N = 1000000 and n = 25000 might have been better. On the other hand,
this would have increased computation times also considerably.

A.4 Matlab code

Below you find the Matlab code of the value iteration algorithm for the MDP that
models the optimal dynamic SQ(d) policy. If you are interested in any of the other

95

Appendix

codes I wrote, please send me an email and I will provide you with it.

%This m-file performs value iteration for the MDP modeling a dynamic SQ(d)

%policy in a system with N queues %with Poisson arrivals with rate L, and

%exponential service times with rate M, at every subsystem. The state of

%the system keeps track of the number of customers in every subsystem,

%ordering them from small to big.

function [g policy VVV iter it V] = MDPsqdpolicy (N,K,L,M,w1,w2,dmax,epsilon)

%N=number of queues, K=maximum number of customers per subsystem (truncation

%level), %L=arrival rate, M=service rate per server (i.e., maximum service

%rate is N*M), N should be greater than 1.

%dmax=maximum d allowed (dmax<=N should hold), w1=weighing factor of regular

%costs, w2=weighing factor for increasing d (communication costs).

L2 = L;

M2 = M;

L = L2/(L2+N*M2); %scaling arrival and service rates such that L+N*M=1

M = M2/(L2+N*M2);

v = 0:K; %v is the vector [0 1 2 ... K] which we need as input

%for ’combsrep.m’

X = combsrep(v,N); %matrix of all possible x (i.e., all x such that

%x1<=x2<=...<=xN holds)

A = length(X(:,1)); %total number of possible states x

dim=repmat(K+1,[1 N]); %create the dimension of the multidimensional array

%it should have dimension (K+1)^N

V = zeros(dim); %allocate memory for value function V

VVV = zeros(dim); %The dimension of VVV should equal the dimension of

%V in order to be able to run the iteration

%later on. We have to allocate memory for VVV as

%well.

poli = zeros(A,1); %in poli we will save the optimal policy

96

A.4. Matlab code

max2 = 100; %we have to start with large enough max2 and min2 in

min2 = 0; %order for the while loop below to start (we assume

%epsilon small)

while max2-min2 > epsilon; %value iteration

max2 = -10^10; %have to reset max2 and min2 at every

min2 = 10^10; %iteration in order for the last two if-loops

%to make sense

VV = V; %VV is needed to run the iteration below

for h = 1:A %for all possible x

x = X(h,:); %each row of X is a possible x, we loop through them here.

x = ones(1,N)+x; %we increase all states x with 1 in order to be able to use

%V(x) below

y = linindex(x,N,K); %y is the linear index corresponding to component

%values of x

V(y) = w1*(x(N)-1); %costs have the double structure c(x,d)=w1*(x(N)-1)+w2*d

%(the -1 is due to our increasing all x with 1 for algorithmic reasons).

%This is only the first part of the costs.

%The second part is added below, after minimization over d.

for l = 1:N %sum over all N queues to get the part without

%decisions involved, representing departures

vol = (x(l)>1);

V(y) = V(y)+M*vol*VV(linindex(sortee(x,l),N,K))-M*vol*VV(y);

end

V(y)=V(y)+(1-L)*VV(y); %add the last term that does not involve decisions

dee=zeros(1,dmax);

%below we add the terms to the value function in which

%decisions are involved.

for d=1:dmax %for all possible decisions

maa=0;

97

Appendix

for l = 1:N-d+1 %calculate the sum representing arrivals for the given d

maa=maa+((d*prod1(N,l,d))/(prod1(N,0,d+1)))*VV(linindex(sorteerK(x,l,K),N,K));

end

maa=L*maa+w2*d; %multiplying by L and adding the second part of the costs,

%which depends on the decision chosen

dee(d)=maa; %saving the outcome for every d in vector dee

end

[mini aant]=min(dee); %take the minimum over d and remember the

%argmin (=’aant’), i.e., which ’d’ was optimal

V(y)=V(y)+mini; %by adding the minimization term ’mini’, the value

%function is complete

poli(h)=aant; %save the argmin to keep track of the decisions

%for every x

VVV(y)=aant; %in ’VVV’ we save the optimal decision per state

if V(y)-VV(y) < min2; %update min2 and max2 for the while loop

min2 = V(y)-VV(y);

end

if V(y)-VV(y) > max2;

max2 = V(y)-VV(y);

end

end

end

g =(min2+max2)/2; %here we use the formula V(x)-VV(x)-->tau*g

%to compute g, with tau=1 since we scaled

%lambda and mu such that L+N*M=1

policy=[X poli]; %for every state x, you find the optimal d

end

98

A.4. Matlab code

Figure A.2: The optimal policy of the MDP with M = 2, w1 = 5, w2 = 1, λ =
0.5, µ = 1 and the truncation level K = 7. Here it can be seen that both d∗1 < d∗2 and
d∗1 > d∗2 as well as d∗1 = d∗2 might occur. For example, for (x, y) = (5, 5) we get with
j = 1 that d∗1 = d∗2 = 2, when looking at σ(x− 1, y) = (4, 5) and σ(x + 1, y) = (5, 6).
Similarly we get 1 = d∗1 < d∗2 = 2 for e.g., (x, y) = (4, 5) and 2 = d∗1 > d∗2 = 1 for
(x, y) = (3, 4).

99

Appendix

Figure A.3: On the left k(M, i, d) is plotted for several i. It is increasing for d ≤⌈
M−i+1

i

⌉
and decreasing for d >

⌈
M−i+1

i

⌉
, where it must be noted that if

⌈
M−i+1

i

⌉
= 1,

it is strictly decreasing. On the right k(M, i, d)/d is plotted for several i and it is
decreasing for all i.

Figure A.4: The variance of a simulation of SQ(2) with N = 200000 events, for
varying batch sizes, for M = 4, w1 = 5 and ρ = 0.8. The length of the warm-up
period (or transient interval) is the batch size at which the variance definitely starts
decreasing. It seems that taking 50000 as warm-up period is more than sufficient.

100

	voorblad_jup
	leegblad
	scriptiejsjanssen
	leegblad

