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Abstract

This thesis presents the theory applicable to the option pricing and short-
fall risk minimization problem. The market is arbitrage-free without trans-
action costs and the underlying asset price process is assumed to possess a
Markov chain structure. Under these assumptions, stochastic dynamic pro-
gramming is exploited to price the European type option. By using the utility
concept, the Fundamental Theorem of Asset Pricing is proved via portfolio
optimization. Furthermore, it is shown how to use dynamic programming
to control the risk related to the future payoff of the option. The approach
extends to the case when there is restricted information on the underlying
asset price evolution. The methods deal with both complete and incomplete
markets.
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Chapter 1

Introduction

The purpose of this Master’s Thesis is to present and develop applications of
Markov Decision Processes to pricing problems and risk management. This
first chapter discusses the motivation for the research, introduces the goals
of the thesis, and describes the global contents.

1.1 Motivation for the research

The financial markets provide a huge range of financial instruments and
for many years much effort has been going into the study how prices vary
with time and how to valuate contracts fairly. Financial instruments can be
categorized according to various criteria. One of them distinguishes financial
instruments between cash instruments such as stocks, bonds, loans, deposits
and derivative instruments (or derivatives for short), which are defined in
terms of some underlying assets, rates or indexes that already exist on the
market. Derivatives cannot be priced arbitrarily in relation to underlying
asset prices, if one wants to avoid discrepancies between the individual prices.
Then it is clear, that if the price of the underlying asset moves into the
right direction, the derivative provides a profit. Otherwise, the investor loses
money or the derivative becomes worthless. The diverse range of potential
underlying assets and payoff alternatives leads to a huge variety of derivative
contracts available to be traded on the market. Stock prices, bond prices,
currency rates and interest rates fluctuate, and thereby they create risk. Due
to a major growth in financial markets, risk management has become a very
important area of study. Generally, main objectives of risk management are
to assess the risk and then to develop strategies that minimize it. The latter
can be obtained just by using financial derivatives.

An explosive growth in the variety of financial instruments traded over
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the last few years has increased the relevance of proper modeling and ana-
lyzing of financial markets to solve the problems such as asset pricing, risk
management, portfolio optimization, forecasting, etc. Financial economics
investigates structural reasons for certain asset prices and such an approach
very often turns out to be insufficient. One needs more sophisticated meth-
ods in order to solve many problems and to make good decisions. Financial
mathematics is just a branch of applied mathematics that comes to the finan-
cial investor’s aid by the use of technical and advanced mathematical tools
in both research and practice. In combination with increasing computing
power, this area of science is getting more and more applicable and powerful,
thereby gaining major recognition among companies and investors. Behav-
ior of the financial markets and plenty of problems encountered there can
be well formalized within mathematical frameworks; probability, statistics,
numerical methods, stochastic calculus and stochastic differential equations
provide strong methods for the analysis of various markets.

One of the most fundamental tasks in finance concerns assets and con-
tract valuation. First of all, one can try to forecast future stock prices,
interest rates, etc. in more or less precise ways. Asset price dynamics can
be described with the aid of many different mathematical models that have
been evolving through the years. However, there does not exist any privi-
leged model reflecting real asset prices and there are several reasons for it. A
mathematical model should correspond to real settings and lead to solutions
of the considered problems, which is not always possible to achieve. Real
markets are characterized by many restrictions, e.g., transaction costs, ac-
cess to the financial markets is not always free, information about borrowing
and lending opportunities may not be freely available, a single trader can
have a significant impact on market prices, short selling can be allowed or
not. Thus, one is very often forced to make additional assumptions about
the market, but the mathematical model still has to deal with the considered
problems. For example, discrete-time settings may be taken into account
instead of continuous-time models for some simplifications. Moreover, in or-
der to valuate derivatives by the use of mathematical methods one general
assumption has to be set, namely that the market is arbitrage-free. That
means no riskless profits can be made by trading in derivative contracts.
Arbitrage-free pricing is a central topic of financial mathematics and if one
aims at determining a fair price of a contract, then a proper choice of the
underlying asset price dynamics is crucial. Derivative contracts also can be
used for speculation and creating arbitrage opportunities. However, it is
more interesting and desirable to focus on their usefulness in risk manage-
ment. Since derivatives have strict connections with underlying assets, they
can transfer risk and hence be used for reducing or totally canceling out the

2



risk derived from investments. Such a strategy, designed to minimize the risk
of financial loss from an adverse price change is called hedging.

The research for financial markets has therefore become an important
area, fueled by the application of sophisticated mathematical methods. The
underlying principle for financial markets is the Fundamental Theorem of
Asset Pricing, which states that there exists a martingale measure if and
only if the market is arbitrage-free. Under this no-arbitrage assumption, the
problem how to optimally price some financial derivatives is solvable by the
use of martingale measures, which are risk-neutral probability measures. The
unique arbitrage-free price exists in a setting where the market is assumed to
be complete. However, the additional assumption that the market is complete
forms a severe restriction for practical applicability, so that one has to take
refuge to incomplete markets to obtain more realistic models. Unfortunately,
incomplete markets allow for an interval of arbitrage-free prices, thus no
preference for independent pricing of a derivative is given. Hence, other
criteria that would allow for the selection of only one arbitrage-free price
have to be formalized. For example, the utility approach, that expresses an
individual investor’s attitude towards risk, leads to a unique solution.

All issues outlined above can be studied in particular within the Markov
Decision Processes framework. The decision making in pricing or hedging
problems can be defined and solved completely in a theoretical manner; more-
over dynamic programming provides numerical results for specific models.

1.2 Goals and structure of the thesis

The main goal of this thesis is to create a general market model that enables
a formulation of the utility-based option pricing and the shortfall risk min-
imization via dynamic portfolio optimization, and leads to solutions to the
above issues; both in the case of the complete and incomplete information
about the market. Within the scope of this thesis we plan to present an
approach that combines and develops already existing techniques adapted to
a Markovian setup.

The outline of this thesis is as follows. Chapter 2 is a general introduc-
tion to financial markets. It starts with mathematical modeling of the asset
price and portfolios and later discusses the existing problems and well-known
solutions in the simplest cases of the market. At the same time, it points
out how difficulties may arise and prepares the basics that we will be rely-
ing on and building the theory upon. Chapter 3 establishes the model and
provides solutions to option pricing and risk management by using the sto-
chastic control approach, when all information about the market is given.
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The presented methods take into account preferences of the investors. Chap-
ter 4 shows the effectiveness of the proposed model. Specific examples, that
fit into the general framework of Chapter 3 will be also elaborated on in the
case of incomplete market information.
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Chapter 2

Modeling of Financial Markets

2.1 Introduction

This chapter provides a brief overview of mathematical modeling of financial
markets. As a starting point, a general model for asset price dynamics and
a portfolio process are introduced, and are then followed by a discussion of
financial derivatives and the formulation of the main problems. To deal with
these problems, we need to use very important concepts – an arbitrage and a
martingale measure. It is shown how these two concepts are interconnected
and how we can exploit them in the option pricing problem. Finally, we
familiarize with complete and incomplete markets.

2.2 Asset prices and portfolios

Let us consider the following model of a financial market, where investors
can trade in securities and observe their prices only at the dates 0, 1, . . . , N .
N is called the time horizon. In the model, we have K risky securities called
stocks, and a risk-free one, called a bond (or a saving account).

2.2.1 Asset price dynamics

The bond price evolves according to a deterministic process defined by

Bn := (1 + r1) · · · (1 + rn), with n = 0, . . . , N, B0 = 1, (2.1)

where rn ≥ 0 denotes the interest rates in a period (n−1, n]. For theoretical
purposes the interest rates for borrowing and lending are assumed to be the
same.

5



The stock prices at time t are modeled by a K–dimensional stochastic
process

St = (S1
t , . . . , S

K
t ), S0 ∈ R+,

where all components of St are assumed to be positive and time t may be
taken discrete or continuous. We assume that trading of securities takes
place at discrete-time steps. Hence, it suffices to observe the dynamics of St
in a discrete setting, i.e., stock prices are given by Sn for n = 0, . . . , N . The
dynamical behavior of the stock price process we introduced is very general;
asset price dynamics can be described in various and more particular man-
ners. The main point here is that almost all of them can be adjusted and
formulated as a special case of this general model. For illustrative purposes,
let us provide examples of stock price processes that are quite commonly
used. They will be developed in more detail and studied in the next chapters
by using Markov Decision Processes theory.

Examples
1) The multi-period binomial model is a discrete-time model. We assume
here that K = 1 and rn = r for all n. The dynamics of the stock price are
given by

Sn+1 = Sn · Zn, S0 ∈ R+,

for n = 0, . . . , N−1, where Z0, . . . , ZN−1 are independent and identically
distributed random variables such that

P (Zn = u) = pu,

P (Zn = d) = pd,

and
d ≤ (1 + r) ≤ u.

2) The stock price dynamics evolves according to a multi-dimensional continuous-
time stochastic process St, satisfying the following stochastic differential
equations:

dSkt = Skt (a
k
t dt+

d∑
j=1

σkjt dW
j
t ), S

k
0 ∈ R+, k = 1, . . . , K.

The stochastic processes akt are called appreciation rates and they determine
the main trends of the stock price changes. The d-dimensional stochastic
processes σkt = (σk1t , . . . , σ

kd
t ), called volatilities, describe fluctuations of the
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stock price, Wt = (W 1
t , . . . ,W

d
t ) is a d-dimensional standard Brownian mo-

tion. For correctness of the model, the above-mentioned processes usually
have to satisfy some regularity conditions, e.g., they need to be progressively
measurable. However, here we will not go into the details. We can write the
solution to the equations in the form of

Skt = e
R t
0 (ak

s− 1
2

Pd
j=1(σkj

s )2)ds+
R t
0

Pd
j=1 σ

kj
s dWs ,

in particular, the dynamics at discrete-times n are given by

Skn+1 = Skne
R n+1

n (ak
s− 1

2

Pd
j=1(σkj

s )2)ds+
R n+1

n

Pd
j=1 σ

kj
s dWs .

This stock price process appears in the extended Black-Scholes model.

2.2.2 Portfolio process

Information about the observed stock prices, given at n, creates an increasing
sequence of σ-fields Fn := σ(S0, . . . , Sn) , n = 0, . . . , N . On the basis of this
information, at each time n, the investor decides about the composition of
his portfolio, consisting of bonds and stocks. A strategy (portfolio) (φ, ψ) is
defined as a pair of predictable stochastic processes φn and ψn. φn+1 denotes
the amount of money invested in bonds during time interval (n, n + 1] ,
ψn is assumed to be a K–dimensional process where every kth component
ψkn+1 denotes the amount invested in the kth risky asset during time interval
(n, n + 1] , k = 1, . . . , K. If one considers negative values for φ or ψ this
is identified with a loan or short selling of stocks, respectively. We assume
the following facts about the market. First, the market allows short selling
and fractional holdings, which means that (φ, ψ) can take on every value in
R2. Moreover, for all assets the selling and buying prices are the same, and
there are no transactions costs for trading. The last assumption states that
investors can trade unlimited quantities on the market, in particular, they
can get unlimited loans from the bank by short selling of bonds.

Definition 2.1 The value process of the portfolio (φ, ψ) is defined by

Vn = φnBn + ψ>n · Sn = φnBn +
K∑
k=1

ψknS
k
n, n = 0, . . . , N.

The investor starts with an initial capital V0 and later he may relocate money
to bonds and stocks at every time n, but in such a way, that import or export
of money is not allowed. That means that all changes in the portfolio value
are only due to appreciation or depreciation of securities. This leads to the
following definition.

7



Definition 2.2 The strategy (φ, ψ) is defined to be self-financing if for
n = 0, . . . , N−1 it satisfies

φnBn + ψ>n · Sn = φn+1Bn + ψ>n+1 · Sn.

One may state that the discounted stock price process and the discounted
value process are given by:

S̃n =
Sn
Bn

, n = 0, . . . , N,

Ṽn =
Vn
Bn

, n = 0, . . . , N.

(2.2)

Let us define the backward increment process by ∆Xn := Xn −Xn−1. The
above definitions and (2.2) lead to the formula

Ṽn = Ṽn−1 + ψ>n ·∆S̃n. (2.3)

We see that the discounted portfolio value at time n is conditional upon the
strategy ψ. The same holds trivially for the portfolio value at n.

2.3 Option pricing and hedging – problem

formulation

The financial markets provide a great variety of derivatives that are traded in
huge volumes. Moreover, we can take into account many different risk factors
which determine the payoff of such contracts. In this thesis, we mainly focus
on specific types of derivatives, called options and in the model the value
of such a financial instrument at time horizon N depends on the risk factor
represented by the future stock prices.

Example
One of the most important examples is given by a European call option. It
is an agreement signed at n = 0, which gives a buyer the right, but not the
obligation, to buy a stock S at a predetermined price E called the exercise
price at the expiration time N . The value of the European call option at
maturity is easily determined, namely, if the price SN of the stock is less
than the exercise price E, then the contract is worthless and the buyer does
not exercise his right. On the other hand, if the stock price is higher than
the price E, the buyer will exercise the option and obtain a gain SN −E by
selling it at the market price immediately. Thus, the value of the option at
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the time N is given by a random variable X = (SN − E)+.

Now, we can formulate the main problems. If we take a fixed derivative,
then first we want to know what a fair price is for the contract at all times
till the expiration date. The second question concerns hedging. In general a
seller of the option is exposed to a certain amount of financial risk at the date
of expiration. Thus, what action should he take to hedge against the risk?
These problems may be solved quite easily or pose a lesser or greater problem
depending on the assumptions about the market and the construction of the
payoff function. Let us now precise the mathematical framework.

Definition 2.3 A contingent claim (financial derivative) with expiration
time (maturity) N is any FN -measurable random variable X expressed in the
form of

X = h(SN),

where the contract function h is some given real valued function.

A contingent claim represents the payoff of a contract at expiration time from
a seller to a buyer. As one may suspect, thanks to investing in securities
at time 0 and the choice of a suitable portfolio strategy we might get the
portfolio with its terminal value equal to the value of a given contingent
claim. Now we precise and explore this idea.

Definition 2.4 A given contingent claim X is said to be attainable if there
exists a self-financing portfolio (φ, ψ) such that

VN = X,

with probability 1.

In that case we say that portfolio (φ, ψ) is a replicating portfolio for a given
contingent claim X.

2.4 The arbitrage-free market

An arbitrage means that on the market there exist opportunities to make
profits with certainty that are strictly greater than profits obtained by invest-
ing in risk free assets. As an example, consider that at time 0 two portfolios
are available with the same terminal values V 1

T = V 2
T , and different initial

values V 1
0 and V 2

0 . The difference of both portfolios would have an initial
value V0 = V 1

0 − V 2
0 6= 0 and VT = V 1

T − V 2
T = 0. Hence, investing in a new

portfolio defined as a suitably taken difference of both previous ones would
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lead to certain gains. Thus, an arbitrage has also the interpretation of the
existence of mispricings on the market. The assumption about the arbitrage-
free market is very important in the approach to a pricing problem, as it will
be shown later. It is possible to put an arbitrage into a mathematical frame-
work. There are many, more or less, equivalent variations to present the
concept of an arbitrage. Now, for the sake of this thesis, we work with the
following definition.

Definition 2.5 The self-financing portfolio (φ, ψ) is an arbitrage portfo-
lio if it satisfies the conditions

V0 = 0,

P (VN ≥ 0) = 1,

P (VN > 0) > 0.

Definition 2.6 The financial market is called to be arbitrage-free if there
is no arbitrage portfolio on the market.

These formal definitions seem to be reasonable. Indeed, according to the
conditions, an arbitrage portfolio offers an opportunity to make money at
horizon time N at zero initial expenditure. The next sections explain why
the assumption about an arbitrage-free market is so relevant in order to get
a pricing system that is consistent with the underlying asset price given by
the market.

2.5 Martingale measures

Let Y be an adapted, integrable stochastic process on the given filtered
probabilistic space (Ω,F , {Fn},P). Then Y is defined to be a martingale
if for all m ≤ n: E(Yn|Fm) = Ym. In case of the financial market, P is
the physical probability that models the randomness of the stock price S. If
one aims to price contingent claims in a fair sense, it is necessary to refer to
martingale measures.

Definition 2.7 A probabilistic measure P̃ is defined to be a martingale
measure if P̃ is an equivalent measure to the given physical measure P and
turns S̃n into a martingale, i.e.,

EP̃(S̃
k
n|Fn−1) = S̃kn−1,

for k = 1, . . . , K and n = 1, . . . , N .
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We can define now

P := {P : P is a martingale measure}.

If P is non-empty, then every attainable contingent claim may be priced
by the use of martingale measures. For a self-financing strategy (φ, ψ) that
replicates a given contingent claim X, we can derive from the martingale
property that for Ṽ :

Vn = BnṼn = BnEP̃(ṼN |Fn) = BnEP̃

(
X

BN

|Fn
)
, P̃ ∈ P . (2.4)

In particular, the value of X at 0 equals

V0 = EP̃

(
X

BN

)
, P̃ ∈ P . (2.5)

To fully justify the above derivation, it suffices to show why Ṽn is a martin-
gale. We have that (φ, ψ) is self-financing, predictable, and S̃ is a martingale,
hence for n = 0, . . . , N−1

Ṽn =
φnBn + ψ>n · Sn

Bn

=
φn+1Bn + ψ>n+1 · Sn

Bn

= φn+1 + ψ>n+1 · S̃n =

= φn+1 +ψ>n+1 ·EP̃(S̃n+1|Fn) = EP̃(φn+1 +ψ>n+1 · S̃n+1|Fn) = EP̃(Ṽn+1|Fn).

Thus, the price given by Formula (2.4) is a suitable candidate for a fair price
of the contingent claim X at n in view of the following reasoning. First
of all, the above method prices X in terms of the underlying a-priori given
assets S1, . . . , SK . Moreover, linearity of the conditional expectation implies
that such a pricing system works well on the space of all contingent claims.
However, in order to show that such a way of pricing is indeed reasonable,
we would like to have no arbitrage opportunities offered on the market.

Fortunately, we can combine both concepts we introduced: an arbitrage
and a martingale measure. The following theorem is a crucial result for
financial mathematics; it clarifies why martingale measures play a dominant
role in the valuation of contingent claims.

Theorem 2.1 (Fundamental Theorem of Asset Pricing) There exists
a martingale measure, i.e., P is non-empty if and only if the market is
arbitrage-free.

Proposition 2.1 (no-arbitrage condition) The financial market is arbitrage-
free if and only if for any process ψ for n = 1, . . . , N ,

ψ>n ·∆S̃n ≥ 0 almost surely ⇒ ψ>n ·∆S̃n = 0 almost surely.
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Proof.
Let (φ, ψ) be a self-financing portfolio and V0 = 0.
Furthermore, let ψ>n ·∆S̃n ≥ 0 a.s. for n = 1, . . . , N , and let us assume there
exists an n such that P (ψ>n ·∆S̃n > 0) > 0. By using (2.3) we have

ṼN =
N∑
n=1

ψ>n · S̃n.

The above leads to a contradiction, because VN ≥ 0 a.s. and P (VN > 0) > 0,
which means that (φ, ψ) is an arbitrage portfolio.

�
A full proof of the Fundamental Theorem of Asset Pricing in the case when
Ω is finite will be presented in the next chapter by the use of dynamic pro-
gramming tools. However, the implication from the left to the right can be
shown easily. Let P̃ be a martingale measure. The martingale property for S̃
and ψ>n ·∆S̃n ≥ 0 leads to EP̃(ψ

>
n ·∆S̃n) = 0. Hence, ψ>n ·∆S̃n = 0 P̃–a.s. and

simultaneously ψ>n ·∆S̃n = 0 P–a.s., since P̃ and P are equivalent measures.

2.6 Complete and incomplete markets

The pricing formula (2.4) looks very clear, but there is one problem we can en-
counter. If there exist several different martingale measures, then we can have
several possible arbitrage-free prices for non-attainable contingent claims. To
deal with that problem we can make a distinction between complete and in-
complete markets.

The market is defined to be complete if every contingent claim is attain-
able, otherwise the market is said to be incomplete. It can be shown, that
for complete markets an existing martingale measure is unique (P consists
of one element P̃). Hence, each contingent claim possesses a fair price given
by (2.4). For all theoretical purposes, option pricing does not pose any prob-
lems in case of a complete market since the appropriate formula leads to the
unique fair price. Of course, it is not always a trivial task to give a strict price
V0 for some contingent claims, mainly because of computational difficulties.
Examples of complete markets are given by the Binomial model with one
risky asset (discrete-time) or the Black-Scholes model in continuous-time.

If one takes into account incomplete markets that better correspond to
real markets, then the no-arbitrage approach we outlined above can be still
exploited in the pricing of all contingent claims. If it is possible to replicate
a given contingent claim by some self-financing portfolio, then a unique fair
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price is obtained by (2.4), since for every P ∈ P a contingent claim can be
expressed as a martingale in terms of the replicating portfolio. Otherwise, if
we consider non-attainable contingent claims, then there exist several “fair”
prices defined by (2.4), since the incomplete market allows for several choices
of martingale measures. Having the availability of the set of martingale
measures, we can define new random variables1

V n := Bn ess sup
P̃∈P

EP̃

(
X

BN

|Fn
)
,

V n := Bn ess inf
P̃∈P

EP̃

(
X

BN

|Fn
)
.

It may be proved, that V 0 is the minimum initial capital necessary to replicate
a contingent claim. In the case of the seller of the option, V 0 suffices to
hedge the future payoffs with certainty. Such a risk-free action of the seller is
called superhedging. On the other hand, V 0 is the biggest risk-free price for
the buyer. Prices outside an interval [V 0, V 0] correspond to risk-free profits
either for the buyer or the seller. Each price inside the interval [V 0, V 0] is
arbitrage-free, so it is a suitable candidate for a fair price. However such
a price involves taking some risk on the buyer’s or seller’s part or both of
them. Now, the question is what price should be taken as a fair price of the
contingent claim? There is no unique answer; few approaches are possible.
One is based on utility functions and takes into consideration the preferences
of each investor. In another approach, the price is determined by the market
– a suitable martingale measure is chosen with respect to observations of the
prices for commonly traded options.

2.7 Conclusions

In this chapter we introduced the basics concerning mathematical modeling
of financial markets in discrete-time trading settings. All fundamental con-
cepts, problems, and ideas have been expressed in the form of definitions,
formulas, and theorems. The risk neutral valuation formula is the main con-
tribution of the chapter. The idea is that today’s stock price is the discounted
expected value of tomorrow’s stock price if absence of arbitrage is assumed.

1For any set of random variables {Xα : α ∈ A}, an essential supremum is defined to
be a random variable X (possibly with value ∞) such that X ≥ Xα a.s. for every α and
if Y ≥ Xα a.s. for every α, then Y ≥ X a.s. This random variable is unique up to null
sets and is denoted by ess supα Xα. Similarly, we define an essential infimum.
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However, it can be done only if we use theoretical probability measures in-
stead of the physical one. Such a probability measure, which is risk neutral
and equivalent to a given probability measure is called a martingale mea-
sure. We have explained and justified why that idea is applicable to realistic
situations. Finally, we had a glance at how the pricing problem becomes
more complicated if we consider a model of the incomplete market, which is
a better approximation of reality.
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Chapter 3

Theoretical Background

3.1 Introduction

In this chapter we introduce a Markovian model of the financial market.
After a short description of the model we propose an elegant way to choose
one preference price for each contingent claim in the case of an incomplete
market. It is done due to the concept of utilities. This fair price will be shown
to be consistent with the existing method that uses a martingale measure for
pricing attainable contingent claims. In connection to this, the Fundamental
Theorem of Asset Pricing will be proven; first, we will consider a one-period
model, which will prepare us before going into multi-period models.1 At
the end, we will analyze different ways for hedging of future payoffs by the
seller of the option. All these issues can be worked out by the use of Markov
Decision Processes theory.

3.2 Model Specification

We have been studying the market model from the first chapter with addi-
tional conditions. All economical assumptions remain the same. Now, let us
remind and precise all technical details.

Assumptions

• Trading takes place at times n = 0, . . . , N ,

• The bond price process evolves according to (2.1),

1The martingale measure construction presented in Section 3.4 is based on [4].

15



• The randomness in the model is given by a fixed probability space (Ω,F , P ),
where Ω is a finite sample space, F is a σ-field of subsets of Ω, and P
is a probability measure defined on F . Moreover, we assume that for
all ω ∈ Ω we have that P (ω) are strictly positive,

• Stock prices at time n are given by a K–dimensional stochastic process
Sn. Furthermore, we assume that the evolution of every risky asset
is modeled by a Markov chain, hence Sn follows a Markov chain on
(Ω,F , P ) with a finite state space S = S1 ∪ · · · ∪SN ⊂ (R+)K, where
Sn denotes a set of all possible values for Sn. Transition probabilities
are given by psq(n) := P (Sn+1 = q|Sn = s), s ∈ Sn, q ∈ Sn+1,

• Fn := σ(S0, . . . , Sn), n = 0, . . . , N ,

• There are no transaction costs,

• The market is arbitrage-free.

Proposition 3.1 For k = 1, . . . , K,

(i) if the Markov chain is homogeneous2 in time, the evolution of the stock
price process can be described in the following dynamical form

Skn+1 := ρk(Skn, Z
k
n),

where ρk : R+×R 7→ R+ is a measurable function and Zk
0 , . . . , Z

k
N−1 is

a sequence of independent identically distributed random variables.

(ii) the time inhomogeneous Markov chain Sn can be described in a dynam-
ical form as follows

Skn+1 := ρkn(S
k
n, Z

k
n),

where ρkn : R+×R 7→ R+ is a measurable function and Zk
0 , . . . , Z

k
N−1 is

a sequence of independent random variables.

The initial capital V0 = v and the strategy ψ determines the value of the
portfolio. From now on, we will stick to the notation V ψ

n (v) instead of Vn. If
we go back to the discounted portfolio value process, we can write (2.3) as
follows

Ṽ ψ
n (v) = Ṽ ψ

n−1(v) + ψ>n ·∆S̃n. (3.1)

2Here the homogeneity means that the description of the evolution of the Markov chain
is independent of time.

16



3.3 Option pricing – utility approach

One of the methods that one can use to option pricing is based on an optimal
solution to the portfolio optimization problem. The individual investor can
be characterized by a utility function that is dependent on the portfolio
value and the stock price. In portfolio theory, the utility function expresses
the preferences for economic entities with respect to the perceived risk and
the expected return.

For the following reasoning, the Markovian structure of the market and
additional assumptions on Ω are not necessary. The utility approach still
works in more general cases of financial markets, including the continuous-
time setting. Now, let us present a formal definition.

Definition 3.1 A function U : R × SN 7→ R such that w 7→ U(w, s) is
strictly concave and continuously differentiable with derivative U ′(w, s) and
U ′(−∞, s) > 0, U ′(+∞, s) ≤ 0 is defined to be the utility function.3

The investor aims at maximizing the expected utility of the terminal port-
folio value. Moreover, if there exists an optimal strategy ψ∗ such that the
supremum is attained, we can write

E
(
U(Ṽ ψ∗

N (v), SN)
)

= sup
ψ
E
(
U(Ṽ ψ

N (v), SN)
)
,

and the supremum equals the maximum. The right side of the equation is
called the maximal utility. Now, we explain how we can benefit from the
maximal utility when we consider the option pricing problem. Let us assume
that the contingent claim X is available for trading with a fair purchase price
π. Now we can suspect that the expected utility can increase or decrease if
the investor, that owns the initial capital v, decides to change the structure
of the portfolio at time 0 by investing into options or short-selling them.
Trying to answer whether π is a fair price for the contingent claim, we may
use the following justification. If π is a fair price for X, then such actions of
the investor can not increase his maximal utility. We know that the investor
follows the optimal strategy ψ∗ and he decides to divert an amount x ∈ R to
buy x/π shares of the option. Let us denote the discounted contingent claim
X/BN by X̃. The action of the investor can be described by the following
equation

Ṽ ψ∗

N (v − x) +
x

π
· X̃,

3The definition serves purposes in this and the next section. Usually, authors do not
assume strict concavity, also assumptions on the signs of the derivative can differ in liter-
ature.
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which equals

Ṽ ψ∗

N (v) + x

(
1

π
X̃ − 1

)
.

Thus the expected utility amounts to

u(ψ∗, x, π, v) = E

(
U(Ṽ ψ∗

N (v) + x

(
1

π
X̃ − 1

)
, SN)

)
,

in which the maximal utility is given by

sup
ψ
u(ψ, x, π, v) = u(ψ∗, 0, π, v).

A price π has a neutral effect on the maximal utility, i.e., ∂
∂x
u(ψ∗, x, π, v)|x=0 =

0. Let us explain the above in a more detailed way by using the indifference
argument. Namely, the option price π makes the investor indifferent, in
terms of the expected utility, between trading in the market with and with-
out the option. This fact can be expressed by equate the partial derivatives
to 0. Furthermore, u(ψ∗, x, π, v) is strictly concave in x. Hence, the expected
utility u(ψ∗, x, π, v) is indeed maximal for x = 0. Thus, π is a fair price,
because short-selling or purchasing the option do not imply higher profits of
the investor in view of his utility. We can derive

∂

∂x
u(ψ∗, x, π, v)

∣∣∣
x=0

= E

(
U ′(Ṽ ψ∗

N (v), SN) ·
(

1

π
X̃ − 1

))
,

and hence we get a direct formula for π, given by

π =
E
(
U ′(Ṽ ψ∗

N (v), SN) · X̃
)

E
(
U ′(Ṽ ψ∗

N (v), SN)
) = EPU (X̃).

In the next section we will show including all theoretical details how to
construct the martingale measure PU , which will also be a proof of the Fun-
damental Theorem of Asset Pricing. Finally, we can remark that for all
attainable contingent claims the utility approach to option pricing is consis-
tent with Formula (2.4), obtained due to replicating a future payoff by the
self-financing portfolio.

3.4 Martingale measure construction

3.4.1 The one-period model

We begin with the case N = 1. Let us define L as the smallest linear space
in RK such that P (∆S̃1 ∈ L) = 1. Now, Proposition 2.1 leads immediately
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to the reformulation of the no-arbitrage condition

For all ψ1 ∈ L\{0} : P (ψ>1 ·∆S̃1 < 0) > 0. (3.2)

Let us remind that
Ṽ ψ

1 (v) = v + ψ>1 ·∆S̃1.

We want to maximize the expected utility dependent on the terminal portfolio
value and the stock price

f(v, ψ1) := E
(
U(v + ψ>1 ·∆S̃1, S1)

)
,

that results in a definition of the maximal expected utility

F (v) := sup
ψ1∈RK

f(v, ψ1), v ∈ R.

Lemma 3.1

(i) (v, ψ1) 7→ f(v, ψ1) is continuous,

(ii) ψ1 7→ f(v, ψ1) attains the maximum on RK for each v ∈ R and the
maximum point ψ∗ := ψ∗(v) is unique,

(iii) v 7→ f(v, ψ1) is strictly concave for fixed ψ1,

(iv) F (v) is strictly concave in v.

Proof.
(i) This part is straightforward.
(ii) Let n ∈ N. At first,

1

n
(f(v, nψ1)− f(v, 0)) =

= E
(
D(n, ψ>1 ·∆S̃1, v, S1) · 1{ψ>1 ·∆S̃1>0}

)
+

+ E
(
D(n, ψ>1 ·∆S̃1, v, S1) · 1{ψ>1 ·∆S̃1<0}

)
,

in which

D(n,w, v, s) :=
1

n
· (U(v + nw, s)− U(v, s)).

Since U(·, s) is concave, we can apply Lemma A1 (see Appendix). Hence
D(n,w, v, s) is decreasing in n. Then we can denote

D(∞, w, v, s) := lim
n→∞

D(n,w, v, s).
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Thanks to the derivative’s properties of the utility function we get

D(∞, w, v, s) ≤ 0 for w > 0,

D(∞, w, v, s) < 0 for w < 0.

The use of the Monotone Convergence Theorem (Theorem A2 in Appendix)
leads to

lim
n→∞

1

n
(f(v, nψ1)− f(v, 0)) =

= E
(
D(∞, ψ>1 ·∆S̃1, v, S1) · 1{ψ>1 ·∆S̃1>0}

)
+

+ E
(
D(∞, ψ>1 ·∆S̃1, v, S1) · 1{ψ>1 ·∆S̃1<0}

)
.

Now, if Θ denotes the orthogonal projection on L, we know that

ψ>1 ·∆S̃1 = (Θψ1)
> ·∆S̃1.

It becomes apparent that we can restrict our attention to L. By (3.2) it is
clear that for ψ1 ∈ L\{0}

lim
n→∞

1

n
(f(v, nψ1)− f(v, 0)) < 0 a.s.

The above implies that

lim
n→∞

1

n
f(v, nψ1) = −∞,

for all ψ1 ∈ L\{0}. By a combination of the preceding with (i) we get the
existence of the maximum.
For the proof of uniqueness see the proof for (iv).
(iii) This part is obvious.
(iv) Let v, w ∈ R, and λ ∈ (0, 1). Further, let ψv, ψw ∈ L such that

V (v) = f(v, ψv),

V (w) = f(w,ψw).

We can consider v > w and v = w,ψv 6= ψw, that implies

P (v + ψ>v ·∆S̃1 6= w + ψ>w ·∆S̃1) > 0,

otherwise we have
(ψv − ψw)> ·∆S̃1 = v − w,

20



and in consequence a contradiction of the no-arbitrage condition or a con-
tradiction of the condition ψv − ψw 6= 0 for the cases that we consider,
respectively. The strict concavity of U(·, s) gives us

λ1F (v) + λ2F (w) = λ1f(v, ψv) + λ2f(w,ψw)

< f(λ1v + λ2w, λ1ψv + λ2ψw) ≤ F (λ1v + λ2w),

with λ1 ∈ (0, 1) and λ1 + λ2 = 1. If v = w, then we get a contradiction in
the form of V (v) < V (v). Hence we deduce that in this case it has to be that
ψv = ψw, and the proof is complete.

�

Lemma 3.2

(i) v 7→ f(v, ψ1) is differentiable with derivative

f ′(v, ψ1) = E
(
U ′(v + ψ1 ·∆S̃1, S1)

)
.

(ii) ψ1 7→ f(v, ψ1) is partially differentiable for v > 0 with partial derivatives

∂kf(v, ψ1) = E
(
U ′(v + ψ1 ·∆S̃1, S1) ·∆S̃k1

)
.

The proof for both cases is obvious since Ω is finite.

Theorem 3.1 F (v) is differentiable with derivative F ′(v) = f ′(v, ψ∗1), where
ψ∗1 = ψ∗1(v) is the unique maximum point of the function ψ1 7→ f(v, ψ1)

Proof.
The existence of the unique ψ∗1 is given by Lemma 3.1(ii) and we can write

F (v + h)− F (v) ≥ f(v + h, ψ∗1)− f(v, ψ∗1),

hence
f ′+(v, ψ∗1) ≤ F ′

+(v) ≤ F ′
−(v) ≤ f ′−(v, ψ∗1),

where F ′
±(v) and f ′±(v, ψ∗1) denote the right and left derivatives, respectively.

An application of Lemma 3.2(i) finishes the proof.
�

Theorem 3.2 For each v ∈ R and for k = 1, . . . , K,

E
(
U ′(v + ψ∗1

> ·∆S̃1, S1) ·∆S̃k1
)

= 0,

with ψ∗1 as in the preceding theorem.
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Proof.
By Lemma 3.2(ii) the function ψ1 7→ f(v, ψ1) is partially differentiable. It is
well known that all partial derivatives equal 0 if ψ∗1 is the maximum point.

�

Corollary 3.1 If U ′(v, s) is strictly positive for all x and s, or generally
speaking, if U ′(v + ψ∗1

> · ∆S̃1, S1) > 0 on Ω, then for every constant c 6= 0
the probability measure P̃ defined by dP̃ = c · U ′(v + ψ∗1

> · ∆S̃1, S1)dP is a
martingale measure.

3.4.2 The multi-period model

Now we study a general case for N ∈ N. To serve our purposes we introduce
the notion of a local arbitrage in the following definition.

Definition 3.2 The no-arbitrage condition holds locally if and only if for
every n = 1, . . . , N ,

P (ψ>n ·∆S̃n ≥ 0|Sn−1 = s) = 1 ⇒ P (ψ>n ·∆S̃n = 0|Sn−1 = s) = 1, ψn ∈ RK .

It can be shown that the no-arbitrage condition and the local no-arbitrage
condition are equivalent.

The discounted value of the portfolio at time n can be expressed again
due to Formula (2.3) as

Ṽ ψ
N (v) = Ṽ ψ

n (v) +
N∑

m=n+1

ψ>m ·∆S̃m.

Now let us define the expected utility and the maximal expected utility of the
terminal portfolio value given the stock price s and the discounted portfolio
value w at time n:

fn(w, s, ψ) := E

(
U(w +

N∑
m=n+1

ψ>m ·∆S̃m, SN)|Sn = s

)
,

Fn(w, s) := sup
ψ
fn(w, s, ψ).

(3.3)

Let us notice, that if s is replaced by a random variable Sn, then fn(w, Sn, ψ)
becomes a random variable, and in the definition of Fn we should put ess sup
instead of sup. Of course, in the case when Sn is given as a fixed s, ess sup
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reduces to an ordinary sup.
It is obvious that for all ψ,

fN(w, s, ψ) = FN(w, s) = U(w, s).

The situation is described by a Markov decision model with a finite horizonN
and the terminal reward given by the utility function. One can remark that fn
and Fn have the following interpretations – as a conditional expected reward
and a maximal conditional expected reward. In the following proposition we
formulate the general results for Markov Decision Processes.

Proposition 3.2 If for n = 0, . . . , N−1, we define a reward operator

Λψn+1
n g(w, s) := E

(
g(w + ψ>n+1 ·∆S̃n+1, Sn+1)|Sn = s

)
,

where g can be taken as

(w, s) 7→ fn+1(w, s, ψ)

or
(w, s) 7→ Fn+1(w, s),

then
fn(w, s, ψ) = Λψn+1

n fn+1(w, s, ψ) (3.4)

and
Fn(w, s) = sup

ψn+1

Λψn+1
n Fn+1(w, s). (3.5)

Proof.
Let us take fixed n. We start with a proof of (3.4):

Λψn+1
n fn+1(w, Sn, ψ) = E

(
fn+1(w + ψ>n+1 ·∆S̃n+1, Sn+1, ψ)|Sn

)
=

= E

(
E

(
U(w + ψ>n+1 ·∆S̃n+1 +

N∑
m=n+2

ψ>m ·∆S̃m, SN)|Sn+1

)
|Sn

)
=

= E

(
U(w +

N∑
m=n+1

ψ>m ·∆S̃m, SN)|Sn

)
= fn(w, Sn, ψ).

Taking Sn = s we obtain the first assertion.
We continue with a proof of (3.5).

sup
ψn+1

Λψn+1
n Fn+1(w, s) =
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= sup
ψn+1

E
(
Fn+1(w + ψ>n+1 ·∆S̃n+1, Sn+1)|Sn = s

)
=

= sup
ψn+1

E

(
ess sup

ψ
fn+1(w + ψ>n+1 ·∆S̃n+1, Sn+1, ψ)|Sn = s

)
=

(?) = sup
ψ

Λψn+1
n fn+1(w, s, ψ) =

= sup
ψ
fn(w, Sn, ψ) = Fn(w, s)

A full justification of equality (?) involves more technical computations and
detailed approach. We sketch only the intuition. First of all, you have to
realize that ψ = (ψ1, . . . , ψN), i.e., the policy ψ consists of decision rules ψn
that tell you what actions to take at each moment n. Therefore, an opti-
mal ψ can be obtained by maximizing each decision rule, or by maximizing
some decision rules and then maximizing with respect to the complete policy.
Thus, supψ fn = supψn+1

Λψn+1
n supψ fn+1. In fact, in the proof we do the other

way around. fn+1 depends directly on ψn+1, and then continues optimally.
Therefore, in that case, you can also do supψ fn = supψn+1

Λψn+1
n supψ fn+1,

because when g := Λψn+1
n fn+1, then supψ g only depends on ψn+2, ψn+3, etc.

�
In the Markov Decision Processes theory, Formula (3.4) is called the funda-
mental equation and Formula (3.5) is known as the optimality equation. The
reward operator can be expressed by the transition probabilities as follows

Λψn+1
n g(w, s) =

∑
q∈Sn+1

psq(n) · g(w + ψ>n+1 · (q̃ − s̃), q).

As a consequence, Λψn+1
n g(w, s) can be expressed by an ordinary expectation

and for fixed s we can apply the results of the previous section.

Lemma 3.3 Let g be as above, then for every n = 0, . . . , N−1,

(i) (w,ψn+1) 7→ Λψn+1
n g(w, s) is continuous,

(ii) ψn+1 7→ Λψn+1
n g(w, s) attains the maximum on RK for each w ∈ R and

the maximum point ψ∗n+1 := ψ∗n+1(w, s) is unique,

(iii) G(w, s) := maxψn+1 Λψn+1
n g(w, s) is strictly concave in w,

(iv) Furthermore, w 7→ Fn(w, s) is differentiable with derivative F ′
n(w, s) for

n = 0, . . . , N , strictly concave, and F ′
N(−∞, s) > 0, F ′

N(∞, s) ≤ 0.
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Proof.
• First we prove the theorem for g = fn.
(i) Continuity follows from the definition of fn.
(ii) fn(·, s, ψ) is strictly concave, differentiable (see the proof of Lemma
3.2(i)), with f ′n(−∞, s, ψ) > 0 and f ′n(∞, s, ψ) ≤ 0. We use (3.4), and from
now on we can follow the proof of Lemma 3.1(ii) and (iv) with appropriate
modifications.
(iii) This part is obvious.
(iv) Differentiability is given by analogy to Theorem 3.1 We will show that
Fn(·, s) is strictly concave for each n using backward induction. We know that
FN = U , hence we get strict concavity and F ′

n(−∞, s) > 0, F ′
n(∞, s) ≤ 0.

Now by using (3.5) we have that every Fn is strictly concave and F ′
n(−∞, s) >

0, F ′
n(∞, s) ≤ 0.

• Let g = Fn
(i) It follows straightforwardly from the definition.
(ii) Thanks to (iv), this part is proved as Lemma 3.1 (ii) and (iv).
(iii)We can exploit the proof of Lemma 3.1 (iv).

�

Let us summarize the main conclusions resulted from the theorem.

Corollary 3.2 There exists a unique policy ψ∗ = (ψ∗n) := (ψ∗n(w, s)) such
that for n = 0, . . . , N−1:

Λ
ψ∗n+1
n Fn+1(w, s) = max

ψn+1

Λψn+1
n Fn+1(w, s) = Fn(w, s),

Fn(w, s) = fn(w, s, ψ
∗).

Lemma 3.4 Let v ∈ R and ψ∗ be the optimal policy of Corollary 3.2. Then

F ′
0(v) = E

(
U ′(Ṽ ψ∗

N (v), SN)
)
.

Proof.
We want to prove by induction that

F ′
0(v) = E

(
F ′
n(Ṽ

ψ∗

n (v), Sn)
)
.

Then, in the case n = N , we will obtain the result.
• n = 1
We have

F0(v) = max
ψ1

E
(
F1(v + ψ>1 ·∆S̃1, S1)

)
,
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and the maximum is attained in ψ∗1 := ψ∗1(v, s0). By Lemma 3.2 (i) and
Theorem 3.1 we get

F ′
0(v) = f ′0(v, ψ

∗
1) = E

(
F ′

1(v + ψ∗>1 ·∆S̃1, S1)
)

= E
(
F ′

1(Ṽ
ψ∗

1 (v), S1)
)
.

Thus, the first induction step is shown to be valid. Note, that for N = 1 the
result of the theorem holds. By induction with respect to n, we continue the
proof for N > 1.
• n− 1 ⇒ n
Let us take fixed s ∈ Sn, then

Fn−1(w, s) = max
ψn

E
(
Fn(w + ψ>n ·∆S̃n, Sn)|Sn−1 = s

)
,

with the maximum point ψ∗n−1 := ψ∗n−1(v, s). As above we get

F ′
n−1(w, s) = E

(
F ′
n(w + ψ∗>n ·∆S̃n, Sn)|Sn−1 = s

)
.

By (3.1), we have Ṽ ψ∗
n (v) = Ṽ ψ∗

n−1(v) + ψ∗>n ·∆S̃n, and

F ′
n−1(Ṽ

ψ∗

n−1(v), Sn−1) =

= E
(
F ′
n(Ṽ

ψ∗

n−1(v) + ψ∗>n ·∆S̃n, Sn)|Sn−1

)
=

= E
(
F ′
n(Ṽ

ψ∗

n (v), Sn)|Sn−1

)
. (3.6)

Now, by assumption for n− 1, we obtain

F ′
0(v) = E

(
F ′
n(Ṽ

ψ∗

n−1(v), Sn−1

)
=

E
(
E
(
F ′
n(Ṽ

ψ∗

n (v), Sn)|Sn−1

))
= E

(
F ′
n(Ṽ

ψ∗

n (v), Sn)
)
.

�

Theorem 3.3 Let U ′ be positive, or more generally, U ′(Ṽ ψ∗

N (v), SN) be pos-
itive, in which ψ∗ is the optimal policy of Corollary 3.2 and v ∈ R. Let the
process Zn be defined as follows:

Zn := F ′
n(Ṽ

ψ∗

n (v), Sn), n = 0, . . . , N.

In particular,
Z0 = V ′

0(v),

ZN = U ′(Ṽ ψ∗

N (v), SN).

Then
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(i) a martingale measure PU is obtained on Ω by

PU({ω}) =
ZN(ω)

Z0

P({ω}),

(ii) Zn/Z0 is a martingale under P and is called the density process of
dPU/dP,

(iii) the following holds

EPU (ρ(I1, . . . , SN)|Fn−1) =
1

Zn−1

E (ρ(I1, . . . , SN) · Zn|Fn−1) ,

for any function ρ.

Proof.
(ii) See the proof of Lemma 3.3, Formula (3.6).
(iii) It can be obtained as a result of the following proposition, namely:
(?) Let P and Q be probabilistic measures on (Ω,F), such that there exists
a density dQ/dP = Z > 0. Let G ⊂ F and X be a Q–integrable random
variable. Then,

EQ(X|G) =
EP (XZ|G)

EP (Z|G)
.

For a proof of the proposition we need to show, that for some A ∈ G the
following holds: ∫

A

XZdP =

∫
A

EQ(X|G)EP (Z|G)dP.

We can derive∫
A

XZdP =

∫
A

XdQ =

∫
A

EQ(X|G)dQ =

∫
A

EQ(X|G)ZdP =

=

∫
A

EP (EQ(X|G)Z|G)dP =

∫
A

EQ(X|G)EP (Z|G)dP.

Now, the assertion of the theorem is obtained by proposition (?) applied to
P := P, Q := PU , and Z = Zn/Z0.
(i) Lemma 3.4 and the fact that U ′ is positive lead to the conclusion that
PU is a probability measure equivalent to P. We get as in Theorem 3.2 that
for k = 1, . . . , K,

E
(
F ′
n(w + ψ∗>n ·∆S̃n, Sn) ·∆S̃kn|Sn−1 = s

)
= 0, (3.7)
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since ψ∗ is the unique maximum point of the function

ψn 7→ E
(
F ′
n(w + ψ>n ·∆S̃kn, Sn) ·∆S̃kn|Sn−1 = s

)
.

From (3.7) we have as in the proof of (3.6), that

E
(
Zn ·∆S̃kn|Fn−1

)
= 0, k = 1, . . . , K,

and finally as a result of (iii) we obtain

EPU

(
∆S̃kn|Fn−1

)
= 0, k = 1, . . . , K.

�
The theorem presented above proves The Fundamental Theorem of Asset
Pricing. We assumed that the market was arbitrage-free and step by step we
showed how to produce a martingale measure.

3.5 Hedging

Hedging is a strategy designed to reduce or cancel out the risk related to
an investment. The seller of the option tries to minimize exposure to an
unwanted risk appearing when the value of the payoff at expiration time N is
positive. Then, he is obliged to pay money to the buyer. Of course, in the case
of a complete market there exists only one fair price for a given contingent
claim and the situation is apparent; the seller is capable of covering the future
payoff completely by investment in the replicating portfolio using money
received for the selling of the contract. The problem arises when we go into
incomplete markets. Superhedging, defined to be a portfolio strategy such
that it generates a payoff at least as high as that of the given contingent
claim, eliminates the risk totally. However, very often it requires too much
initial capital. If one decides to invest in hedging a portfolio with less money
than necessary for superhedging, then the future financial commitment given
by a contingent claim may not be covered completely. In such a situation we
talk about the shortfall risk.

3.5.1 Superhedging

In order to formulate a mathematical background, we start with a given
contingent claim X. We want to derive the initial value v∗ defined as follows

v∗ := inf{v ∈ R : there exists strategy ψ such that V ψ
N (v) ≥ X a.s.}.
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Thus v∗ is the smallest amount of money that allows for superhedging X
by investment in some self-financing portfolio. We stated that v∗ equals V 0

(see the previous chapter for a definition). Let us recall the notation X̃ for
a discounted contingent claim and present the following theorem.

Theorem 3.4
v∗ = sup

P̃∈P
EP̃(X̃).

Proof.
Here we carry out the proof only for the case N = 1.
The problem can be expressed as follows,

v∗ = inf{v ∈ R : ∃ψ1 ∈ RK : v + ψ>1 ·∆S̃1 ≥ X̃ a.s.}.

Since Ω is finite, we can use linear programming.
Let ]Ω = p and

x :=


v
ψ1

1
...
ψK1

 , c :=


1
0
...
0

 ∈ RK+1,

A :=

1 ∆S̃1
1(ω1) · · · ∆S̃K1 (ω1)

...
...

. . .
...

1 ∆S̃1
1(ωp) · · · ∆S̃K1 (ωp)

 , b :=

X̃(ω1)
...

X̃(ωp)

 .
The primal problem can now be formulated as

minimize c>x

subject to Ax ≥ b.

The equivalent dual problem is

maximize b>y

subject to A>y ≥ c, y ≥ 0.

Now, taking y := y(ω) we can identify

Y := {y : A>y = c, y > 0, ω ∈ Ω}

with a set of martingale measures. Obviously, {x : Ax ≥ b} is not empty. Let
Ȳ be the closure of Y . Then, Y and Ȳ are not empty since the no-arbitrage
condition holds and we can apply the Fundamental Theorem 2.1. Now, by
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the use of the duality theorem of linear programming and the fact that Y is
dense in Ȳ we obtain as a basis solution

v∗ = min
Ax≥b

c>x = max
y∈Ȳ

p∑
i=1

y(ωi)X̃(ωi) = sup
y∈Y

p∑
i=1

y(ωi)X̃(ωi) = sup
y∈Y

Ey(X̃)

�

3.5.2 Shortfall risk minimization

The shortfall risk and the shortfall probability are defined by the following
expressions, respectively,

E
(
(X − V ψ

N (v))+
)
,

P
(
(X − V ψ

N (v)) > 0
)
.

Analogously, we can consider the discounted shortfall risk.

Definition 3.3 The loss function is defined to be a convex increasing con-
tinuously differentiable function l : R+ 7→ R+ with l(0) = 0.

The loss function describes the investor’s attitude towards the shortfall. For
a given contingent claim X such that X ≥ 0 a.s., and initial capital v we
want to minimize the loss associated with the discounted shortfall risk. In
general, we aim to find

inf
ψ
E
(
l
(
(X̃ − Ṽ ψ

N (v))+
))
. (3.8)

Let us briefly discuss a few remarks on the shortfall risk minimization ap-
proach. First note, that if l is regarded as l(x) = x or l(x) = 1{x>0}, then
problem (3.8) corresponds to the minimization of the discounted shortfall
risk or the shortfall probability. Furthermore, superhedging of the contin-
gent claim fits also to this framework. We can write

v∗ = inf

{
v : inf

ψ
E
(
l
(
(X̃ − Ṽ ψ

N (v))+
))

= 0

}
,

since the condition

inf
ψ
E
(
l
(
(X̃ − Ṽ ψ

N (v))+
))

= 0,

implies that there exists at least one strategy ψ such that V ψ
N (v) ≥ X. Fi-

nally, let us mention that the minimization of the loss function can be treated
as a particular case of the utility maximization problem.
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3.5.3 Dynamic Programming

Problem (3.8) can be solved by using dynamic programming. For the dis-
counted value of the portfolio w and the stock price s given at every time n
we have the following backward algorithm:

FN(w, s) := l
(
(h̃(s)− w)+

)
,

Fn(w, s) := inf
ψn+1

Λψn+1
n Fn+1(w, s),

(3.9)

with

Λψn+1
n Fn+1(w, s) := E

(
Fn+1(w + ψ>n+1 ·∆S̃n+1, Sn+1)|Sn = s

)
,

and

h̃(s) :=
h(s)

BN

, s ∈ SN .

To justify the validity of (3.9), let us refer to the utility maximization. Some
part of the theory presented in Section 3.4 may be adapted to the loss min-
imization problem. If we change the problem formulation and some defini-
tions, in consequence it will turn out that a modified Proposition 3.2 works
in the case of (3.8). Similarly as in the previous section, the reward operator
can be expressed by

Λψn+1
n Fn+1(w, s) =

∑
q∈Sn+1

psq(n) · Fn+1(w + ψ>n+1 · (q̃ − s̃), q), s ∈ Sn.

The last step of the dynamic programming algorithm leads to the solution
of the minimization problem, namely

inf
ψ
E
(
l
(
(X̃ − Ṽ ψ

N (v))+
))

= F0(v, s0).

3.6 Conclusions

This chapter reached the theoretical solutions for the option pricing and
hedging problems. It was shown, how dynamic programming can be exploited
at the specific setup of the financial market. Let us notice, that in the case
of the utility function such as it was defined, the maximum point can be
easily determined (with using a derivative), while studying the shortfall risk
minimization is more complicated. To clarify the point, there does not exist
a unique and explicit way that says how to determine the infimum in the
iteration steps. Depending on the regarded stock price process and a loss
function, every specific model needs a distinct treatment.
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Chapter 4

Models with restricted
information

4.1 Introduction

Although the main ideas of the previous chapter are correct, there is a techni-
cal problem for applicability to real life situations. We imposed a Markovian
structure of the market. So far, we assumed that all information is given;
but we can take into account Markovian models with incomplete or partial
information. Some parameters may be hidden, e.g., the transition probabil-
ities are not given. At first view, it seems that we are not able to carry out
computations using the introduced algorithm. However, it is still possible to
improve the presented methods in such a way, that they deal with incom-
plete information. In this chapter we look at some specific cases of market
models. First, based on the multinomial model example, we build up the the-
ory working on the principle that the stock price process is a homogeneous
Markov chain. Later, we carry on with an example of a continuous-time
market model. In fact, that model can be transformed and considered as
a discrete-time one. The chapter ends with solutions to the pricing and
hedging problems for the latter model, both with complete and incomplete
information; we extend the methods obtained under the assumption, that Sn
possesses a Markovian structure.
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4.2 Examples of Markovian market models

4.2.1 Multinomial model

First, let us assume that Ω := {ω1, . . . , ωM}. Moreover, we set rn = r for
every n. The evolution of the stock price process is described by

Skn+1 = SknZ
k
n, k = 1, . . . , K,

in which Zk
1 , . . . , Z

k
n is a sequence of independent and identically distributed

random variables taking values on {z1
k, . . . , z

M
k } for ω1, . . . , ωM , respectively.

The assumption

for k = 1, . . . , K : min{z1
k, . . . , z

M
k } ≤ (1 + r) ≤ max{z1

k, . . . , z
M
k },

makes the market arbitrage-free. If we denote

Zn := (Z1
n, . . . , Z

K
n ),

and
zm := (zm1 , . . . , z

m
K ),

then we write
pm := P (ωm) = P (Zn = zm).

Now, the transition probabilities can be obtained as follows

psqm(n) = P (Sn+1 = qm|Sn = s) = pm,

with
qm := (s1zm1 , . . . , s

KzmK ) ∈ Sn+1, s ∈ Sn.

The transition probabilities do not depend on n. Thus, the multinomial
model is an example in which the Markov chain Sn is homogeneous (see
also Proposition 3.1). If the pm are known, then dynamic programming
works correctly. Otherwise, we need to improve the method. The Bayesian
estimation can be used for our purposes.

Before going into the details we briefly sketch the intuition concerning
unknown transition probabilities. In real life, some economic factors affect
the stock prices and very often they may be not observable. This situation
can impinge on transition probabilities. Later, we will explore this idea more
precisely.
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Bayesian estimation

To formalize the framework we begin with the following definitions.

Definition 4.1 A random vector (X1, . . . , XM) is multinomially distrib-
uted if the probability function is given by

P (X1 = x1, . . . , XM = xM) =

{
n!

x1!···xM !
px

1

1 · · · pxM

M , when
∑M

m=1 xm = n,

0, otherwise,

for non-negative integers x1, . . . , xK and a probability vector (p1, . . . , pM).

We can give an interpretation of the multinomial distribution. Imagine there
are n independent trials, each trial results in one of the fixed finite number M
of possible outcomes with probabilities p1, . . . , pM . We use a random variable
Xm to indicate the number of times outcome number m was observed over
the n trials.

Definition 4.2 A Dirichlet distribution of order M is given by a proba-
bility density function f defined for a vector p = (p1, . . . , pM),

∑M
m=1 pm = 1

such that

f(p) ∝
M∏
m=1

pαm−1
m ,

where α = (α1, . . . , αM) is a parameter vector with αm > 0.

Corollary 4.1 Let a random vector (X1, . . . , XM) possess a Dirichlet distri-
bution with parameter α. Then, we have

E(Xm) =
αm
|α|

,

with |α| :=
∑M

m=1 αm.

Proposition 4.1 Consider a multinomially distributed random vector β|p =
(β1, . . . , βM), where βm is the number of occurrences of zm in a sample of n
points from the discrete distribution of Z on {z1, . . . , zM} defined by p, such
that the a-priori distribution of p is given as a Dirichlet distribution of order
M with parameter α = (α1, . . . , αm). Then the a-posteriori distribution p|β
for β = (β1, . . . , βM) has a Dirichlet distribution of order M with parameter
α+ β = (α1 + β1, . . . , αM + βM).
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Proof
Let us denote
- f(p) – the prior density of p,
- f(p|β) – the posterior density after n observations,
- γ – the probability function of β|p.
From the Bayes Theorem we obtain

f(p|β) =
γ(β|p)f(p)∫

RM γ(β|p)f(p)dp

∝
M∏
m=1

pβm
m

M∏
m=1

pαm−1
m =

M∏
m=1

pαm+βm−1
m .

�
We showed that the Dirichlet distribution is a conjugate to the multino-
mial distribution. This result guarantees, that if we only know the prior
distribution of p, in the next steps we can update the parameters using the
information that becomes successively available. In particular, let the prior
density be given by

f0(p) ∝
M∏
m=1

pα
m
0 −1
m ,

where α0 = (α1
0, . . . , α

M
0 ) is a parameter. Then the posterior density function

at time n is as follows

fn(p) ∝
M∏
m=1

pα
m
n −1
m ,

with

αmn = αm0 + βmn with βmn =
n−1∑
j=0

1{Zj=zm}.

Now, in the dynamic programming algorithm we replace an unknown pm by
αm

n

|αn| at nth step.

Corollary 4.2 Taking into consideration Proposition 3.1, we note as the
obvious conclusion, that the Bayesian estimation presented above deals with
every homogeneous Markov chain Sn with incomplete information given in
the form of unknown transition probabilities.
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4.2.2 Continuous stock price process driven by a ho-
mogeneous Markov chain

We assume that the interest rate is constant and equals r. The stock price
dynamics evolve according to continuous-time processes described by the set
of equations as follows

dSkt = Skt (ak(Xt)dt+
d∑
j=1

σkj(Xt)dW
j
t ), S

k
0 ∈ R+, k = 1, . . . , K,

where:
– Xt is a homogeneous and finite space Markov chain with time step 1, the
state space {x1, . . . xJ} and the given transition probability matrix P =
{pij}i,j=1,...,J ,
– ak(·) : R 7→ R , σk(·) : R 7→ Rd for k = 1, . . . , K, are proper functions
representing appreciation rates and volatilities, respectively,
– Wt = (W 1

t , . . . ,W
d
t ) is a d-dimensional standard Brownian motion1 inde-

pendent of Xt,
– Xt may be not observable.
Thus, the dynamics of St at moment n at which we can observe stock prices
can be written as

Skn+1 = Skne
ak(Xn)− 1

2

Pd
j=1 σ

2
kj(Xn)+

Pd
j=1 σkj(Xn)(W j

n+1−W
j
n).

The above result can be derived by the multi-dimensional Ito’s formula. Let
us rewrite the above

Skn+1 = SknZ
k
n, (4.1)

where, conditionally on Xn, Z
k
n are log-normally distributed, which means:

lnZk
n ∼ N

(
ak(Xn)−

1

2

d∑
j=1

σ2
kj(Xn),

d∑
j=1

σ2
kj(Xn)

)
=: N (µk(Xn),Σk(Xn)).

We remark, that Zk
1 , . . . , Z

k
N is a sequence of independent random variables,

if only X1, . . . , Xn are independent. It is an immediate result that follows
from the definition of the multi-dimensional Brownian motion, the fact that
increments of Brownian motion are independent, and Theorem A3 (see Ap-
pendix). Furthermore, one may notice obviously, that Sn is a Markov process
then.

1The definition says that Wi are independent one-dimensional Brownian motions.
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Reduction to a discrete-time model

Let us present, how to adjust the above model to the framework introduced in
the previous chapter. In the first place, the procedure requires transferring
the continuous-time model into a discrete counterpart. To discretize the
process Zk

n, we can take a finite partition of R+ and for each interval choose
a representative element. Let us expand on that idea. For k = 1, . . . , K, we
consider {Am}m=1,...,M such that⋃

m

Am = R+, and Am ∩ Am′ = ∅ for m 6= m′.

Now, for every m, one should choose2

zkm ∈ Am.

Discretized random variables Zk
n take the values in the sets {zk1 , . . . , zkM}, for

k = 1, . . . , K. If we declare

Zn := (Z1
n, . . . , Z

K
n ),

zm := (zm1 , . . . , z
m
K ),

then we can define

pm(Xn) := P (Zn = zm|Xn) = P (lnZn = ln zm|Xn) =

∫
Am

fn(z)dz, (4.2)

with
Am = Am × . . .× Am︸ ︷︷ ︸

M

,

and the joint density function fn, which is conditional upon Xn. The follow-
ing proposition clarifies all details.

Proposition 4.2 For every n = 1, . . . , N , the random vector Zn is, condi-
tionally on Xn, K-variate log-normally distributed, i.e.,

lnZn = (lnZ1
n, . . . , lnZ

K
n ) ∼ NK(µ(Xn),Σ(Xn)),

with

µ(Xn) :=

µ1(Xn)
...

µK(Xn)

 , Σ(Xn) :=

Σ1,1(Xn) · · · Σ1,K(Xn)
...

. . .
...

ΣK,1(Xn) · · · ΣK,K(Xn)

 ,
where Σk,l(Xn) =

∑d
j=1 σkjσlj(Xn). Moreover, the foregoing distribution de-

termines the density function fn uniquely.

2This selection should take into consideration a validity of the no-arbitrage condition.
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Proof.
With using the introduced notation we can write

lnZk
n = µk(Xn) +

d∑
j=1

σkj(Xn)∆W
j
n+1.

Since ∆W j
n+1 are independent for j = 1, . . . , d, we know that the joint prob-

ability distribution of (∆W 1
n , . . . ,∆W

d
n) is a d-variate normal one. Thus, we

can apply Lemma A4 (see Appendix) and the following holds

a>·∆W j
n+1 is normally distributed for every a ∈ Rd. (4.3)

Now, let us take b ∈ RK . Again, according to Lemma A4 it suffices to show
that

b>· lnZn is normally distributed,

Continuing the proof,

b>· lnZn =
K∑
k=1

bk lnZk
n =

=
K∑
k=1

bk ·

(
µk(Xn) +

d∑
j=1

σkj(Xn)∆W
j
n+1

)
,

and now (4.3) implies that b>· lnZn is normally distributed. Finally, let us
determine the covariance matrix Σ(Xn).

Σk,l(Xn) = Cov(lnZk
n, lnZ

l
n) = E(lnZk

n lnZ l
n)− E(lnZk

n)E(lnZ l
n).

We derive E(lnZk
n lnZ l

n):

E

((
µk(Xn) +

d∑
j=1

σkj(Xn)∆W
j
n+1

)(
µl(Xn) +

d∑
j=1

σlj(Xn)∆W
j
n+1

))
=

= µk(Xn)µl(Xn) +
d∑
j=1

σkjσlj(Xn)E
(
(∆W j

n+1)
2
)

=

= µk(Xn)µl(Xn) +
d∑
j=1

σkjσlj(Xn).

Hence, the covariance equals
∑d

j=1 σkjσlj(Xn).
�

The proposition provides, that the probabilities (4.2) are defined correctly3.
Furthermore, we point out, that Sn does not remain a Markov chain.

3Usually, marginal distributions do not determine a joint distribution.
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Dynamic programming

Process Sn is conditionally distributed, its values depend on Xn. If we define
a new process In := (Sn, Xn), then it turns out that In becomes a homoge-
neous Markov chain. This fact results from the following computations:

First, we denote
sn+1

sn
:=

(
s1
n+1

s1
n

, . . . ,
sKn+1

sKn

)
,

and assume that
sn+1

sn
= zm.

Then,
P (In+1 = in+1|In = in, . . . , I0 = i0) =

=
P (In+1 = in+1, In = in, . . . , I0 = i0)

P (In = in, . . . , I0 = i0)
=

=
P
(
(Sn+1 = sn+1, Xn+1 = xn+1), (Sn = sn, Xn = xn), . . . , (S0 = s0, X0 = x0)

)
P
(
(Sn = sn, Xn = xn), . . . , (S0 = s0, X0 = x0)

) =

=
P (SnZn = sn+1, Sn = sn, . . . , S0 = s0, Xn+1 = xn+1, Xn = xn, . . . , X0 = x0)

P (Sn = sn, . . . , S0 = s0, Xn = xn, . . . , X0 = x0)
=

=
P (Zn = sn+1

sn
, Sn = sn, . . . , S0 = s0|Xn+1 = xn+1, Xn = xn, . . . , X0 = x0)

P (Sn = sn, . . . , S0 = s0|Xn = xn, . . . , X0 = x0)

·P (Xn+1 = xn+1, Xn = xn, . . . , X0 = x0)

P (Xn = xn, . . . , X0 = x0)
= . . .

Let us notice, that if one knows values of X1, . . . , Xn+1, then it implies an
independence of random variables Z1, . . . , ZN . In combination with Formula
(4.1), we can easily conclude that Zn+1 is independent of S0, . . . , Sn given
Xn+1 = xn+1, . . . , X1 = x1. Hence, we carry on with the computations as
follows

. . . =
P (Sn = sn, . . . , S0 = s0|Xn+1 = xn+1, Xn = xn, . . . , X0 = x0)

P (Sn = sn, . . . , S0 = s0|Xn = xn, . . . , X0 = x0)

·P (Zn = zm|Xn+1 = xn+1, Xn = xn, . . . , X0 = x0)

·P (Xn+1 = xn+1|Xn = xn, . . . , X0 = x0) =

=
P (Sn = sn, . . . , S0 = s0|Xn = xn, . . . , X0 = x0)

P (Sn = sn, . . . , S0 = s0|Xn = xn, . . . , X0 = x0)
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·P (Zn = zm|Xn+1 = xn+1)P (Xn+1 = xn+1|Xn = xn) = . . .

Let xn+1 = xj, xn = xi. Then, the above equality can be written as

. . . = pm(xj)pij.

By a similar argument we have that

P (In+1 = in+1|In = in) = pm(xj)pij.

The transition probabilities pm(xj)pij do not depend on n, hence we get that
In is a homogeneous Markov chain.

Now, let us refer to dynamic programming. At n we have additional
information about the market, namely Xn = x. If we redefine the utility
functions in (3.3) and the reward operator as follows

fn(w, (s, x), ψ) := E

(
U(w +

N∑
m=n+1

ψ>m ·∆S̃m, SN)|Sn = s,Xn = x

)
,

Fn(w, (s, x)) := sup
ψ
fn(w, (s, x), ψ),

Λψn+1
n g(w, (s, x)) := E

(
g(w + ψ>n+1 ·∆S̃n+1, (Sn+1, Xn+1))|Sn = s,Xn = x

)
,

and take σ-fields Fn := σ(I0, . . . , In) , n = 0, . . . , N , then all results of Chap-
ter 3 hold. Since the utility function and the loss function depend only on
SN , we can express the reward operator by using transition probabilities in
the following way

ΛψN

N−1FN(w, s) =
M∑
m=1

pm(x)FN(w + ψ>n+1 · (q̃m − s̃), (qm, xj)),

with
qm := (s1zm1 , . . . , s

KzmK ) ∈ SN , s ∈ SN−1,

and for n = 0, . . . , N − 2, as

Λψn+1
n Fn+1(w, s) =

J∑
j=1

M∑
m=1

pxjpm(x)Fn+1(w+ψ>n+1 · (q̃m− s̃), (qm, xj)), (4.4)

with
pxj := P (Xn+1 = xj|Xn = x),

and
qm := (s1zm1 , . . . , s

KzmK ) ∈ Sn+1, s ∈ Sn.
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Bayesian dynamic programming

If the process Xn is not observable, then we can estimate its value from the
past and current observations of stock prices. One may repeat the procedure
given by the dynamic programming algorithm, however it is necessary to
replace some expressions in the reward operator (4.4) as follows

• We do not observe Xn given by x, thus instead of the values pm(x)
we take E(pm(Xn)|FS

n ), with FS
n := σ(S0, . . . , Sn). Let us express the

above expectation into a different form, namely

E(pm(Xn)|FS
n ) = E(

J∑
i=1

pm(xi)1{Xn=xi}|FS
n ) =

=
J∑
i=1

pm(xi)E(1{Xn=xi}|FS
n ) =

J∑
i=1

pm(xi)P (Xn = xi|FS
n ).

If one denotes
Πi
n := P (Xn = xi|FS

n ),

then

E(pm(Xn)|FS
n ) =

J∑
i=1

pm(xi)Π
i
n.

• Xn is replaced by a random vector Πn := (Π1
n, . . . ,Π

J
n). One can re-

mark, that Πn forms probability vectors. To determine such vectors, it
suffices to specify J − 1 of its components.

• Instead of the transition probabilities pij for the process Xn, we take
into account transition probabilities pπn−1πn for Πn, where πn−1, πn are
given values of Πn−1 and Πn, respectively. The following proposition
and corollary clarify how to get a suitable formula expressing pπn−1πn .

Proposition 4.3 (Recursive Bayes’ formula) Let us define

πjn(m) := P (Xn = xj|Πn−1 = πn−1, Zn−1 = zm),

for m = 1, . . . ,M, j = 1, . . . , J . Then

πjn(m) =

∑J
i=1 π

i
n−1pijpm(xi)∑J

i=1 π
i
n−1pm(xi)

.
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Proof.
πjn(m) = P (Xn = xj|Πn−1 = πn−1, Zn−1 = zm) =

=
P (Xn = xj,Πn−1 = πn−1, Zn−1 = zm)

P (Πn−1 = πn−1, Zn−1 = zm)
=

=

∑J
i=1 π

i
n−1P (Xn = xj, Xn−1 = xi, Zn−1 = zm)∑J

i,l=1 π
i
n−1P (Xn = xl, Xn−1 = xi, Zn−1 = zm)

=

=

∑J
i=1 π

i
n−1P (Xn = xj, Zn−1 = zm|Xn−1 = xi)∑J

i,l=1 π
i
n−1P (Xn = xl, Zn−1 = zm|Xn−1 = xi)

=

=

∑J
i=1 π

i
n−1P (Xn = xj|Xn−1 = xi)P (Zn−1 = zm|Xn−1 = xi)∑J

i,l=1 π
i
n−1P (Xn = xl|Xn−1 = xi)P (Zn−1 = zm|Xn−1 = xi)

=

=

∑J
i=1 π

i
n−1pijpm(xi)∑J

i,l=1 π
i
n−1pilpm(xi)

=

∑J
i=1 π

i
n−1pijpm(xi)∑J

i=1 π
i
n−1pm(xi)

.

�

Corollary 4.3 The only possible transitions at time n for the process Πn are
from πn−1 to πn(m) = (π1

n(m), . . . , πJn(m)), m = 1, . . . ,M , with transition
probabilities equal

J∑
i=1

πin−1pm(xi).

Proof. We are at the moment n, and we want to specify possible values of Πn

given Πn−1 = πn−1 and the proper transition probabilities . Let us note, that
all history up to n is known, except the process Xn, which is not observable.
Values of Πn are determined by observations of the stock price process Sn,
hence, by the value of Zn−1 (since Zn−1 = Sn/Sn−1). Now, realize that Πn

takes on M possible values, as we stated in the assertion of the corollary,
with the transition probabilities as follows

P (Zn−1 = zm|Πn−1 = πn−1) =
J∑
i=1

πin−1pm(xi).

�
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4.3 Conclusions

The above examples emphasize very wide applications of the model that has
been introduced in Chapter 3, and techniques exploiting dynamic program-
ming to the portfolio optimization. First of all, the discrete-time models
have their own value and right of existence, in particular, in connection with
a huge computational computer power. The latter example shows, that the
discrete-time models can be viewed as approximations to the continuous-
time models. Moreover, if information concerning the stock price evolution
is incomplete, in the meaning of hidden economic factors, then the Bayesian
estimation makes dynamic programming still valid in the case when we con-
sider market models described by a homogeneous Markov chain.
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Chapter 5

Conclusions

Financial markets can be modeled by using two alternatives; either by using
continuous-time models or discrete-time models. In this thesis we have con-
sidered the discrete-time setting. Moreover, we have assumed the underlying
asset price process to take only a finite number of values. Such a family of
discrete-time models is called tree models. The tree models are very powerful
and play an important role in the sense that they are easily implementable.
Of course, for larger time horizons the number of possibilities increases ex-
ponentially, leading to limits in the applicability of dynamic programming.
In general, the problem is called the curse of dimensionality. Calculations
become very time consuming or even impossible. However, there are some
natural procedures for recombination and simplification of a tree. As a con-
sequence, for more complex cases there exist approximation methods that
allow to carry out computations at reasonable computer workloads. The
need of research for tree models is also justified by the fact, that they ap-
proximate continuous-time models. For example, with suitable re-scaling of
time and choices of the parameters the binomial model converges to the basic
Black-Scholes model.

The discrete-time models describing the complete market are the most
basic and easily solvable models. Under the no-arbitrage assumption, option
pricing and hedging are reduced to one problem, namely, one needs to de-
termine the unique martingale measure. This is done by finding the unique
solution to the equations given by (2.4). Then, the fair price ensures simul-
taneously money necessary to replicate the future payoffs with certainty. If
one tries to find more general and more realistic limiting models, the market
usually turns out to be incomplete. From a variety of approaches that deal
with the problem of option pricing and hedging in the case of incomplete
markets, it seems to us that the utility based approach is the most reason-
able. It produces the most optimal policies; intuitively, under this approach
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we take into consideration the investor’s attitude toward risk related to the
contract, while other alternative methods are mainly preference-free. Due
to the Markovian structure of the financial market we can exploit dynamic
programming to specify the optimal (in the sense of the above explanation)
policy.

It has been recognized that there are needs for some models to better
capture the price movements of the underlying securities. Indeed, in reality
many factors influence the stock price behavior. It becomes desirable to
modify the general model, where the stock price process is assumed to be
Markovian. We can improve this model by incorporating market trends with
other economic factors. Especially, for a longer horizon such an improvement
seems to be more suitable; it is quite obvious that economic factors are more
sensitive if we lengthen the duration time of the contract. Let us remark,
that if changes of economic factors follow a Markov chain, then the general
model, that we have introduced, can be extended and adjusted to this setting,
still working and leading to the solution (the previous chapter has provided
one example). For some reasons economic factors may be not observable.
Fortunately, there exist various methods and techniques, which deal with this
restriction. We have discussed one of them, which is based on a Bayesian
estimation of the parameters and benefits when the underlying Markov chain
is homogeneous.

Finally, let us point out, that there are several different directions in which
our work could be continued and extended. One can base pricing and hedg-
ing on our model, when the financial market is considered with both fixed
and proportional transaction costs. Continuing, it would be very interest-
ing to see how other mathematical techniques work with hidden information
about the market, in particular, in the case of an inhomogeneous underlying
Markov chain. Next, in this thesis we have provided only theoretical solu-
tions. For the specific models one can present step by step how to implement
the backward algorithm, as a final result obtaining explicit solutions. Overall,
there are no additional theoretical issues; just determining optimal policies
by maximization or minimization the utility function or the loss function,
respectively. In literature some particular models have already been solved1,
however, it is still desirable to examine other models with all details. This
issue is very important for practical interest, especially if we aim for numer-
ical solutions. Moreover, for practical purposes and applicability one can
study particular discrete-time models that converge to continuous-time ones,
and later assess the accuracy of the obtained results. Next, extensions may

1The shortfall risk minimization for the binomial case is treated in [10], while [11]
discusses the trinomial model.
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concern the curse of dimensionality, which appears for larger time horizons.
Various approximation methods are still improved and developed. One might
gather all of them, compare with respect to precision and advantages followed
from computational simplifications, and later discuss applicability to specific
market models.
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Appendix

Lemma A1 Let f : (a, b) 7→ R is concave, with −∞ ≤ a < b ≤ ∞. Let
c ∈ (a, b), then the functions:

{x ∈ (a, b) : x < c} 3 x 7→ f(c)− f(x)

c− x
∈ R,

{x ∈ (a, b) : x > c} 3 x 7→ f(x)− f(c)

x− c
∈ R,

are decreasing.

Theorem A2 Let E be a measure space and {fn} be a monotonically in-
creasing sequence of non-negative measurable functions defined on E. Then
the following holds ∫

E

lim
n→∞

fn dµ = lim
n→∞

∫
E

fn dµ.

Theorem A3 Let us assume that random variables

X1,1, . . . , X1,k1 , X2,1, . . . , X2,k2 , . . . . . . , Xn,1, . . . , Xn,kn ,

are independent. Then, the random variables

Yj = ϕj(Xj,1, . . . , Xj,kj
), j = 1, . . . , n,

where ϕj are measurable functions such that Yj are well defined, are inde-
pendent.

Lemma A4 The random vector X = (X1, . . . , Xd) is Nd(µ,Σ)-distributed if
and only if a>X is N1(a

>µ, a>Σa)-distributed for every a ∈ Rd.
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