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Chapter 1

Introduction

Speaking in generalities, the theory of queues deals with the investigation of the
stochastic law of different processes arising in connection with mass servicing in
case random fluctuation occurs. Here are some examples of such processes.

Mass servicing process. Let us suppose that customers are arriving at
a counter according to some probabilistic law. There are one or more servers,
that serve the customers in the order of arrival. If every server is busy then the
customer joins a queue or waiting line. Generally, the service times are random
variables. We speak about a single server queue when there is only one server,
and multi server queueing process if there is more than one server.

Several queueing processes belong to this category. For example, the process
of calls in telephone exchange, systems the moving of equipment in production
lines, the landing of airplanes at an airport, the arrival of ships in a harbor,
railway traffic, road traffic, and many others. However, nowadays one of the
most common examples of applications of the queueing theory can be found in
telephone call centers.

A call center is a group of resources (typically agents and ICT equipment)
capable of delivering services by telephone. One can find it as an integral part
of many service companies such as airlines, hotels, retail banks, and credit card
companies. Call centers and their contemporary successors, contact centers, are
a preferred and prevalent means for these companies to communicate with their
customers. The functions that they provide vary highly: from customer service,
help desk, and emergency response services, to tele-marketing and order taking.
Depending on the type of telephone traffic we can distinguish call centers into
inbound or outbound ones. Inbound call centers handle incoming calls that are
initiated by outside callers calling in to a center. An operational scheme of
such a call center can be described as follows. Calls are arriving at a telephone
exchange system accordingly to a certain stochastic law. There is a fixed number
of available agents. If a call find a free agent then a connection is realized.
The lengths of the holding times are random variables. If all agents are busy,
then the incoming call is either lost or joins the queue and awaits its turn.
Impatient customers may abandon the queue before the connection they ask for



is completely established. Among callers that do not abandon the queue, the
queueing discipline is first-come, first-served.

In this paper we shall consider queueing systems with limitation acting only
on the customer’s patience and we shall skip technical limitations, i.e., no cus-
tomer is lost due to sufficiently large buffers. In Chapter 2 we shall study
GI | GI | 1+ GI queues (notation; the first three symbols have the same
meaning as in Kendal’s notation, i.e., they denote respectively: the type of
arrivals, the service mechanism, the number of servers. The last one specifies
the impatience law). We start with defining recurrence equations for the ac-
tual waiting time in case of abandonments. Then, in section (2.2) we give a
brief introduction to techniques for establishing ergodicity of continuous valued
Markov chains. This part is mainly based on ([3, Tweedie]) and we derive only
formulas that are needed to show that the waiting time {w, } defined in section
(2.1) is ergodic under some conditions. However, one can find a more detailed
description of such techniques in ([3, Tweedie]). In the next sections we derive
sufficient and necessary conditions for stability of the queueing system. Finally,
in section (2.4) we derive formulas for the stationary distribution of {w,}. In
the next section we define the virtual offered waiting time (v.o.w.t.) and also de-
rive conditions for its stability. Knowing stationary distributions of both actual
and virtual waiting times, we show in section (2.7) that they coincide in case of
Poisson arrivals. The last section of Chapter 2 is devoted to derive quantities of
interest such as the mean waiting time, the mean queue length, the probability
of rejection and the Pollaczek-Khinchin formula for queues with abandonments.
In Chapter 3 we study multi server queueing systems with Poisson arrivals and
exponential service times. In section (3.1) we derive fundamental relations for
M | M | m + GI queues and find results analogue to those in Chapter 2. The
important part of this section is the explicit formula for the density of the vir-
tual offered waiting time that allows us to compute quantities of interest, which
is done in the next section. Finally, in sections (3.3) and (3.4) we give some ex-
emplary formulas in case of respectively, deterministic and exponential patience
distributions.



Chapter 2

Single Server Queues

2.1 Assumptions and notation

Input process

Throughout this paper we shall consider the following type of input process.
We shall always suppose that the time ¢ ranges over the interval [0, 00). Let
us denote by 713,75, ...,T,,... the arrival instants customers. We will suppose
that the inter-arrival times t,, :== T, — Tp—1 (n = 1,2, ...; To = 0) are mutually
independent, positive random variables with distribution function

P(t, <z)=F(x), (n=1,2,..).
If specifically we assume that
[ 1—e? if >0,
F(”J)_{ 0 if <0,

then {T,} is said to be a Poisson process.
We will use the following notation. The expectation

s(s)=E[e™], (n=1,2,..)

always exists if Re (s) > 0. This can be written also as

o) = [ emsmar ),

and is called the Laplace-Stieltjes transform of distribution function F' (z).

The expectation
1
always exists but we will consider only distribution functions for which it is

finite. L is the average inter-arrival time which can be written in the following

X
form ) -
= /0 xzdF (z).



Service mechanism

Generally, we shall consider the case “first come, first served”. We shall denote
by m the number of servers.

The service times are supposed to be identically distributed, independent,
positive random variables, independent of the input process. The service time
of the nth customer will be denoted by s,,. We shall define

P(s, <z)=H(z),

as the distribution function of the service times. The Laplace-Stieltjes transform
of H (z) is denoted by

Y(z)=E[e "] = /000 e "“dH (u),

which is convergent if Re (x) > 0. The average service time will be denoted by

%:/OooudH(u).

We shall assume that % is finite.
An important particular case is that in which the service time has an expo-
nential distribution, i.e.,

| 1—e* 4f >0,
H(C”)_{ 0 if <0,

Patience

A basic description of patience is the distribution of the time beyond which a
customer is not willing to wait. Throughout this paper we will concern queueing
systems with impatient customers, where a limitation acts on the waiting time.
There could be two types of such systems

(a) _aware customers:
The entering customer leaves immediately if he knows that his waiting
time is above his patience.

(b) unaware customers:
The entering customers do not know anything about the system and leave
the system when his time already spent in the queue reach the limit of his
patience.

We shall mainly study the type (a) but by the following remark, it is possible
to unify both systems in some cases.

Remark 2.1 The unfinished work of the server is not modified by customers
who finally leave impatiently, even if they stay in the queue.



The correctness of this statement will be made clear in section (2.5).

Hence, as long as we are interested in the rejection probabilities, or in the
waiting time distributions of successful customers, we can identify system (b)
with system (a).

We shall denote by g, the patience of the nth customer and define
P(gn <x)=0C(2),
where C (x) may be defective, i.e., we may have

lim C(x) # 1,

T—r00

but we assume C (0) = 0.
However, we will mainly use

G(z):=1-C(z).

The expected patience is given by

(o]
v= [ wdc @),
0
and we assume it to be finite.

Let {wy,}, cn be the workload just before T}, (unfinished work). We assume
the system to be of type (a), i.e., the nth customer enters the system only if
the time to wait for accessing the server does not exceed his patience.

That is,

e If g, <w, the nth customer is impatient and does not enter the system;

e If g, > w, the nth customer joins a queue.

Recursive equations for the actual offered waiting time

Now, we derive a recursive equation for the sequence {wy}, .y, where w, is
the time that the nth customer would have to wait for accessing the server if he
were sufficiently patient. Hence, we call it the actual offered waiting time. Let
wo € Rt be some initial condition, we have for n > 0 :

{ Wnt1 = [wn + Sn — tn+1]+ if gn > wy (2 1)
Wp41 = [wn - tn+1]+ Zf 9n S Wnp

Remark 2.2 It is important to note that above definition yields {w,} is a
Markov chain with state space RT.



2.2 Techniques for establishing ergodic proper-
ties for continuous-valued Markov chains

Consider a time-homogeneous Markov chain {X,} with state space T, which
is usually assumed to be a closed subset of R. The evolution of the chain is
described by the collection of distribution functions

Fp(y) = P(Xn+1 Sy | Xy = 1),
however it is easier to work with the corresponding measure:
P('TaA) :P(XnJrl €A|Xn:x)

induced in one dimension by the distributions F;

that is, if A = (a,b], then P(x, A) = F,(b) — F,(a) and P(z, ") is then extended
to all Borel subsets of R.

We assume, in order that the chain be well defined, that for each A € B(Y)
(where B (Y) denotes the o—field of Borel subsets of T) the function P(-, A) is
measurable, and for each x, P(x,-) is a probability measure on B (7).

Definition 2.3 We say {X,} is ¢—irreducible if there exists a nonzero mea-
sure ¢ on B(Y) such that, for any z € T and A € B(Y) with ¢(4) >0
there is ann € N for which P™(x, A) > 0.

Definition 2.4 We shall call a ¢-irreducible chain {X,} ergodic if it has a
unique stationary distribution, i.e., a probability measure © on B (Y) satisfy-
mng:

VAEB(T) w(A) = /P(a:,A)dw(a:).

If {X,} is ¢—irreducible then (see [3, Tweedie]) there is at most one sta-
tionary distribution. Additionally, if {X,,} is ergodic then the n-step transition
probabilities converge to the stationary distribution 7 in the strong Cesaro sense
that:

n

1
sup |~ P™(z,A) — 7 (A)| =0
m=1

AeB(T)

for m—almost all z

There is a close relationship between ergodicity and the finiteness of the means
of hitting times T4, where:

Ty:=inf{n >0]| X, € A}, AeB(Y).

It can be shown that, given certain conditions on the chain, ergodicity is a
consequence of:

sup E{T4 | Xo = 2} < o0, VeeT. (2.2)



provided A is one of a certain class of sets determined by preliminary conditions
satisfied by the chain.

Definition 2.5 We call any set A such that (2.2) is a sufficient condition for
ergodicity of {X,} a test set for that chain.

Theorem 2.6 Suppose T = [0, 00) and there existe > 0, M > 0, and a bounded
A € B(Y) such that

E{Xi|Xo=2}<z—c¢, Vo € A°, (2.3)

and
E{X,| Xo=12} <M, Vz € A. (2.4)

Then
supE{Ta | Xo =z} < 0.

Proof. [3,Tweedie] m

Definition 2.7 We say that ¢ has an atom at o when {a} can be reached from
every point in the state space.

Theorem 2.8 If ¢ has an atom at o then the set B containing o is a test set
if for some integer N and some § > 0

max P"(y, {a}) 26, Vye B.

Proof. [3, Tweedie] m

So to prove ergodicity for a given Markov chain {X,,} carry out the following
three steps:

STEP1 Identify a suitable ¢ and show {X,} is ¢—irreducible for this ¢.
STEP2 Identify possible test sets for the chain.

STEP3 Apply Theorem2.6 to one of these test sets to prove boundedness of
the mean hitting times as specified by (2.2).

2.3 Stability conditions for the actual offered
waiting time
Sufficient condition

In this section we will follow these three steps to show that Markov chain defined
by (2.1) is ergodic.
Define:

a:=inf{t: F(t) =1},



b:=sup{t: H(t) =0}.

Notice that b is always well-defined, but a may not. The case when a = oo will
be discussed separately.

We can interpret a as “the longest” time we have to wait for a customer to
arrive and b as “the shortest” time in which we can complete the service of a
customer.

Throughout this section we assume b — a < 0. This condition is necessary to
avoid infinitely large queues.

STEP1

Lemma 2.9 The Markov chain {w, : n € N} is ¢pg—irreducible, where ¢g is a
measure on Rt with an atom at 0.

Proof
Consider the sequence:

{ %o = o, (2.5)

Zne1 = max(0, 2z, + $p — tne1)

comparing with (2.1) we get:

Since
P(wpy1 = 0) = P(wn + 50X (g, >w,) — tnt1 < 0)
2 P(wn + Sn _tn+1 S 0) = P(Zn+1 = 0),
where £ o () @)
we obtain:
P(w, =0) > P(z, =0), Vn € N. (2.7)

By definition of a and b we get

Ve>0dp>0: Pb—a<s,—thr1 <b—a+e)=p.

Fixe > 0 and let z € R* and k := [Ibfal] (where [y] for y € R denotes the
smallest integer greater than y).

So, z satisfies the following inequalities:

—(k=1)(b—a) <z < —k(b—a) (2.8)



Now, lets consider the events:

E = ﬂ {b-—a<s;—tiy1 <b—a+e}
0<i<k

and ’
E ={2,=0]2 ==z}.

Claim 2.10 The following inclusion holds
ECE. (2.9)
Proof of claim

Take w € E, and observe that:

zo (w) =,

z1 (W) = max {0, 2o (w) + so (w) — t1 (W)},

29 (w) = max {0, z1 (w) + s1 (W) — t2 (W)}
= max {0,max {0,z + s (w) — t1 (W)} + 51 (W) — t2 (w)}
= max {0,z + so (w) + s1 (W) — (t1 (W) + t2 (w))}.

Induction yields:

k—1
2 (w) =max 0,2+ Y (sj (W) —tjn (W) 7 (2.10)
j=0
By definition of set E we have the following inequality:

k—1
Ve>0, ) (si(w) = tis(w)) < k(b— a) + ke.
j=0

Using relation (2.8) we get:

k—1

Ve > 0, Z(S](w) - tj_H(w)) < —z+ke.
7=0

Letting € N\, 0 we obtain:

k—1
T+ Y (55(w) =t (w)) 0.
=0

10



The above inequality and formula (2.10) eventually give:
zp (W) =0, VwekE.

Hence, inclusion (2.9) is true. This ends the proof of claim.
Notice now that both events can happen with positive probability

P(E') > P(E) > p* > 0.
Observe also that by (2.7) the following inequality holds:
P(wp,=0|wg=2)>P(2,=0]20 =2), VYn € N.
Hence we have just shown that for any x there exists k such that:
P(wp,=0|wo=2)>P(z;,=0]20=2) >0

ie.,

Ve>03keN:P"(z{0}) >0
It thus becomes clear that the pair {w,,, ¢o} satisfies the Definition2.3.
Special case (a = o)

Observe that preceding proof is also valid when a = oco. We define then k£ = 1
for every z. It becomes clear when we notice that the situation a = oo means
that with positive probability no arrival occurs. Hence, there is also positive
probability for the system to reach state zero when beginning at the initial state
x.

STEP2
Lemma 2.11 For every 8 € RT the interval B =0, 3] is a test set

Proof. By Theorem2.8 we must find N and § > 0 such that

max P" (y,{0}) >4,  VyeB.

From STEP1 we know that for every y € B,

P"(y,{0}) =P(w, =0]wo=y)>P(2,=0]20 =y),

so any N > [ﬁ] matches. m

11



STEP3
Let T be the hitting time of B, i.e.,

Tg =inf{n > 0| w, € B},

where B is a test set as in STEP 2.
To show that
sup E{Tp | wp =2} < 00

we have to make an additional assumption:
Let p := 2, and assume

1—pG (0) > 0. (2.11)

Now we will apply Theorem2.6
At first derive from (2.1) the formula for the conditional expectation:

E{w |wo =2} = G(z)E {[wo + so — t:1]" | wo =z}
+ (1= G(@)E {[wo — t:]" | wo = z}

— G(a) //R+ o= dH(R()
+(1-G) /R+ o — f*dF(b),
and so

E{w; |wyp =z} = [a: — t]TdF(t)
T+s— z— 1" s .
+G(x //R+XR+ +s—t]t — [z —t]")dH(s)dF(t) (2.12)

By the use of the formula for integration by parts for the Stieltjes integral (see
AppendixA TheoremA.3) we have:

/Oo[a;—t]wF /F t) dt,
// [z + s —t]"dH(s)dF(t //F :L'+S—t]+).

To simplify the last equation it is enough to notice that:

Vaz,s,t>0.

w+s—t]t = +s—1t iff {x—t>0 r{x_t<0

s>0 s>t—=x

Hence,

/OOO /Ooo[x+s—t]+dH(s)dF(t) :/ dt+/t z/z t) dtdH (s).

12



Finally, some inversions in (2.12) give:

o0

E{w; |wyp =2} = /Oz F(t)dt + G(m)/ (1 - H(t—x))F(t)dt.

Now, we will show that E {w; | wo = z} satisfies the conditions of Theorem2.6

Consider x € B, i.e., ¢ < 3.
Since F((t) <1Vt >0and G(z) <1V x>0, it follows

E {w; |w0:w}§w+/m(1—H(t—m))dt

T

o 1
:a:+/0 (I—H(u))dugﬂ-l-;.

So the condition (2.4) is fulfilled with M := § + . > 0.

For z ¢ B, i.e., x > [ we have

o)

E{w |wy =2} =2 — /090(1 — F(t))dt + G(m)/ (1-H(t—x))F(t)dt

T

<z- /00(1 — F(t))dt + /oo(1 — F(t))dt
+G(x) /OO(1 — H(t))dt

=z— % +G(w)% + /:0(1 — F(t))dt.

Observe now that for every ¢ > 0 there exists an xg such that
[ee]
Vo > xg: / (1-F(t))dt < e.
x

Hence,
1—pG
E{w, |w0:m}§w—+(w)+a.
Now, having assumed that 1 — pG (00) > 0 we can find z; € R such that

Vz >z, 1—pG(x) > 2e.

Hence if 8 > max (zg, 1), then we obtain precisely condition (2.3), i.e.,
E{w |wp=2}<x—¢

and this implies that [0, 5] is a test set with bounded mean hitting time.
This completes the proof of the ergodicity of {wn},cp -
Notice that (2.11) becomes then a sufficient condition for w, to be ergodic.

13



Necessary condition

Lemma 2.12 If w,, is ergodic, then
0<1-pG(0).
Proof. By the definition of w, we can write
Wnt1 = [Wn + 80X (gn>wa) — tnt1] T,

where x, ., , is the indicator function defined by (2.6).

Observe now that the inclusion of the events

{w:gn (W) =00} C{w:gn(w) > wn (W)}

yields:
W41 > [wn + SnX(gn=00) — tn+1]+
Hence,
n
Wnt1 > wo + Y bi, (2.13)
i=0
where
b; = 8iX(gi=o0) — tig1. (2.14)

In the further part of the proof we will show that condition
0>1-pG(c0) (2.15)
is in contradiction with ergodicity of w,, .

Suppose (2.15) holds, then it is equivalent to

AG (00) > (2.16)
where %, % were assumed to be finite.
Since a .
A GO
I A
then
0 < Eb; < oo. (2.17)

Notice that b; satisfies conditions of the Strong Law of Large Numbers, i.e.,
Z?:o bi . .
—— E[bi] (n = o) with probability 1.

Suppose now that the series Z;)io b; converges, then

Z?:o bi

-0 (n = o) with probability 1
n

14



which is the contradiction with (2.17).
Hence

n
Z b; — o0 (n — o) with probability 1.
i=1
Comparing now last statement with (2.13) gives the required contradiction with
ergodicity of w,,. m
2.4 Stationary distribution of {w,}, .y

For the Markov chain defined by (2.1) we have

P(wpy1 € A|wy =2) =
P(wn+1 eA|wn =Z,9n Sw)P(gn Sm)"'P(wn-‘rl €A | Wp =T, gn >w)P(gn >w)a

where

Pwpy1 € Alwp, =2, g <) = /R+ xa([z — 2]T)dF(2)

and
Pluwnis € Alwn =2, gn>0) = [ xalla+y = ANaH@AFE)
Rt xRt
for x4 : R — {0,1} - a characteristic function of set A.

Finally we can write

P 4)=Gla) [ xalle+y=")AH)IFE)

+(1-G@) [ xalle - DR (2.13)
R
where P (z, A) is the measure defined in section (2.2)

Remark 2.13 Let X,Y be random variables, then
Fxiy(a) = P(X +Y <a) = / Fx(a - y)dFy (y),
R
FX,y(a) = P(X -Y S a) = / FX(a-I-y)dFy(y)
R

_ / (1= Fy(z — a))dFx(z),
R

where

15



Let W, (z), x € RT be the distribution function of w,, then the following
relation holds

Wn+1(w) = P(wn+1 < :L') = P(wn-H <z,gn > wn) + P(wn+1 <Z,gn < wn)'

By Remark (2.13) we get
W (w)z/o G<u>/0 H (2 +y — u) dF (y) dW, (u)

+/oo(1—G(u))(1—F(u—ar))de (). (2.19)
0

We have shown in section (2.3) that Markov chain {wy} is ergodic provided
that 1 — pG (c0) > 0. Hence when this condition is fulfilled there exists a
non-defective distribution function W () such that

lim W, (z) = W (z), Vo € RT.

n—o0

By the Theorem A.2 (AppendixA) we obtain for every positive R

R [e%s)
l1m/0 /0 G (u) H (¢ +y — u) dF (y) dW,

:/OR/OOOG(U)H(a?-l-y—u)dF(y)de (2.20)
and
R
nh_{r;o ; (1-G(u))(1—F(u—2x))dW, (u)
R
- /0 (1- G (w) (L~ F (u—z))dW (u) (2.21)

Hence, by definition of the improper Stieltjes integral and formulas (2.20) and
(2.21) we derive the expression for stationary distribution of actual offered wait-
ing time

W(a:):/OOO/OOOG(U)H(a?+y—u)dF(y)dW(u)

+/000(1—G(u)) (1-F (u—z))dW (u). (2.22)

2.5 On the virtual offered waiting time

Denote by n (t) the virtual offered waiting time (v.o.w.t.) at the instant ¢ ; i.e.,
n(t) is the time that a test customer of infinite patience would wait if he joined

16



the queue at the time .

The virtual offered waiting time can also be interpreted as follows: n(t) is the
time at the instant ¢ needed to complete the serving of all those customers who
joined the queue before ¢. Hence n(t) can also be seen as “unfinished work” of
the server.

Let V(t,z) be the distribution function of n(t) and Q(t,s) - the Laplace
Stieltjes transform of V' (¢, x); i.e.,

V(t,z) == Pn(t) < z),
Q(t,s) := /OO e Td,V(t,x).

Assume Poisson arrivals:

_ oAz .
ro={ 75 e 229

Functional equation for the workload distribution function

Denote by da; the number of customers arriving at the counter during the time
interval (¢, At]. By assumption (2.23)

. _ AAL)I )
P(oar =j) =e W%, (j=0,1,2,..).

Evaluating suitable functions in McLaurin series we derive:
P(0a; =0) = e M =1 - \At + o(t),

P(0ar = 1) = e MINAL = AAL + o(t),
P(6a; > 1) =1 — (P(6a; = 0) + P(da; = 1)) = o(t). (2.24)

Using the theorem of total probability we can write that:
[ee]
O(t+Ats) = BE{e 130} = 57 P (a5, = j) B {e 1020 | 6 = 1}
j=0
(2.25)

The equations (2.24) simplify (2.25) to be of the form

Q(t,5) = (1=AAL) E{e™*"U+AD | 55, = 0} +AALE{e 1A | 55, = 1}+0(At).
(2.26)

Now we shall compute the conditional expectations E{e *"!+AH | 55, = 0}
and E{esn(t+A0) | 55, =1},

17



Consider situation when da; = 0.
It means that during interval (¢, At) there was no arrival, so the v.o.w.t. de-
creased and, at the moment ¢ + At is equal to

H— At if p(t) > At
"(t+At>:{ n()o if 737((2)3&

Hence,

E{e=1+80) | 55, = 0} = P(n(t) < At) + P(n(t) > At)E{e(1(0-20},

Since V (¢, z) is right continuous in x
V(t,At) =V (t,0) + O(At).
By the Law of the Mean for Stieltjes integrals (see TheoremA.4 in AppendixA)

0< /At xd,V (t,z) = AtV (t, At) — V(t,0)] = o(At).
0

Thus after some calculations,

E{e A | 50, =0} = (14 sA)Q(t, s) — sALV (£,0) + o(At)  (2.27)

Let now da: = 1, i.e., in the interval (¢, At] one customer arrives at the counter.
Because of the impatience there are two possibilities of his behavior:

1. Suppose he decides to join the queue at the moment ¢1; t < t; < At
(i.e., g¢ > n(t1); where g, is the patience of the customer)
Then, his service time is added to the v.o.w.t. at time #;.

Hence at the instant ¢ + At the v.o.w.t. equals to:

Let n(t) =y :
if y > At
then n(t+ At) =y + s, — At,

where s;, is the service duration of the customer

if y < At
then n(t+ At) = si, — At

where 0 < &; < 1, and &; is the time that customer has been already
served during the time interval (max (At —y, 1), At].

2. Suppose that the customer decides not to join the queue
(ie., g <n(t)).

Let n(t) =y,
if y > At,
then n(t+ At) =y — At.
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if y < At,
then n(t+ At) =0.

After putting through all these possibilities we derive
Ble 1030 | 5y = 1) =y} = G(y) [ e "t S (z)
0
HGl) [ e (@) + (1= Gy A + (1~ Glw))
0
Dropping the condition 7(t) = y, we obtain
o0 o0
B0 |5y =1} = [ Gl [ e 0 20dm @),V (1)
oo % 0
+ [ 6 [ ettt @a,V ny)
0 0
+ [ Gne 204,V 1,y)
0

- T (- W),V () (2.28)

Let ¢ (s) be a Laplace-Stieltjes transform of the service time, i.e.,
vl = [ ean @),
Then (2.28) can be written as
B {em 80 65, =1} = /0 TG W) () e ALY (1)
+ [Tewe e ey )
O A e )
-G (@)

1
+/0°°(1

y)dyV (t,y) (2.29)
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Finally, applying (2.27) and (2.29) to formula for Q (¢ + At, s) given by (2.25)
we obtain

Q(t+ Aty s) = (1 — AAD[(1 + A7) / T e ALV (1, y) — sAIV(E,0) + o AB)]
Fanders (o) [ TG V(1 y) + b (5) e / TG,V (1)
esAt > _ e~V > _
+ / (1- G ()e=*¥dyV (t,y) + / (1= G W)dyV (t,))]
= / e d,V(t,y)+ sAt/ e d,V(t,y) — sAtV(¢,0)
0 0
FAME W () = 1) [ Glu)e T,V (1) + ol

Denote -
0 (t:5) = [ G,V (k).
0
Then

Q(t+ At,s) = Q(t,s)+sAtQ (¢, 5)—sAtV (¢, 0)=AAte* > (1 — 1) (s)) Qg (¢, s)+o(At).

By taking the limit for At — 0, we obtain a very important differential equation,
called the functional equation for workload distribution function

o0 (t, s) Q(t+ At,s) —Q(t,s)

T Alir_r)lo Az =50 (t,s)—sV (¢,0)-A (1 — 9 (s)) Q¢ (¢, 5),
%% —Q(ts) =V (0) MQG (ts).  (2.30)

2.6 Stability conditions for the complete con-
vergence of the virtual offered waiting time
distribution function

Necessary condition

Assume the existence of a limit
V()= tlir{.lo Vit z),

and let Q(s) be a Laplace-Stieltjes transform of V' (), i.e.,

Q(s) = /Ooo e~ qV (z).
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Then, by (2.30) €(s) will be the solution of :
Q(s) =V (0)+a(s)Qq(s), Re(s) >0, (2.31)

where
a(s):= w (2.32)
Observe now, that since G (z) < 1, Yz > 0 we have
0<Qa(s) <Q(s) <1, Vs > 0.

One can also check that
a(s) <1, Vs > 0. (2.33)
Hence, by formula (2.31) we get
V(0) = Q(s) (1 —a(s),
and so, the condition (2.33) yeilds that V (0) is strictly positive.

We now restrict s to take real values, hence @ and Qg are also real and
the following inequalities hold:

Q(s) G (o0) = /000 G(o0)e *dV (z) < /000 G(z)e *"dV (z) = Qe (s) < Q(s) < 1.

So multiplying the above expression by a (s) we get
a(s)Q(s)G (o) <a(s)g(s). (2.34)
Moreover, observe that
V(0)=Q(s) —a(s)Qa(s) <Q(s)[1 —a(s)G (c0)].
We have shown that V (0) > 0, so the fact that Vs: 0 < Q(s) < 1 implies
Vs:1—a(s)G (o) > 0. (2.35)
Observe now, that a (s) by definition equals to

o (s) = /\1 — e:de (x) _ /\@/} (0) ;1/1 (s) (2.36)

Hence
. Y
il_r% a(s) == (0).

Because ¢ (s) is the moment generating function (see AppendixB) for the service
time distribution, we get

A
X' (0) = AEs; = L p-

The function a(s) is continuous so by taking the limit for s — 0 in inequality
(2.35) we get

1— pG (c0) > 0. (2.37)
So we have just shown that 1 — pG (00) > 0 is the necessary condition for V' (z)
to exist.

21



Sufficient condition

To derive the sufficient condition for existence of the steady-state distribution
of the v.o.w.t. we use the fact that the discrete Markov chain {w, : n € N} is
imbedded in the continuous time Markov process {n (t) : t € R} :

w, =n(t,) . (2.38)

The result will be a consequence of limit theorem for semi-regenerative processes.

Definition 2.14 Consider a stochastic process {X (t) : t > 0}, and suppose that
with probability 1, there exists a time Ty such that continuation of the process
beyond Ty is a probabilistic replica of the whole process starting at 0. Such a
stochastic process is known as a regenerative process.

Note that this property implies the existence of further times T, T53, ... having
the same property as T.

It may happen that distribution of Ty differs from Ts,Tj3... then we call such a
process semi-regenerative.

For both semi- and regenerative processes the following theorem is valid:

Theorem 2.15 If F, the distribution of a cycle has a density over some interval
and ET, < o0
then

E {Amount of time in state j duri !
lim P (X (t) =j) = {Amount of me in state j during a cyc e}.
fee E {Time of a cycle }

Proof. [5, Ross| m
One can check that w, =n(t,)) is in fact semi-regenerative.

Now define the probability of being in set B during a cycle if we start from
an arbitrary point z > 0.

K (z,B):=P(n(t)e B,Ty >t|n(0%) =2z), BeB(R").
This equation is equivalent to
Ki(x,B)=P(n(t)€ B|Ti >t,n(0) =z) P(Ty > t|n(0") = z)
= 6(m—t)+ (B) e*/\t’

where
1 if yeB,

‘MB):{ 0 if y¢B.
Now lets consider the distribution function J (z) of n (T)7) .
It is easy to derive the appropriate formula for J (z) when we notice that there

are only two possible situations that may occur when we consider the event
when the total amount of work in the system is smaller than z:
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1. The customer arrives and if he decides to enter the system at time u,
(0 < u < z) his service time is less than z — u.

2. The customer arrives at the counter at instant u, (0 <u < z) but the
actual offered waiting time exceeds his patience and he decides not to join
the queue.

The probability of both cases yield

J(z) = /Om (G(u)H (z —u)+1—G (u)) dW (u) (2.39)

From the Theorem 2.15 we get
1 oo oo
lim P (1 ()eB):—/ / K, (z, B) dtdJ ()
E{n}tJo Jo

t—o00
— ) /0 /0 Siameys (B) e Ndtd] (z)

= )\/0 /0 (1= F (1)) 8(,_y+ (B) dtdJ ().

Hence,

V=i Po0 <= [ [0 F@)b 0 @)
_/\/ /y+t1— ) dtdJ (z)
_/\/0 (1= F (1) J (y +1) dt (2.40)

Applying now formula (2.39) to (2.40) we get:
V () :A/W(I—F(t))W(t+m)dt
—A/m/m (1= F(0)G W) (1— H(x+t—u)dW () dt.  (2.41)

It was shown that if 1 — pG (c0) > 0 then {wy, }nen is an ergodic Markov chain.
So there exists a non-defective distribution function W (z) such that

W (z) ;== lim W, (z),

n—o0

with
lim W (z) =

T—00

Hence V () is also proper distribution.
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2.7 Coincidence of distribution functions V(z)
and W(z) in case of Poisson arrivals

Now we will prove that the stationary distribution function of {w,},en and
n (t), (respectively, W and V') coincide for M | GI | 1+ GI queue.

For "
1—e" t>0,
F(t)_{o t<0,

we obtain V' (z) of the following form:

:A/Oooe“/OMG(U)H(;UH—u)dW(u)dt

00 4+t
+A / e M / dW (u) dt
0 0
00 4+t
-2 / e M / G (u) dW (u) dt.
0 0

After changing variables we get: £ = x + ¢

V(a:):A/ 51)/6’ (€ —u) dW (u) dE

+/\/ <€z>/dW()g
T 0
s 3
—/\/ e—*@—m)/ G (u) dW (u) d¢
T 0
=1)+(2)+3).
Counsider also W (z) , for the Poisson arrivals
_/\/ *“/ G (u)H (z +t —u)dW (u)dt
+/ e MO G (u)
0

—/OOG(U M=)t g7 ()
+(B)+(C).

Now we will show that (1),(2),(3) are equal to (A),(B), (C) respectively.
e (H)=(4)

To prove that relation, it is enough to notice that

/OOOG(U) (x4t —u)dW (u / G(u)H (x+t—u)dW (u).
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Lets consider (B) :

/ e M=) T i (u) :/ AW (u) +/ e AT W (u) .
0 0 T
By the TheoremA.3 (AppendixA) we get

/ e NAW (u) = —e MW (x) + )\/ e MW (u) du
hence
/ e MU AW (u) = —/ dw (u)-l-)\/ e MW (u) du,
T 0 T

and thus

Lets focus on (3).
Suppose w is a density function of W, i.e.,

then:

A/ Ez>/G ) dW (u df—e’\“”)\/ **ﬁ/G w) dud€.

Denote h (u) := G (u)w (u) and integrate [ e *“h (u)du by parts, the
result is

/ e Mh (u) du = —e*)‘z/ h(u) du + )\/ e Mhy (u) du
T 0 T

where hy (u fo s)ds.
Hence,
AN [ e f5 w) dudé = X\ [ e Ry () dE
=Jy G dU+f e A=) G (u) w (u) du (2.42)
=)y G +[Fe ** (=) G (u) dW (u).

It ends the proof, since the right hand side of equation (2.42) is precisely
(@).
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2.8 Density of the stationary v.o.w.t. distribu-
tion function

Lemma 2.16 For v to be of the form
Y (s) = / e ** f (z) dx, where 0< f <A,
0

it is sufficient and necessary that

(=s)"

n!

® |

0< P (s) <=, Vs>0,

where (" (s) denotes the nth derivative of ¥ (s) .

Proof. [2, Feller] m

We will apply this criterion to Q (s) — V (0).
Let ¢ (s) be LS transform of V () — V (0) . By the definition of the Stieltjes
integral

and so from (2.31)
¢ (s) =a(s)Qa(s).
One can check that a(s) is the Laplace-Stieltjes transform of the ”unfinished

work” in the system.
Recall that a (s) was defined as

)\1 — [ e *dH (z)
. )

a(s) =

Observe that following property of moment generating function (B.2)
o0
Fe X =1 - s/ e (1 — F (z))dx,
0

where F' is the d.f. of random variable X,
yields:

a(s) = A/Ooo e~ (1 = H (2))dz = /Ooo =50 (z) da,

where
a(z)=A(1-H (z)).

It is clear that a (s) satisfies the conditions of the above lemma.

Let

D := maxa (z).
T
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For n =0, we shall use: Qe (s) <Q(s) <1, Vs > 0.
Hence,

0<¢(s) =a(s)Qa(s) <als)(s) <als).

Observe now, that

a(s) = /0 z)dr < D/ 5y = —, (2.43)

so the conditions of lemma are fulfilled when n = 0.

For n > 1 the nth derivative of ¢ (s) is of the form

n

o™ (s Z n=i) (s).

7=0
From (2.43) we derive

DE!
ghk+1?

0 < (—=1)*al® (s) <

Therefore

n (n " opl(=1)! J n—' nlD <& / j

By the definition of the exponential function we have

(5</ ——e G (x / G(z)dV (x

7j=0

Define now

'”")J e=G (z)dV ().

n

7=0

hence Dl
—_1\" 4(n) n
0< (—1)" 9" (5) < .

So Vn > 0, ¢ (s) satisfies the assumption of our lemma.

Hence, there exist a function v (z) such that

{ o (s) = fooo e %%y (z) dx,
0<wv(z) <D,

and by definition of ¢ (s) we finally get

(s )+ [7° e (z) da

27



The latter relation shows that V () is composed of an absolutely continuous
part and a mass at the origin.
We can derive the explicit formula for v () by considering the equation

z+A
Pnt+A)>z)=P([n(t) >x+A)+)\A/ G(u)(1—H(x—wu)dV (u)
0
+AAP(n(t) >0)(1 - H(z+ A))
and now, some inversions in above formula yield

Vit+Az)—V(tz+A)

z+A
:—/\/0 G(u)(1—-H(z—u))dV (u)

A
— AV (t,0) (1 — H (z + A)) (2.45)
Since we can evaluate V (t,z + A),
Vitao+A) =V () + 7‘9Va(;’x)A +o(A)

so, after taking the limit for A — 0, the expression (2.45) can be rewritten as

follows

oV (t,z) OV (t,x
o Ox

)—)\/OmG(u) (1—H (z —u))dV (u)=\V (£,0) (1 — H (z))

Suppose the limit lim;_yoo V (¢,2) = V (z) exists. Then, since v (z) = oV (t,z)

. Oz
we can finally write

v(z) =AV(0)(1-H (x)) + )\/Ox v(u)G(u)(1—H(z—u))du. (2.46)

2.9 Quantities of practical interest

In this section we shall study quantities such as: the probability of rejection,
mean waiting time and mean queue length. In further part we also derive a
Pollaczek-Khinchin mean value formula for queues with impatient customers.

Probability of rejection

Let IT be the probability of rejection, i.e., the probability that an arriving cus-
tomer decides not to enter the system. Recall that such situations may happen
when the actual waiting time offered to a customer at the moment when he
arrives exceeds his patience.

Recall also that we defined G (z) as

G(z)=1-C(x),

28



where C () is a distribution function of the patience.
Hence, for GI | GI | 1+ GI queues we have

= /OO (1— G (u)dW (u), (2.47)

where W (z) is the limiting distribution of W, (z), which exists when 0 <
1 —pG (c0).

Since we have proven that for M | GI | 1 + GI queues the distribution of the

actual offered waiting time-W and the virtual offered waiting time-V coincide,
we obtain in this case:

I :/Ooov(a:)(l—G(a:))dm. (2.48)

Now consider equation (2.31), i.e.,
Qs) =V (0)+a(s)Qa(s).

In case of Poisson arrivals the above formula is equivalent to

/ e v (z)de =V (0)+a(s) / e v (z) G (z)dz.
0 0
Note that for s = 0 we obtain

1:V(0)+p/ooov(a7)G(a:)da:,

/Ooov(:n)dwzl,

(I—H)p:p/ooov(a:)G(a?)da?:1—V(0). (2.49)

and now, since

some inversions in (2.48) give

Mean waiting time and mean queue length

Let EW; be the mean waiting time spent in the queue by patient customers,
and EL; be the mean number of patient customers in the queue. Similarly, let
EW, be the mean waiting time spent in the queue by all customers (the impa-
tient ones, i.e., those who rejected after their time-out and the patient ones),
and EL; be the mean number of such customers in the queue.

For the GI | GI | 1 + GI queue we have:

W, = /0 " 4G (w) AW ()| (2.50)
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BW, = / / G () dtdW (u) . (2.51)
o Jo
The expression for EW, can be derived from the following relation

EWQ:/OooudW(u)—/Ooo/OuC(t)dtdW(u)

:/Om/oudtdW(u)—/OOO/OMC(t)dtdW(u).

Applying Little’s formula we derive
EL, = X(1-10) EW,, (2.52)

ELy = AEWs. (2.53)
Examples

Let 7 be the first moment of C (z), then
e For the GI | GI |1+ D queue we have
gl
EW, = / udW (u) ,
0
0% 00
EW, :/ udW(u)+7/ dw (u),
0 vy
I :/ dw (u) .
g

Hence,
EW, = EW; + ~11.

e For the GI | GI | 1+ M queue we have
EW, = / ue” 7 dW (u),
0
1 oo
EW, = 5 / (1—e ") dW (u),
0

1T :/0 (1—e ") dW (u).

Hence,
1
EWy = —I1.
Y
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The average virtual offered waiting time in M|GI|14+GI case

Denote by v the mean v.o.w.t. By the result of section (2.7) we get

v:/ooomv(a:)dm.

Consider again equation (2.31) and differentiate it with respect to s. This
procedure yields

/ xze TdW (z) = / ze *"A(1 - H (z)) dw/ e TG (x) dW (x)
0 0 0
+ / e~ (1— H (2)) dm/ 265G () dW (z).
0 0
Since V (z) = W (z) in our case, for s = 0 we obtain

/Oooa:dV(a:) :/Ooox)\(l—H(x))dx/ooog(x)dv(x)

+/\/OO(1—H(a:)) da:/ooa?G(a:) av (2.54)
Notice now, that -
| a-m@a=

and also by another property of moment generating function (Appendix B), we
know that

Es%:2/000x(1—H(x))da:.

/ 2dV (z) = pEW, + % / G (2) dV (z) Bs?.
0 0

Eventually, we obtain
-~ A 2
v = pEW1 + 5(1 - H)ESl,

which is Pollaczek-Khinchin formula for queues with impatient customers.

31



Chapter 3

Multi Server Queues

3.1 Fundamental relations for M | M | m + GI
queueing systems

Consider the m—server queueing system. In this section we assume Poisson
arrivals and exponential service times for each server, i.e.,

1—e M t>0,
F(t):{o t<0.

1—e ™ >0, .
Hi(t):{ 0 € £ <0 for i=1,...m

where H; (t) denotes the service time distribution for the ith server.

We shall introduce the following process {(N (¢),7n (t)),t > 0}; where {n (¢) ,t >
0} is the v.o.w.t. and {N (¢),t > 0} equals to n when the number of customers
in the system at time ¢t is n (0 <n <m —1), N(t) is equal to m when the
number of customers at time t is greater than m — 1.

Observe that {(N (¢),n(t)) : t > 0} is then a Markov process with state space

{0}, {1}, ... {m — 1}, {m}] x R*.

It is easy to see that the v.o.w.t. is equal to zero when N (t) # m and is
strictly positive otherwise. Hence only the following states can be obtained
with positive probability:

1{(0,0),(1,0),....(m = 1,0),(m,x),  if x>0}
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Lets introduce the functions:

V(t,z):=P(N() =L, n(t) <z,

Pp(t):=PN@) =4, nt)=0), 0<j<m-—1,
and
v(t,z) = W,

v(te) = Jim P(N(@)=L, #<n(t)<c+Ar).

Then we can write the normalizing condition for the process {(N (¢),n (t)) : t > 0}

as:
m—1

P; +/ 4,V (t,z) = 1.
0

=0

<

Observe now that the following relations hold:

For state (0,0):

Py (t) = Py (t) (1 = MNA) + ApPy (t) +0(A). (3.1)

For state (4,0), 0<j<m-—1:
Py(t+A) = Py (£) (1= A = jud) + AAP;_y (£) + Au(j + 1) Pyt (1) + 0 (A).
(3.2)

For state (m — 1,0):

Prno1(t+A) =1 =AM = (m —1) Ap) Py (t) + AAPp 5 (£)

A
+(1_m)/ duV (t,u) + 0 (A).

By the Law of the Mean for the Stieltjes integral this equation is equivalent to

P (t + A) = (1 — DA — (m - 1) A,u) P (t) + AAP,_» (t)
+V(t,A) =V (t,0)+0(A). (3.3)

For state (L, z), x> 0:

P(N({t)=m,n(t+A)>z)=P(N(t)=m,n(t) >x+A)
z+A
+AA G (u) ™™=V (1) + AAP,_y (£) e ™A 4 5 (A)
0

z+A
V(t+A2)=V(tz+A) - /\A/ G (u) e ™ ==,V (t,u)
0

— MAP,,_ (t)e™™HHA 4 o (A) (3.4)
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where V' (t,z + A) can be evaluated as

oV (t,x)

V(b +A)=V(ta)+

A+o(A).

After some calculus and taking the limit for A — 0, we can rewrite equations
(3.1),(3.2),(3.3),(3.4) as follows

PO _ py 1)+ P (),
%t(t):_(/\Jrj“)Pi(t)*')‘ijl+(J'+1)MP]-+1 0<j<m-—1,
Mmdiw: m —1) 1) Pt (£) + APrcs + v (£,0),
ngi, z) 8V t, ) _)\/ G (1) e~ E=D 4LV (1, 4) — APyt (He=™, > 0,

Suppose now that the stationary solution exists and denote:
V(z):= lim V(tz),

v(x) = tlir{.lov (t,z).

Then we obtain Chapman-Kolomogorov equations for the process {(N (t),n (¢)) : t > 0} :
APy = puPy,
(A+/~‘LJ)P]:APJ*1+(.7+1):UPJ+17 0<j<m_]-7
A+ pu(m—1))P; = AP, 1 +v(0),

v (x) = APp_1 ( m“uA/ G (u)e”™E@=Wg V (tu), x> 0.

(3.5)
Solving the first three equations we get
i .
P = (3) 1P, j=0.m—1, (3.6)
v (0) = )‘mel-

Furthermore it is easy to see that H (z) = e™*®v (z) is the solution of the
following equation:

H(m):/\Pm,1+/\/ G (u) H (u) du, x> 0.
0
Basic theory of differential equations yields
H (l‘) — APm,1€A I3 G(u)du,
hence, v (x) is of the form

0 (x) = APy i Cotemmnr, (3.7)
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Remark 3.1 One can note the resemblance between (3.5) and the formula de-
rived in section (2.8) for the density function of the v.o.w.t. in M | GI | 1+ GI
case. Indeed, the situation in the m—server queue, where there are exactly m—1
servers occupied is equivalent to a single server queue. Hence, v given by (3.7)
can be interpreted as a density function of the v.o.w.t. in the M | GI | m + GI
queue. However, it is important to note that the value of V (0) in this case is
not equal to the probability of having servers idle. That is why in the sequel part
we will redefine this quantity.

By the above Remark we can rewrite the normalizing condition as

m—1

P; + /oov (x)dx =1. (3.8)
0

=0

Relation (3.6) and the above equation allow us to compute the exact formula

for Py :
m—1 m—1 00
() 3or () et )
iz J! H (m—=1)!Jo
hence 1
m—2 m—1
1 A 1
— — —— (1 +M\J , 3.9
( ) i () e (39
where

J= / Jo Glwydu=mpz g, (3.10)

For stability one can check that the normalizing condition is feasible if and only
if the integral in (3.10) converges,which is equivalent to the condition

AG (00) < mp.

Remark 3.2 The distribution of the v.o.w.t. is consistent with the distribution
of the actual waiting time also in the multi server queue with Poisson input.

3.2 Quantities of practical interest

Probability of rejection

Analogously to a single server case we will derive a formula for the probability
that an arriving customer decides to reject the system due to his impatience.
In a multi server case, such situation is possible when all servers are busy.
Hence, throughout this section we shall assume that the service time distribution
function for whole system is given by

H(t)=1— e mht, (3.11)
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Furthermore observe that in case when there is a queue the formulas from section
(2.9) are also valid but with p = Z£. It can be easily proved, since for H (t)
defined by (3.11) we have

a(s) = A/OOO e~ (1= H (z)) da,
hence,

my’
and so, differentiating (2.31) in the point s = 0 yields

o0

1:V(0)+% [ v@G @)

Proceeding now as in a single server queue, we get

(1—H)£:1—V(O), (3.12)
where .
V(0):=) P

We will derive now an exact formula for II.
Observe at first that the following equality holds:

00 0
P,,HA/ (G (z) - %) Ao (G=B)dugy — p | / eSde = Py,
0

— 00

hence,

/ G (z)v(z)de = APy / G (z) et o Glwdu—mpuz g,
0 0
= >‘Pm—1/ %BA fom G(u)du—mumdw +Pm—1
0

= % / v (z)dx + Pp_1. (3.13)
0

Since the probability of rejection was given by

n:/ (1-G (@) v (z)da,
0
using formula (3.13) we can write
_ (1o [T
H—(l /\)/0 v (z) dx.
Now, applying the normalizing condition (3.8) we finally obtain
m—1
m,

n
M= (1-=7) 1—ZPJ- + Py

Jj=



Mean virtual offered waiting time

Proceeding analogously as in a single server case we will derive the Pollaczek-
Khinchin formula for the mean waiting time in the M | M | m + GI queue.
As we have previously shown

(1—H)£:1—V(0).

Similar computation as in section (2.9) yields
P A
b= EEWl + 5(1 —T)Es?,

where

Hence, we get:
1
o=LEW, + —[1-V(0).
m ms

Remark 3.3 The formulas for the mean waiting time and the mean queue
length remain the same as for one server queue.

“Service level” measure

It may happen that one can be interested in defining a percentage a and a
number a for which must hold: a% of the customers must have a waiting time
shorter than a seconds. We call this quantity the service level. In terms of the
waiting time distribution it can be derived from

P (W_time >a)=1-—aq, (3.14)

where for convenience we denoted by W _time the stationary distribution of
waiting time given by (2.22), i.e. P(W_time <a) =W (a).

We shall call the left hand side of expression (3.14) the “service level” measure,
and we will be mainly interested in this quantity.

One can note that

P (W_time > a) = /OO dW (u)

o0
= / dV (u) in case of Poisson arrivals
a
o0

= / v (u) du where v (u) is a density of the v.o.w.t.
a
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3.3 On the M | M | m+ D queue

Denote by « the first moment of C' (z) , then

G (z)
G (z)

1, if ©<v,
0, if x<n.

Using the results of preceding section we derive a formula for the density of the
v.0.w.t.
In our case expression (3.10) takes form

lo% 00
J = / e T e 4 / M THE e
0 0
Hence, after some computation we get
1
J=— (1 - ﬁem—m”) . (3.15)
p(m —p) m

Applying now J to (3.9) we obtain the expression for P,

—1
m

P p _
Py = 1+Zﬁ+m(pe>\v mm_m) ,

and now we can compute the required density function v (z) = APp,_ie* Jo Glw)du—mpz
which in our case takes form

m—1

v(z) = Ahﬂ) exp (A —mp)y if =<y, (3.16)
m—1

v(z) = )\hﬂ) exp (A\y — mpuzx) if ©<-v. (3.17)

Knowing v (z) we can also compute the following quantities
gl
EW; :/ zv (z) dz,
0
= / v (x) dx.
Y

and
EWy = EW; + ~I1.

EW]; is then given by
m—1

p v
)\mp() / :er‘_m”)mda:,
—1)! 0
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SO
m—1 1

P
EW =)Ao 1)P(A_m'u)2

The probability of rejection is given by

{e(/\*m#)’y (y—1)+1].

m—1 [o%e}
/\pipo/ e(M*muz)dl«,
( _1) 0%
SO
m—1
= )\pip e(A—mu)y
(m —1)!

The “service level” measure is equal to

da:+f v2 z)dx if t<7,

[
W _time > t) ¢ .
( { j;f U2 Zf t> e
where v; (), va (z) are respectively given by (3.16) and (3.17).
Hence,

m—1

A —= Py
P (W _time > t) = { (m—1)!

( (A—mp)y e(/\ﬂnu)t) +II if t<nr,

1
(m— 1)|P06( —mu)t if t>1.

0x= mu)
A2

Remark 3.4 [t is easy to see that for a deterministic patience

P (W_time > t) <1l ift >~y

3.4 Onthe M| M |m+ M queue

Lets assume + is the first moment of C (), then

_[ev if >0,
G(w)_{ 1 if z<0.

Applying this function to the formula for the density of the v.o.w.t. we get

v(z) = APy—1 exp ()\/ e vdu — muw) .
0

Denote by J (z) the following integral

J(z) = / exp (A/ e~ du — mua:) dz.
z 0

Integration by parts yields

—zi 1)
/\’Y —e 7 )—zmp e” % (\y)
J(z) =ne —. 3.18
(&) =1 me (mpy +1) - ... - (mpk + j) (3.18)
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Observe now, that J (0) is precisely formula (3.10) in case of exponential impa-
tience.

Hence,
J=J(0) =~ ——+ Ay + ()° +
mpy  mpy (mpy + 1) mpy (mpy + 1) (muy + 2)
Lets denote & = ——, then

mpy’

_ 1 p/m (p/m)?
J_mu <1+1+a+(1+a)(1+2a)+'">'

Applying J to (3.9) we get the expression for Py

-1

Py = mz_:lp—jJrﬁ Ly P efm)
0 =t ml T+a (1+a)(1+2a) 7

Knowing Py we can derive formula for probability of rejection.
It was shown in section (3.2) that

= (1- 28 {1-%1@} P,

A
]:

where )
P
P] = ﬁp(),
hence, after some calculus we get

1+(ﬁ—1) <1+ p/m , _ (p/m)’ )+...>

m—1

P

1_I:PO(m—l)!

m 1+a (1+a)(l+2a

We obtain also formula for ETW,
EW, = ~I1.

Finally we derive the “service level” measure.
Using the expression for J (z), we can write

P (W_time > z) = APp,_1 / exp (A/ e v du — m,ua?) dx
z 0
=AP,_1J(2),

where J (z) is given by (3.18).
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Appendix A

The Laplace-Stieltjes
Transform

A.1 The Stieltjes integral

Definition and properties

Let a(z) and f(x) be real valued functions of the real variable x defined for
a <z <b, (a,b € R). Denote by A a subdivision of the interval (a,b) by the
points xg, z1, ... , Tn, where

a=x9g <21 <..<xp =0
By the norm § of A we mean the largest of numbers
Ti4+1 — Tg, (i:O,l,...,n—l).

Definition A.1 If the limit

n—

lim 2 F (&) [a(zipr) — a(z;)]

where
wigfigxi+17 (i:O,l,...,n—l),

ezists independently of the manner of subdivision and of the choice of the num-
bers &;, then the limit is called the Stieltjes integral of f (x) with respect to a (x)
from a to b and is denoted by

b
/ f(z)da(z). (A1)
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The definition is easily extended to include complex functions. Thus, if

fi(z) +ifa (x),
a(z) = ay (x) +ias (z),

&ﬁ
&
I

where f; (), fo(x), a1 (z), as (z) are real, we define the integral (A.1) by the

equation
/ab /f1 )day (z /f2 ) das (z
i / £ (2) dan (z) +1 / Fi (z) das (2)

provided all of the integrals on the right exist.

Theorem A.2 Let the sequence of functions {a, (z)}oo, be of uniformly bounded
variation on [a,b]. Let

lim ay, (z) = a(z), (a<z<bh),

n—o0

and let f (x) be continuous in a < x < b. Then
b
lim f ) day, (z / f(z)da(z
n—oo
Proof. [7, Widder] m

Improper Stieltjes integrals

Let f(z) be continuous on [a,00) and let a (z) be of bounded variation and
normalized on [a, R] for every R > 0. Then we define the improper integral of
f (z) with respect to a (x) on the infinite interval (@, oc) by the equation

00 R
/ f@)da (@)= lim [ f(z)da(z). (A2)
a R—o J,
When the limit (A.2) exists, the integral (A.2) converges; otherwise it diverges.

In a similar way, we define improper integrals over (—o0,a) and (—oo,00) by
the equations

/a F@da) = tim [ f@)da).

-R

/f )da (z /f )da (z /f )da (z b€ R.
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Existence of Stieltjes integral

Theorem A.3 If f (x) is of bounded variation and o (x) is continuous on (a,b),
then the Stieltjes integral of f (x) with respect to o (z) from a to b exists and

b b
/ fla)do(z) = f(b)a(b) = f(a) a(a) —/ a(z)df (z). (A.3)
Proof. [7,Widder] m

Laws of the Mean

Theorem A.4 Ifa(z) is non-decreasing (or non-increasing) and f (x) is a real
valued continuous function on (a,b), then

P i@ da(@)=f@ad) -—a@)], (a<E<b). (A.4)

Proof. The proof is similar to the classic proof of the first law of the mean
for Riemann integrals. If

a(x)=[Tot)dt, (a<z<b),
¢ (z) € L, (a<z<b),

where ¢ (x) is non-negative, equation (A.4) becomes

/abf(x)da(a?) :/abf(l“)¢(a?)da::f(g)/ab(z,(x)dx.
n

Theorem A.5 If a(z) is real and continuous, and f (x) is non-decreasing (or
non-increasing) in [a,b], then

[ f(@)da (@) = f(a) [fda (@) + f ) [l da(x), (a<E<D). (A5)

Proof. By Theorem (A.4)
b b
/f(w)da(w)=f(b)a(b)—f(a)a(a)—/ o (2) df (2)

‘ b
=f(b)a(b)—f(a)a(a)—a(£)/ df ().

This is precisely equation (4.5) m
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A.2 The Laplace transform

Definitions

Let «(t) be a complex valued function of the real variable ¢ defined on the
interval 0 < ¢t < oo. Denote its real and imaginary parts by o (¢) and o (¢)
respectively, i.e.,

a(t)=a (t)+ia" (t).

Let a (t) be of bounded variation in the interval 0 < ¢ < R for every positive R.
Let s be a complex variable with real and imaginary parts ¢ and 7 respec-
tively, i.e.,
§s=0+1iT.

It follows from Theorem A.3 that integral

/OR e da ()

exists for each positive R and for every complex s.
We now define the improper integral

00 R
/ e ®tda (t) = lim e da (t) (A.6)
0

R—o0 J

When the integral (A.6) converges it defines a function of s which we denote by
f (s). This function is called the Laplace-Stieltjes transform of a (¢) . If

)= [ T et (tydt

0

we refer to f (s) as the Laplace transform of ¢ (¢) . In either case f (s) is called
the generating function.
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Appendix B

Moment Generating
Functions

The moment generating function ¢ (t) of the random variable X is defined for
all values t by

¢ (t) = E [e']
- / el f () de,

—00

where f (x) is the density function of X.
We call ¢ (t) the moment generating function because all of the moments of X
can be obtained by successively differentiating ¢ (¢) . For example,

' d

_ b'e
¢ (t) = EE [e"*]
_ d .x
== [
= E [XeY].
Hence, ,
¢ (0) = E[X]
Similarly, ;
¢ (t)=E [X%e¥]
and so

"

¢ (0)=E[X?].

In general, the nth derivative of ¢ (t) evaluated at t = 0 equals E [X "],
that is,
o™ =E[X"], n>1
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Moment generating function in term of Laplace-Stieltjes
transform

Let X (X > 0), be a continuous random variable and denote by F its distribu-
tion function. Then moment generating function ¢ (s) of X is defined as

¢ (s) = E[e™¥]
:/0 e **dF (). (B.1)

Analogously as before, to obtain the nth moment of X we must evaluate the
nth derivative of ¢ (s) at s = 0.

ds
= E[-Xe*¥]
Hence,
¢ (0) = ~E[X]
In general we obtain
"¢ (s)

D s L

Recall that integration by parts in (B.1) yields

8

= s/ e " F (z))dx (B.2)
0

For example,
by (B.2) we have

o) (s):—/oooesz(l—F(a:))dx-l—s/Oooa:e”(I—F(a?))da:

Hence,
o0
EX]=-¢ (0)= / (1 - F (z))dz. (B.3)
0
In a similar way we can express the second moment of X.
Since
8 ()= 4 ()

ds

we get

E[X?’]=¢ (0) :2/Ooox(1—F(ar))da: (B.4)
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