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Abstract

In this thesis we will compare the Basel I (1988) and the Basel II accord
(2004), including the rules regulating operations of the present banks and fi-
nancial companies. We will present these documents giving a general overview
and mention some details. But our concentration will be mostly focused
on measures, which give information about the contract, are exploited to
compare contracts, and enable to make a decision whether the contract is
attractive or not.

We will start from the contract analysis. We are going to bring closer
the contract’s structure by introducing the special notations, for instance,
PD, LGD, EAD, etc, and explain their meaning. We will present also the
computational methods based on the Merton model and designed to deter-
mine capital requirements, called Regulatory or Economic Capital. Behind
the mathematical approach we will outline economical background concern-
ing the problems, which we are going to study. For illustrative purposes, we
will apply the theory to real example.

At the end of thesis, we will draw conclusions and give an explanation
why Basel II is better.



Chapter 1

Introduction

In the light of permanent development of financial markets and continu-
ously changing market situation, banks and other financial companies need
rules which will regulate financial agreements between them and their clients.
Usually, conditions of such agreements are formalized in the form of contract.
The bank and the customer, accepting the contract, commit themselves to
obeying the contract’s conditions. It means that bank lends the customer
money and the customer is obliged to pay them back. However, sometimes
the customer losses financial liquidity, and then the contract goes to default.
Hence, for all financial institutions it is very difficult to quote whether the
customer is ‘good’ or ‘bad’, whether he will be solvent at the contract dura-
tion. Seeing that, banks and financial companies would like to have a very
good measure that will give them an unambiguous answer to their questions.

On the other hand, banks will only be able to generate new transactions
if the customers do not doubt their ability to remain solvent. For the sake of
complexity of the financial market and interactions between all components,
it is difficult to consider all possible events which can occur in the future.
The market volatility renders that each move or investment is related to risk.

Unfortunately, models which are usually used to measure the risk level do
not give exact results. The reason is that, it is very difficult to calculate the
risk, because of unforeseen events, like customer’s default. Hence, the models
only include tools to identify concentrations of risk and give opportunities for
diversification within a disciplined and objective framework. Regardless of
the shortcomings, these methods are commonly used because all companies
are under an obligation to have some fixed frame of calculating risk and
decision making whether to take this risk or not.

One of the tools used by banks is the determination of a capital require-
ment. The definition of the capital requirement says that this is an amount of
money required to cover monetary losses due to the unexpected bad events,
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in other words, to hedge the contract. Each company should keep reserves
of money to hedge contracts. Furthermore, it seems to be obvious that the
amount of money is not the same for each company, but the question is:
how should we calculate this amount? Are there some methods which let us
determine the capital requirements? Unfortunately, the problem is not easy
solvable.

During recent years, almost the whole banking and financial world has
been concentrated on research concerning capital allocation. Everybody
would like to find the method which gives the most precise results or the
best estimation.
The most involved in this research is the Basel Committee on Banking Super-
vision. This committee, established by the Bank of International Settlements,
has played a leading role in formalizing the relationship between credit risk,
different forms of market risk, and the capital requirements. It undertook a
detailed study of methods to set the regulatory capital. During a long time of
considerations, the Basel Committee found some solutions which were pub-
lished as the Basel I and Basel II accords. In general, the Basel documents
are sets of rules for banking regulation and supervisory. In particular, they
set the global capital adequacy standards. They are international agreements
that describe the risk sensitive framework for the assessment of regulatory
capital and oblige financial companies to take adequate hedging actions.

The Basel I accord was introduced in 1988. The main aims of this agree-
ment were ‘leveling the playing field’ for the competition in terms of costs
between internationally active banks and reduction of the probability that
such competition would lead to bidding down of capital ratios to extremely
low levels. It wanted to eliminate unfair advantages of banks in countries
without a minimum of capital requirements. Hence, the Basel Committee
set this minimum according to a given measure of the total credit risk out-
standing amount.
At the beginning, it introduced calculation of the required capital using a
mathematical model based on the Merton model and the properties of the
Beta distribution. This model will be described in detail in Chapter 3. Un-
fortunately, methodology of this model was too advanced to apply in reality
and caused a lot of problems in computations. Hence, the Basel Committee
applied an approach that relied on historical data. It determined, required
to hedge contract, amount of money as 8% of the capital contribution, re-
gardless of the customer’s credibility. In practice it looked as if the financial
institutions had to keep 8% of outstanding amount of money as the capital
requirement.

Application of this approach showed that it is not correct. The basic
problem of the Basel I was that it focused on costs, overlooking the consid-
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erations of risk and financial stability. It took into consideration the risk,
which is conected with given contract. Regardless of the customer’s risk
level, it requires 8% to secure the contract, whereas the capital requirements
should depend on the customer’s risk that one takes. Moreover, Basel I ex-
hibited a fundamental weakness – it based on a model that was becoming
obsolete quickly. During a very short time, it was recognized that the risk
and unexpected events should have a significant impact on the investments.
Namely, every company has different vulnerability to risk and every contract
is related with a different risk level, so standardization of the requirements
for all companies and contracts is a naive approach. On account of necessary
corrections of the shortcomings, they prepared the New Capital Accord.

The Basel II accord was presented in 2004. In contrast to Basel I, the
new agreement is mostly an instrument of prudential regulations. It puts a
pressure on things, which are specific to each institution and defines instru-
ments to deal with this diversity and idiosyncrasy.
The New Capital Accord extended the old method of calculating the capital
requirements based on the Merton model and introduced a new method based
on the Asymptotic Risk Factor Model. It takes into account the company’s
situation on the market, expressed by the rating and the probability of de-
fault, describing the risk level. Basel II makes financial institutions obligor to
hedging all their contracts by different amounts of capital contributions de-
pending on the customer’s credibility. We will present the details in Chapter
4.

Talking about Basel I and Basel II we have to pay particular attention
to the Internal Return Capacity, called the IRC and Risk-adjusted Return on
Capital, called the RaRoC. These measures are strictly linked with the Basel
environment.
Generally, both of them express a fraction of amount of money earned by the
company to the amount of money, which company has to keep for hedging
the contract. The IRC is provided by the Basel I accord and the RaRoC by
the Basel II accord. Hence, the methods of computing the IRC are imposed
by the Basel Committee. However, in the Basel II approach the choice of
the method of the RaRoC computations is to the financial company to spec-
ify. Because the capital requirements can be computed in different way by
each company, the same contract can be described by different values of the
RaRoC, depending on the financial company.

The IRC and the RaRoC are used by banks to making the decision about a
rejection or an acceptance of a given contract. Each financial institution sets
its own IRC or RaRoC threshold, called in the RaRoC case target RaRoC, and
according to that they make a decision about the contract. If the threshold
is equal to for instance 20%, then it means that all contracts with the IRC
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and the RaRoC above this amount are accepted and below this amount are
rejected. Hence the IRC and the RaRoC frameworks are very useful and
commonly applicable by banks. The details and the application in practice
will be seen in Chapter 5.
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Chapter 2

Structure of the contract

Let us consider a hypothetical situation in which we have a contract between
the bank and the customer. The contract is characterized by components.
Some of them, such as the amount of money, which the bank is going to
lend the customer or an interest rate are set by the bank or the customer
in the beginning of the contract. But some of them, such as the probability
of default or the funding rate are fixed and are usually dependent on the
quality of the bank and the customer. Because we are interested in getting
an economical overview, we will consider a very easy contract, without any
additional components, such as taxes, and any other events, such as auto-
matical lease extension. All components which we are going to consider are
presented below, along with explanation of their meaning.

2.1 Periodical Installments

Let us assume that the financial company lends the customer some amount
of money (a principal amount) for some time (a contract’s term). In this
situation, the customer becomes obliged to pay a fixed amount of money
every month (year). This fixed payment is the sum of principal payments
(the part of borrowed money which equals the principal amount divided by
the number of periods) and interest payment (the amount of money paid to
the bank for a service). The interest payment is determined by a monthly
(yearly) percentage rate called active rate, which can be split into funding
rate and margin rate.

The funding rate reflects the cost of funds and the margin rate determines
the company’s profit received as a result of giving a loan. In other words, the
funding rate is the monthly (yearly) cost of getting money for the customer
by the financial company. The basis rule is that the better company, the
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cheaper they can get money, therefore the funding rate is lower.
The margin rate is a percentage rate reflecting the amount of the company’s
income. According to the definition, the income is the amount of money
earned by the company as a result of normal business activities.

If we denote the contract’s term as T , the principal amount as PA, the
fixed monthly active rate as rma , then the total monthly payment P is ex-
pressed by formula:

P :=
rma

1− (1 + rma )−12T
· PA

Because the monthly active rate is constant, hence the total monthly payment
is constant in each month as well.

2.2 Default

When a financial company decides to accept a contract, it does not know
what will happen in the future. There are a lot of internal and external
factors which have a vast influence. We already know that all investments
are related to risk. The company does not know if the customer will be
solvent during the whole contract’s duration or if he will default.

According to the Basel Committee on Bank Supervision:

“A default is considered to have occurred with regard to a particular obligor
when either or both of the two following events has taken place.

The bank considers that the obligor is unlikely to pay its credit obligations
to the banking group in full, without recourse by the bank to actions such as
realizing security (if held).

The obligor is past due more than 90 days on any material credit oblig-
ation to the banking group. Overdrafts will be considered pas due once the
customer has breached an advised limit or been advised of a limit smaller
than current outstanding.” (Basel Committee on Banking Supervision, 2003)

Hence we can conclude that a default does not mean that a bank will
loose its money. It means that the customer has temporary problems with
solvency, but after paying all arrears back, the contract finishes normally. By
arrears we understand the amount of money, which the customer has to pay
extra in case of not refunding at the fixed time.
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The default, which occurs with a probability of default is not typical for
a normal course of the contract. It entails the consequences for the client
and its potential occurrence causes an uncertainty for the bank.

2.3 Probability of Default

Given a specific contract, we are not able to predict whether a lessee will de-
fault. However, experience teaches us how often a similar lessee has defaulted.
Basing on historical data we can adjust the frequency of going default for
a specific contract. This frequency is expressed by the probability of default
and it depends on the customer and the vintage of the contract.
The “quality of the lessee” is usually asserted by ratings in the Standard &
Poor’s ranking. They change from R1 till R21, and each of them denotes a
different financial situation and the ability to default for the company. The
best is the R1 rating, and the R21 means a default.

2.4 Exposure

During the contract time the customer pays money back in periodical pay-
ments, causing reduction of the outstanding amount of money. According
to Basel II, the outstanding amount of money is called an Exposure and is
denoted by EXP.
Usually, the exposure is computed annually and at the start of the contract,
is equal to the principal amount. As long as the customer pays the money
back, the exposure equals to the principal amount at time t subtracted by the
amount of money paid by the customer back and at the end of the contract
it is equal to 0. For the sake of a time value of money, the principal amount
at time t is equal the principal amount at time 0 multiplied by the annual
interest factor.

We mentioned above that the exposure is computed yearly. Because an
active rate is a monthly rate, hence we have to change it into a yearly rate.
We can do this using follow expression:

(1 + rma )12 = (1 + rya)

Therefore, the formula expressing the exposure of the nth contract at time
t, where t means the t’th year of the contract term, is as follows:

EXPn,t :=


PA, t = 0

PA · (1 + rma )12t − P · (1+rm
a )12t−1
rm
a

for t = 1, . . . , T − 1

0 t = T.
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With respect to the contract, we use an Exposure at Default, denoted
by EAD. By analogy, it means the amount of money, which the customer
owes the bank at default time. In accordance with the definition of default
introduced by the Basel Committee, this money includes the exposure at
this time and arrears, accumulated during 90 days. Only the first year of the
contract constitutes an exception.
At the start of the contract, arrears are unavailable, so the EAD is equal
to the exposure. For future points, the assumption is made that in case of
default three monthly payments of arrears have been added. This results in
the following EAD equation:

EADn,t :=

{
EXPn,t, for t = 0,

EXPn,t + P · (1+rm
a )3

rm
a

, for t = 1, . . . , T − 1,

and finally:

EADn,t :=

{
EXPn,t, for t = 0,

PA · (1 + rma )12t − P · (1+rm
a )12t−(1+rm

a )3

rm
a

, for t = 1, . . . , T − 1.

2.5 Costs

Each contract is strictly related to different kinds of costs, which the company
has to incur. Based upon Activity Based Costing, cost allocations occur in
the Front Office Costs and the Back Office Costs. A further distinction is
made between fixed and variable costs.

The fixed costs are represented by a constant value and are incurred at
the start of the contract. Similarly, the variable Front Office Costs occur
at the start of the contract, but they are computed as a percentage of the
principal amount. The variable Back Office Costs are a percentage of the
average exposure over the periods. Hence:

Cn,t :=

{
CFOC
n,t + CBOC

n,t + (cFOCn,t + cBOCn,t ) · 1
2
(EXPn,t + EXPn,t+1), t = 0,

cBOCn,t · 1
2
· (EXPn,t + EXPn,t+1), t = 1, . . . , T − 1.

where CFOC
n,t , CBOC

n,t denote fixed Front and Back Office Costs, and cFOCn,t ,
cBOCn,t denote variable Front and Back Office Costs for nth contract at time
t, respectively.
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2.6 Cash Flow

The term Cash Flow is used to describe all flows of money. It is defined as
the difference between the income and the expenses of the company. If we
assume that the contract does not go into default, then the expenses include
only costs, but when the customer defaults then the expenses include the
costs till default time and the loss caused by default.

The loss for nth contract is expressed as the fraction of the remaining ex-
posure at default moment, and this fraction is determined by the percentage
called Loss Given Default.

Ln,t = LGDn · EADn,t.

The loss given default (LGD) is given in advance and it is the contract’s and
customer’s specification.

2.7 Regulatory and Economic Capital

In general, Regulatory and Economic Capital are the amount of capital al-
located and held by the financial company in order to protect it from the
unexpected losses with a reasonable degree of confidence. In other words,
they are the sorts of capital requirements, which were provided in the intro-
duction. Hence, they are determined by the confidence interval from the Loss
Distribution. We will explain it in greater detail in the next chapter, but for
now we would like to mention that the confidence level specifies how much
of the unexpected losses should be covered by the economical or regulatory
capital. Usually, this amount depends on the rating of the bank, for instance
the banks with rating R1 should cover 99, 99% of the unexpected losses.

The difference between regulatory and economic capital concerns choices
of the confidence level and the time horizon. For economic capital banks
choose it, whereas for regulatory capital supervisors set it. Hence, usually
the capital requirements provided by Basel I are called regulatory capital,
whereas provided by Basel II are called economic capital. We will keep this
terminology, and additionally we will denote regulatory capital by RECAP
and economic capital by ECAP .

The idea of using the confidence level in the computations of the capital
requirements appears in the Basel I document, and it was extended in the
Basel II document. The documents include some settlements concerning the
confidence level and according to them the banks are asked to calculate their
regulatory capital requirements to an αth confidence interval. This issue is
elaborated in Chapter 4.
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Chapter 3

The Basel I Capital Accord

3.1 Introduction

The Basel I accord was revolutionary in that it sought to develop the sin-
gle risk-adjusted capital standard that would be applied by international
banks. The heart of the Basel Accord was the establishment of similar cap-
ital requirements for the banks to eliminate unfair advantages of banks in
the countries, where a minimum of capital was not required. Hence, Basel I
defines a standard methodology for calculating the capital requirements.

3.2 The Basel I approach on the contract level

In the previous chapter, we gave a definition of the capital requirements and
we affirmed also that they are determined by the confidence level of the loss
distribution. Now we will explain it in greater detail.

The default and, linked with it, loss appear to be unforeseen. Because of
that, we do not know whether it will occur and how much the loss will be.
Hence, the idea is to consider the default and the loss, as a random variables.
In aftermath of this, we can talk about the probability of an event and the
distribution.
The definition of the probability of default was given in the previous chapter.
Now, we will introduce the formula expressing this probability. Furthermore,
we will use this formula to determine the loss distribution and, in the end,
the αth percentile of this distribution.

Without loss of generality, we can consider discrete random variables Dn,t,

10



given as follows:

Dn,t =

{
1, when default occurs at time t,

0, otherwise,

where n denotes the n’th contract and t = 0, . . . , T − 1 – t’th year of the
contract term.

This variable has two-point distribution and values, which are taken by
this variable, depend on the default occurrence. Because the default occurs
at time t with the probability of default PDn,t, we have

Dn,t =

{
1, with PDn,t

0, with 1− PDn,t

Furthermore, using properties of the two-point distribution, we can directly
conclude that the expected value of Dn,t is expressed by a formula:

E(Dn,t) = PDn,t (3.1)

and the standard deviation is given as follows:

σ(Dn,t) =
√

PDn,t(1− PDn,t). (3.2)

In that case, it is also possible to change the loss formula, which is in accor-
dance to the formula presented in the previous chapter, as follows:

Ln,t = LGDn · EADn,t. (3.3)

Because the random variable Dn,t takes only two values 0 or 1, and LGDn

and EADn,t for all contracts and t = 0, . . . , T − 1 are the constants given in
advance, we can write that:

Ln,t = Dn,t · LGDn · EADn,t. (3.4)

In the aftermath of this, we can consider the loss as a random variable and
determine the distribution called the loss distribution.

With respect to the loss distribution we can talk about expected value
called Expected Loss and standard deviation called Unexpected Loss.
The expected loss is a part of the loss, which is expected by banks to incur it
in the future. For the sake of that, it is not related to the risk, so usually it is
not covered by the economic capital. Because mathematically it is expressed
by the expected value of the loss distribution, hence

E(Ln,t) = E(Dn,t) · LGDn · EADn,t = PDn,t · LGDn · EADn,t.
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The unexpected loss, causing by unforseen events, is used to reflects uncer-
tainty. Because it is the result of the risk taking, hence the Basel Committee
requires keeping regulatory capital to cover it. Mathematically, the unex-
pected loss is understanding as the standard deviation of loss, so we can
write directly that

σ(Ln,t) =
√

PDn,t(1− PDn,t) · LGDn · EADn,t.

Usually, the expected loss at time t is denoted by ELn,t, the unexpected loss
at time t by ULn,t and we will keep this notation.

The construction of random variable for the loss guarantees existence of
the loss distribution, which in this case is estimated by a Beta distribution
with the mean that equals to the expected loss, and the standard deviation
equals the unexpected loss.

Moreover, if we denote the confidence level by α, then in accordance with
the model the capital requirements are represented by the αth percentile of
the Beta distribution, which is approximated with eight multiplied by the
unexpected loss.

Economic Capitaln,t ≈ 8 · ULn,t. (3.5)

Both the above approximation and the estimation of the loss distribution are
the results of plenty tests and numerical simulations that have been carried
out by the Basel Committee. We refer interested readers to more advanced
documents.

However, let us mention one issue, which is related to the computation
of the capital requirements.
Namely, if we look at Formula (3.5), we see that only LGD, EAD, and the
probability of default are necessary to compute the regulatory capital. As we
stated above, LGD and EAD are given in advance, so only the probability
of default is needed to get the value of capital requirements. Basel I admits
several methods of computations, but the most widely used is based on the
Merton model.

3.2.1 The Merton model

In 1974, Merton introduced Black and Scholes (1973) option pricing model
to evaluate corporate liabilities, focusing mostly on the computations of the
probability of default. Assuming that the firm’s structure of capital can be
expressed as the sum of equities and values of debt, he proposed to consider
the firm’s assets in the option framework. More precisely, he showed that
the equity is equivalent to a call option. Using some examples, he explained
legitimacy of his idea.
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To present of Merton’s methodology we will start from introducing the
following notation: An,t – the firm’s asset value at time t, En,t – the equity
at time t, Bn,t – the debt at time t and n – the number of the company.
In accordance with the Merton model assumptions, we have

An,t = En,t +Bn,t for t = 0, . . . , T − 1. (3.6)

Further, let us assume that we have the contract between the bank and the
client, which says that if the client does not repay his debt, then the bank
holds the assets. In this situation, the assets exemplify a guarantee, that the
client will give the money back. Therefore, we can consider two situations:

• An,t > Bn,t

In this situation En,t = An,t − Bn,t is positive when the client repaid
his debt (because the asset’s value, which he will get, is greater than
the amount of repaid to bank money) or equal zero otherwise (because
of insolvency of the client the bank kept the assets, so the customer do
not earn anything).

• An,t < Bn,t

In this situation En,t is negative if the client repaid his debts (because
the asset’s value, which he will get, is smaller than the amount of repaid
to bank money) or equal zero otherwise.

As a conclusion, we get that a repayment of the debt in the first case , however
keeping the debt in the second situation is the most profitable action for the
customer. In the first situation he will earn money. In the second he does
not earn anything, but at least he does not loss anything. Let us place our
results in a figure.

Now, if we look at the graph of payments, we will see that it is the same
as the graph of call option payments. Hence, we state that the equity can be
expressed as the call option on the asset with strike price equal to Bn,t and
maturity T .
It is also very easily noticeable that the threshold is determined by equality
between the equity and the debts, and moreover it denotes the moment of
default occurrence. Namely, it was showed above that the default occurs
when the value of the firm’s assets is less than the amount of debts. Seeing
that, the frequency of the default’s occurrence is expressed by the probability
of default, we can express the probability of default as follows:

PDn,tD = P(An,tD < Bn,tD), (3.7)

where tD denotes the default time.
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Above we also concluded that the equity is represented by the call option.
We already know that the tool which lets us price the call option is the Black-
Scholes model. The simple conclusion is that we can directly use the same
model to the firm’s asset pricing and indirectly to compute the probability
of default.
Assume that we can express the dynamics of the firm’s assets as

dAn,t = µndt+ σndWn,t, (3.8)

where µn is the total expected return on the asset, σn is the asset volatility,
and Wn,t is a Brownian motion. Using Itô’s formula, we can give a solution
to the differential equation (3.8), which is as follows:

An,tD = An,t · exp

((
µn −

σ2
n

2

)
· (tD − t) + σn ·

√
tD − t ·Xn,t,tD

)
, (3.9)

where

Xn,t,tD =
Wn,tD −Wn,t√

tD − t
,

and in accordance with the properties of a Brownian motion it is standard
normally distributed. Let us make also a remark that An,t denotes the current
asset value of nth company.
In reference of Formula (3.7):

P(An,tD < Bn,tD) ⇔ P(An,t·exp

((
µn −

σ2
n

2

)
· (tD − t) + σn ·

√
tD − t ·Xn,t,tD

)

< Bn,tD) ⇔ P
(((

µn −
σ2
n

2

)
· (tD − t) + σn ·

√
tD − tXn,t,tD

)
< ln

Bn,tD

An,t

)

⇔ P

Xn,t,tD <
ln Bn,tD

An,t
− (µn − σ2

n

2
) · (tD − t)

σn ·
√
tD − t

 .

Using assumption about the standard normal distribution ofXn,t,tD we finally
get:

PDn,tD = Φ

(
lnBn,tD − lnAn,t − (µn − σ2

n

2
)(tD − t)

σn
√
tD − t

)
. (3.10)

Now, if we come back to Formula (3.5), and we insert all computed values
then the regulatory capital on the contract level is expressed by
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RECAPn,t ≈ 8 · LGDn · EADn,t ·

√√√√√Φ

 ln
Bn,tD

An,t
− (µn − σ2

n

2
)(tD − t)

σn
√
tD − t

·

·

√√√√√
1− Φ

 ln
Bn,tD

An,t
− (µn − σ2

n

2
)(tD − t)

σn
√
tD − t

.

3.3 The Basel I approach on the portfolio

level

In the previous section we regulatory capital on the contract level. Now using
the same approach we will present an extension on the portfolio level, where
the portfolio means the set of contracts.

According to the model, the formula describing the regulatory capital
remains the same. Further, we accept that the expected loss at time t on
portfolio level is equal to the sum of expected losses of single contracts at
time t.

ELpt =
N∑
n=1

ELn,t, (3.11)

where N is the number of contracts in portfolio p.
Unfortunately, with the unexpected losses we can not do this and there are
mathematical and economical reasons for this.
The first reason, results directly from non-linearity of the variance.

V ar

(
N∑
n=1

Xn

)
=

N∑
i=1

N∑
j=1

((V ar(Xi)) + V ar(Xi)V ar(Xj)ρij + (V ar(Xj))) .

(3.12)
And the second is given by the economy.
Namely, in the real world we can notice a dependence between the contracts.
The interactions between them are expressed by the so-called correlation.
There exists a coefficient, denoted usually by ρnm, which expresses the cor-
relation level between the nth and the mth contract.
The coefficient can take positive values as well as negative ones and the
general rule is that the smaller coefficient the greater independence between
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contracts. Particularly, it is very important with reference to default and
unexpected loss. Because, when one of the contracts, positive correlated de-
faults, it is very probable that the second one defaults as well. However, in
the case of negative correlated assets, default of one of them does not influ-
ence on the second asset. Therefore, using the definition of the unexpected
losses and (3.12), we can evaluate the unexpected loss for N contracts as
follows:

ULp,t =

√√√√ N∑
n=1

N∑
m=1

(ULn,t + ρnmULn,tULm,t + ULm,t), (3.13)

where ρnm is the correlation coefficient for contracts n and m and t =
0, . . . , T − 1. Let us make a remark, that in the case of default the cor-
relation coefficient is called the default correlation coefficient.

The correlation coefficient is given by a formula:

ρnm =
Cov(Xn, Xm)

σnσm
, (3.14)

where Cov(Xn, Xm) expresses the covariance of random variables Xn and
Xm and σn, σm are standard deviations of random variables Xn and Xm re-
spectively. The same is in this case. The coefficient of the default correlation
is given by

ρnm =
Cov(Ln,t, Lm,t)

ULn,tULm,t
. (3.15)

Furthermore,

Cov(Ln,t, Lm,t) = (P(Dn,tDm,t)−PDn,tPDm,t)·LGDn·EADn,t·LGDm·EADm,t.

Hence final formula is as follows

ρnm =
P(Dn,tDm,t)− PDn,tPDm,t√

PDn,t(1− PDn,t) ·
√

PDm,t(1− PDm,t)
. (3.16)

Now, we can notice that everything is given, and we can simply calculate
it, except joint probability of default. The joint probability of default, denoted
by P(Dn,tDm,t) in Formula (3.16), expresses the probability that company n
and m default simultaneously at time t. In the next sections we will present
the method of computing the joint probability, but before we will look at the
single probability of default.
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3.3.1 Probability of default

To determine the probability of default we will come back to the Merton
model, which was presented in Section 3.2.1. According to this model, the
default occurs at time t when the firm’s asset value is smaller than the value of
debts at this time. It means that the asset value of the company and its debt
change in time. The changes caused mainly by various market factors, can
be expected and unexpected. And accordingly we can consider the expected
and the unexpected part of value of assets.

Usually, the expected changes are deterministic. They can occur only in
cases when we have some new information about the market. Otherwise, the
expected changes do not occur. This has a direct bearing on the expected
market value of assets, because if we do not have the expected changes then
the expected value of assets remains the same.
A different situation is with the unexpected changes in the risk factor. They
occur very often and they cause an uncertainty in the asset value. Because
of them, everything that can happen with assets is not predictable.

In addition to the market factors, we consider also the risk coefficients
which are reserved separately for each asset. Those coefficients are in charge
of level risk of investment in this asset and they enable distinction between
more and less risky assets. In comparison to the market risk factors, which
show us the general tendency of risk for all assets, they determine the risk
level specify for each single asset.
Hence, the chances are that we can express the market asset value of firm n
at time t as follows:

An,t = δn +
K∑
k=1

(φknθk,t) + ψnεn,t, (3.17)

for n = 1, . . . , N , where n denotes the firm’s number, δn,t expresses the ex-
pected part of market risk factor at time t, θk,t expresses the unexpected
part of market risk factor at time t, εn,t express the firm’s risk factor at time
t. Because the influence of the risk factors on each asset is different, we
consider the coefficient of the firm’s sensitivity to the risk factor. Hence φkn
denotes the firm’s sensitivity to the kth market risk factor and ψn denotes
the firm’s sensitivity to the firm’s risk factor. Moreover we assume that the
market risk factors are normally distributed with expectation 0 and covari-
ance matrix Ω and the firm’s risk factor has the standard normal distribution.

Usually it is like this, that one portfolio consists of a lot of contracts.
Because we have to know the correlation between each two contracts, the
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number of computations grows large very fast. This lengthens the calcu-
lation time. To simplify calculations, and to make them more efficient we
will introduce selection. The idea is to select contracts according to country,
industry, etc. It gives us sufficient granularity and enables making our com-
putations easier.
In the aftermath of this, we will introduce structures which we call the risk
buckets. Each risk bucket includes contracts, which are similar in the sense
of some feature. We assume that contracts which are in the same risk bucket
have the same expected risk and sensitivity to the unexpected risk. This
gives us instead of consideration of each two contracts opportunity to con-
sider risk buckets.

Let G denote the set of the risk buckets. A bucket g will be one of them
consisting of some firms. Then in accordance to the above assumptions we
can write:

An,t = δg +
K∑
k=1

(φkgθk,t) + ψnεn,t n ∈ g (3.18)

Let us remind that the main aim of these considerations is getting the
joint probability of default for two companies. To this end, we will keep the
assumption that the company defaults when the asset value of company is
smaller than the amount of debts. Hence in our case

P(Dn,t = 1) = P(An,t < Bn,t), (3.19)

where An,t is expressed by (3.18), and Bn,t denotes the amount of liabilities
at time t. Further

An,t < Bn,t ⇔ δg+
K∑
k=1

(φkgθk,t)+ψnεn,t < Bn,t ⇔
K∑
k=1

(φkgθk,t)+ψn,tεn,t < Bn,t−δg

According to our above assumption we know that δg denotes the expected
value of the risk so it is deterministic. Thus, without loss of generality, we can
introduce a constant Cn,t = Bn,t − δg and it automatically gives conclusion
that default occurs when

K∑
k=1

(φkgθk,t) + ψnεn,t < Cn,t (3.20)

Determination of the default probability is a rather difficult issue. Due
to that, we will define a new random variable denoted by Zg,t and expressed
by formula

Zg,t =
K∑
k=1

(φkgθk,t), (3.21)
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where t = 0, . . . , T − 1. Let us notice that this notation is very efficient
for us. First, Zg,t expresses the market risk factor for bucket g and is the
same for all contracts in the bucket g. Second, Zg,t is the sum of standard
normally distributed random variables, so it has a normal distribution with
expectation 0 and a variance given by a formula:

V ar(Zg,t) = V ar(
K∑
k=1

(φkgθk,t)) =
K∑
k=1

K′∑
k′=1

(V ar(φkgθk,t) + σkk′V ar(φ
k
gθk,t)·

·V ar(φk′g θk′,t) + V ar(φk
′

g θk′,t)) =
K∑
k=1

K′∑
k′=1

((φkg)
2V ar(θk,t) + σkk′φ

k
gφ

k′

g ·

·V ar(θk,t)V ar(θk′,t) + (φk
′

g )2V ar(θk′,t)).

Shortly,

Zg,t ∼ N

(
0,
√
V ar(Zg,t)

)
. (3.22)

We know that dividing normally distributed random variable minus its ex-
pectation value by its standard deviation we will result in a random variable
which has a standard normal distribution. Hence:

Zg,t√
V ar(Zg,t)

∼ N(0, 1). (3.23)

Let us denote this fraction by Xg,t.
We can also denote

√
V ar(Zg,t) by wg. Then we will get:

Zg,t = wgXg,t =
K∑
k=1

φkgθk,t,

and coming back to formula (3.18):

An,t = δg + wgXg,t + ψnεn,t. (3.24)

Because of that the probability of default is given by

P(Dn,t = 1) = P(wgXg,t + ψnεn,t < Cn,t). (3.25)

For facilitation of the notation and computations we will denote wgXg,t +
ψnεn,t by un,t. Knowing that Xg,t ∼ N(0, 1) we can designate distribution of
un,t. Seeing that un,t is the sum of normally distributed random variables,
we can conclude that it is normally distributed as well. Moreover, we assume
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that the firm risk factor and the market risk factor are independent, what
means also that the covariance between them is equal 0. Hence un,t has a
normal distribution with expected value equal to 0 and a variance given by

V ar(un,t) = V ar(δg+wgXg,t+ψnεn,t) = w2
gV ar(Xg,t)+ψ

2
nV ar(εn,t) = w2

g+ψ
2
n,

and finally

un,t ∼ N
(
0,
√
w2
g + ψ2

n

)
(3.26)

where un,t is the random variable expressing the market risk and the firm
risk.

Using basic knowledge from probability theory and particularly from
properties of the normal distribution we will write

φ(un,t) =
1√

2π(w2
g + ψ2

n)
exp

(
−1

2

u2
n,t

(w2
g + ψ2

n)

)
, (3.27)

Φ(un,t) =

∫ Cn,t

−∞

1√
2π(w2

g + ψ2
n)

exp

(
−1

2

u2
n,t

(w2
g + ψ2

n)

)
(3.28)

and in the next section we will use these formulas for further considerations.

3.3.2 Default threshold

In the previous section, we considered the market asset value of a firm. We
expressed this as a sum of corresponding risk factors and we obtained the dis-
tribution of this random variable. This means that we are ready to consider
the joint probability of default for two companies.

We know already that the probability of default for one company is ex-
pressed by formula:

P(Dn,t = 1) = P(An,t < Bn,t) = P(wgXg,t + ψnεn,t < Cn,t) = P(un,t < Cn,t),

where un,t, t = 0, . . . , T − 1 has a normal distribution. Knowledge which
we have so far gives us the opportunity to say something about Cn,t as well.
Let us notice that till now this value was unknown. Unfortunately, we can
not give an exact value of Cn,t, but we can express the threshold value by a
different variable which is already known. Thanks to the normal distribution
of un,t and standardization of the random variable, we get that

un,t√
w2
g + ψ2

n

∼ N(0, 1),
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and directly

P(un,t < Cn,t) = P

(
un,t√
w2
g + ψ2

n

<
Cn,t√
w2
g + ψ2

n

)
= Φ

(
Cn,t√
w2
g + ψ2

n

)
,

where Φ is the cumulative function of the standard normal distribution.
Existence of an inverse cumulative function to a cumulative function of

a continuous distribution guarantees us opportunity to consider inversion of
cumulative function of standard normal distribution. Therefore we can write
that

Cn,t = Φ−1(PDn,t)
√
w2
g + ψ2

n,

and this is an expression of the default threshold which will be using from
now. It gives us directly a new default probability formula

P(Dn,t = 1) = P
(
un,t < Φ−1(PDn,t)

√
w2
g + ψ2

n

)
.

In the future, the above two formulas will be a basis to construct joint default
probabilities.

3.3.3 Joint probability of default

In the beginning of this section let make a remark about the probability of
default for two firms. We know that every company is going to default with
certain probability and it is obvious that probability can be the same for
both companies or totally different for each of them.

If probability is the same for companies then situation is very easy, be-
cause the joint probability is equal probability of default for one company.
We will consider the second situation, when the probabilities are different.
For us this situation is more interesting, because situation when companies
are going to default with the same probability are rather rare on the real
market.

Let us take company n and m with probability of default at time t =
0, . . . , T − 1 PDn,t and PDm,t respectively. Moreover for simplicity compu-
tations we will keep the assumption that these two firms default on their
contract in the same time interval.

In the previous section we showed that probability of default for one
company is equal probability of event that Di is equal 1 and is expressed by
formula

PDn,t = P(Dn,t = 1) = P
(
un,t < Φ−1(PDn,t)

√
w2
g1

+ ψ2
n

)
,
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where g1 denotes the bucket which contains nth company. The same we can
write for company m

PDm,t = P(Dm,t = 1) = P
(
um,t < Φ−1(PDm,t)

√
w2
g2

+ ψ2
m

)
where g2 denotes the bucket which contains mth company. This approach
lets us consider joint probability of default as probability of event that Dn,t

is equal 1 and Dm,t as well. According to this we have:

P(Dn,tDm,t) = P(Dn,t = 1,Dm,t = 1) =

= P
(
un,t < Φ−1(PDn,t)

√
w2
g1

+ ψ2
n, um,t < Φ−1(PDm,t)

√
w2
g2

+ ψ2
m,t

)
Now consider two random variable X1 and X2 - both of them normal dis-
tributed with the expected values µ1, µ2 and the standard deviations σ1, σ2

respectively. We know that in general case the density function of bivariate
normal distribution is expressed by formula

f(x1, x2) =
1

2π
|Σ|−

1
2 exp

(
−1

2
(XTΣ−1X)

)
where

X =

[
x1 − µ1

x2 − µ2

]
and covariance matrix Σ as follow

Σ =

[
σ2

1 σ1σ2ρ12

σ1σ2ρ12 σ2
2

]
Try to use this to solve our problem.

Generally it is not true that if we have two random variables with the
normal distribution then the distribution of random vector is normal distrib-
uted as well. But in this case it will be like this and it is a result of follow
lemma:

Lemma 3.1 The vector X = (X1, X2, . . . , Xk) is Nk(µ,Σ)-distributed if and
only if aTX is N1(a

Tµ, aTΣa)-distributed for every a ∈ Rk.

We know that random variables un,t and um,t are dependent (because market
risk factors Xg1 and Xg2 are dependent). But on the other hand they are
linear combination of random variables, which are independent. And this
guarantees fact that every time we can find the vector a, which satisfies the
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condition of above lemma.
Thus, the vector (Dn,t, Dm,t) has bivariate normal distribution.

We see that applying above formula requires the computation of some
values. We know already that un,t and um,t are standard normal distributed
with expected values 0 and variations w2

g1
+ψ2

n and w2
g2

+ψ2
m respectively. It

gives us directly a vector

U =

[
un,t
um,t

]
To get a covariance matrix we need variation of random variables and covari-
ation. The variation we already have, so look at covariance.

The covariance represents the co-movement of the two variables and is
defined as

Cov(un,t, um,t) = E(un,t − E(un,t))(um,t − E(um,t))

The expectation values of variables equal 0 and independence between cor-
responding risk factors lead us to

Cov(un,t, um,t) = E(un,tum,t) = E((wg1Xg1,t+εn,tψn)(wg2Xg2,t+εn,tψn)) = wg1wg2E(Xg1,tXg2,t)

As we assumed in the beginning of our consideration the firm risk factors are
not related each other and they are not related with market risk factors as
well. Hence, the correlation coefficient, which expressed relationship between
them will depend only on market risk factors and will be defined by ρg1g2 =
E(Xg1,tXg2,t). So finally the covariance matrix is as follow

Σ =

[
w2
g1

+ ψ2
n wg1wg2ρg1g2

wg1wg2ρg1g2 w2
g2

+ ψ2
m

]
As we see we got a ’values’ which characterizes bivariate normal distrib-

ution. Now we make some computation which let us to get final formula of
density function. Using mostly properties of matrix in the computations we
will get

|Σ| = (w2
g1

+ ψ2
n)(w

2
g2

+ ψ2
m)− w2

g1
w2
g2
ρ2
g1g2

where |Σ| denotes determinant of the covariance matrix Σ.

|Σ|−
1
2 =

1√
(w2

g1
+ ψ2

n)(w
2
g2

+ ψ2
m)− w2

g1
w2
g2
ρ2
g1g2

Σ−1 =

 w2
g2

+ψ2
m√

(w2
g1

+ψ2
n)(w2

g2
+ψ2

m)−w2
g1
w2

g2
ρ2g1g2

− wg1wg2ρg1g2√
(w2

g1
+ψ2

n)(w2
g2

+ψ2
m)−w2

g1
w2

g2
ρ2g1g2

− wg1wg2ρg1g2√
(w2

g1
+ψ2

n)(w2
g2

+ψ2
m)−w2

g1
w2

g2
ρ2g1g2

w2
g1

+ψ2
n√

(w2
g1

+ψ2
n)(w2

g2
+ψ2

m)−w2
g1
w2

g2
ρ2g1g2
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Getting a nice formula of the density function is not easily solvable problem
in this case. In theory it should be possible by deriving an integral of this
function, but in practice it will be very difficult and not necessary. Presently,
a lot of corresponding programs is available (for instance SPSS, Matlab, etc),
which enable getting the results without manual computations.
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Chapter 4

The Basel II Capital Accord

4.1 Introduction

In June 2004 the Basel Committee introduced a New Accord called Basel II.
Similarly to the Basel I accord, the Basel II settles regulations concerning
banking. The document includes methods of measuring risk and calculating
capital requirements. However, the Basel Committee does not force banks
to use exactly these methods. Contrary to Basel I, the New Accord gives
banks freedom of choice. They can adapt analytical methods of computing
the amount of required capital and the advancement level of it to their own
needs. Hence, the banks have an opportunity to reduce their economic capi-
tal and regulatory capital through efficient data management and reporting.

The Basel II is based on a “three pillars” concept:

• minimum capital requirements – introduces methods and rules of com-
puting required capital,

• supervisory review – determines rights and duties of banking supervi-
sors,

• market discipline – sets the rules of reporting the information concern-
ing risk taken by the bank.

As we mentioned in the previous chapters, the required capital is strictly
related to risk, in particular, to credit risk. With respect to the risk, Basel
II extended old methods presented by the Basel I, and introduced new one.
Hence, according to the Basel Committee directives, banks can apply two ap-
proaches to calculate credit risk: the standardized approach and the Internal
Rating Based approach (IRB).
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The first one, based largely on the current accord, is its slight modifi-
cation, what still means that capital requirements are equal 8% of the out-
standing amount of money. Banks use this method because application of
methods of determine the PD′s based on ratings is rather impossible in many
countries. The reason is that only few borrowers possess ratings which are
convenient for local markets and give banks favorable risk weights.

The Internal Rating Based approach gives banks more possibilities. In
general, banks are ought to calculate borrowers’ probability of default using
internal measures. In particular, banks can also estimate the loss given de-
fault and the exposure at default using theirs own methods. Then, we speak
about the Advanced Internal Ratings Based model. Anyway, both approaches
lead banks to the same – to get an estimate of the capital requirements, with
the exception that the Advanced IRB is more adapted to the bank. In this
case the LGD and the EAD are based on the historical data, which gives a
better estimate. However, in accordance with the basic IRB, the LGD and
the EAD are given by Basel Committee. Hence, they are constant and they
do not depend on the bank.

According to the Basel II, one of the tool which can be used by the
financial institutions to determine the probability of default and the capital
requirements is an Asymptotic Risk Factor Model. The ASRFM is based on
the Merton model and by acceptance of certain assumptions, it gives the
estimate of above components.

4.2 The Basel II approach on the contract

level

4.2.1 The Asymptotic Risk Factor

The Asymptotic Risk Factor Model gives the opportunity to calculate eco-
nomic capital requirements using risk weight formulas. Similar to Basel I,
we distinguish two risk types: the market risk and the risk which is speci-
fied for the company. The idea behind the ASRFM is that the market risk
is completely diversified and the portfolio becomes more fine-grained which
means that large individual exposures have smaller shares in the exposure
of the whole portfolio. Hence, we assume that the bank’s portfolio consists
of a large number of contracts with small exposure. Moreover, because of
total diversification of the market risk, we assume that the economic capital
depends only on the contract and the company, not on the portfolio which
includes this contract.

For the sake of expressing the market asset value as the sum of normally
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distributed market risk factor and firm’s risk factor multiplied by correspond-
ing sensitivities, the market asset value has also the normal distribution.
However, in comparison to the model presented by Basel I, the ASFRM re-
quires something more than only the normal distribution of the market asset
value. According to the model it should be a standard normal distributed.
Because of that, the model introduced new formula, which is as follows:

An,t =
√
ρnXt +

√
1− ρnεn,t, (4.1)

where Xt denotes the market risk factor at time t, εn,t denotes the firm’s
risk factor for company n at time t, and t as previously, means the tth year
during the contract time t = 0, . . . , T − 1.
Directly, it follows from this equation that the assets of firms n and m are
multivariate Gaussian distributed (a similar proof is presented in Chapter
3) and the assets of two firms are correlated, with the linear correlation
coefficient

E(An,tAm,t) =
√
ρnρm.

Moreover, the correlation between the asset’s return An,t and the market risk
factor Xt is equal to

√
ρn, therefore

√
ρn is interpreted as the sensitivity to

the systematic risk.

The same as in the Basel I approach, the ASRFM is based on the single
asset model of Merton. Hence, the firm’s asset value is expressed as the sum
of liability and the amount of debt, and the probability of default is equal to
the probability that the firm’s asset value is less than the amount of debts.
We remember from Chapter 3 that

Dn,t =

{
1 if An,t ≤ Φ−1(PDn,t),

0 if An,t ≥ Φ−1(PDn,t).
(4.2)

where Dn,t denotes the default at time t and PDn,t the probability of de-
fault. According to the definition, PDn,t is an unconditional probability. It
is specify for the customer and based on ’the quality of the customer’. The
unconditional probability is used mainly to obtain the loss distribution. In
the case of small number of contracts it it possible, however using the un-
conditional probability and unconditional loss distribution when we have a
lot of contracts is not efficient for the sake of difficulty of computations.
Therefore, along with the unconditional probability, the ASRFM introduces
a conditional probability. This probability is characterized by dependence on
the market risk factor. We calculate it knowing the outcome of the system-
atic risk factor at time t. Further, it will enable determination of expected
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distribution.

P(Dn,t = 1|Xt = x) = P(An,t ≤ Φ−1(PDn,t)|Xt = x)

= P(
√
ρnXt +

√
1− ρnεn,t ≤ Φ−1(PDn,t)|Xt = x)

= P
(
εn,t ≤

Φ−1(PDn,t)−
√
ρnXt√

1− ρn

∣∣∣Xt = x

)
= Φ

(
Φ−1(PDn,t)−

√
ρnx√

1− ρn

) (4.3)

Usually this probability is called The Stress Probability and expresses the
probability of the total loss. Moreover, the conditional probability can be
interpreted as assuming various scenarios for the economy, determining the
probability of a given portfolio loss under each scenario, and then weighting
each scenario by its likelihood.

We already know that the economic capital is kept to cover only the
unexpected losses. Hence, if we would like to have the probability of the
unexpected loss we have to subtract the probability of the expected loss,
which is expressed by the unconditional probability of default. Hence:

PDthe unexpected loss = PDthe stress − PDthe expected loss.

Because we know that the unexpected losses are strictly linked with the loss
given default and the exposure at default, hence, to hedge the contract with
α’s certainty the nth bank has to keep at time t the economic capital as
follows:

ECAPn,t = LGDn · EADn,t · PDthe unexpected loss

= LGDn · EADn,t ·
(

Φ

(
Φ−1(PDn,t)−

√
ρnx√

1− ρn

)
− PDn,t

)
. (4.4)

This formula holds for all x – realizations of Xt.

4.3 The Basel II approach on the portfolio

level

The idea of the Basel II for portfolios, similar to the individual contract is
largely based on the Merton model.
Similarly, as in the previous sections, we will consider the portfolio loss and
later we will introduce the formula expressing the required capital. We will
present the computations separately for two types of the portfolio.
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4.3.1 Heterogenous portfolio

A heterogenous portfolio includes contracts with all different characteristics
for each of them: the exposures EXPn,t, the probabilities of default PDn,t,
the asset correlations ρn, and the loss given defaults LGDn.
Assume that we have this kind of portfolio with N contracts. Each of these
contracts has its share in the whole portfolio. This means that when a
contract goes into default, then its default will trigger the loss proportional
to the share. The most convenient tool to express the share of each contract
loss in the loss of whole portfolio is using the weight. But what is the smartest
way of determining these weights?

We already know that the loss is related to the exposure. The exposure
denotes the remaining outstanding amount, hence the greater exposure, the
greater loss. Because of that, taking the share of the contract’s exposure in
the exposure of portfolio as the weights seems to be logical. So let us define
the exposure weight at time t as

wn,t =
EXPn,t∑N
n=1EXPn,t

n = 1, . . . , N t = 0, . . . , T − 1 (4.5)

Considering the Basel I approach, we said that the capital requirements
are expressed by αth percentile of the loss distribution. The same approach
is applied in the ASFRM and now we will discuss the details.

Let us take into consideration the heterogenous portfolio with N con-
tracts, with the exposures EXPn,t, the asset correlations ρn, the probabilities
of default PDn,t, the losses given default LGDn and the weights wn,t. Then
the portfolio loss per monetary unit of exposure (for instance dollars, euros)
at time t is given by a formula

Lpt :=
N∑
n=1

EXPn,t · LGDn ·Dn,t.

If we denote LGDn,t ·Dn,t as a random variable Zn,t then

Zn,t =

{
0, when the default does not occur at time t,

LGDn,t, otherwise.
(4.6)

For the sake of the construction of Zn,t and properties of the LGD, we can
assume:

(A.1) Zn,t to belong to the interval [0, 1] and conditionally on Xt,to be inde-
pendent for all n = 1, . . . , N .
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With respect to this portfolio we can also consider the portfolio loss ratio
Rp
t expressing the ratio of the total portfolio loss to total portfolio exposure

Rp
t =

Lpt∑N
n=1EXPn,t

=

∑N
n=1EXPn,t · LGDn ·Dn,t∑N

n=1EXPn,t
=

∑N
n=1EXPn,t · Zn,t∑N

n=1EXPn,t
,

for Zn,t given by Formula (4.6). We provide it, because as we will see further,
the ASFRM proposes to determine a distribution of the portfolio loss ratio,
instead of the loss distribution.

In accordance with the ASFRM, we consider the portfolio only with con-
tracts characterized by small amount of exposure. However, the sequence of
exposure amounts should not converge to zero too quickly. Because of that,
we will pose some restrictions concerning the exposure. This is necessary
to guarantee that the market risk will be completely diversified. Thus, we
assume:

(A.2) EXPn,t forms a sequence of positive numbers such that
∑N

n=1EXPn,t ↑
∞ for N →∞ and for τ > 0

EADN,t∑N
n=1EXPn,t

= O
(
N−( 1

2
+τ)
)
. (4.7)

Assumptions (A.1) and (A.2) are weak; they hold in the real world and for
us are very important. Due to these assumptions, we are sure that the share
of the greatest exposures shrinks to 0, as the number of exposures in the
portfolio increases. In that case, it can be shown that

Proposition 4.1 If we assume (A.1) and (A.2), then for N →∞

Rp
t − E[Rp

t |Xt = x] → 0, almost surely. (4.8)

Proof: To prove Proposition 4.1 we will use the special version of the Strong
Law of Large Numbers presented in the “Oxford Studies in Probability” by
Valentin V. Petrov in 1995 (Theorem 6.7):

Theorem 4.1 If aN ↑ ∞ and
∑∞

N=1
V ar(YN )

a2
N

<∞ then

1

aN

(
N∑
n=1

Yn − E

(
N∑
n=1

Yn

))
→ 0, almost surely. (4.9)
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Let Yn,t ≡ Zn,t · EXPn,t and aN,t ≡
∑N

n=1EXPn,t for t = 0, . . . , T − 1 and
n = 1, . . . , N . Hence:

∞∑
N=1

V ar(YN,t)

a2
N,t

=
∞∑
N=1

V ar(ZN,t · EXPN,t)(∑N
n=1EXPn,t

)2 (4.10)

Because EXPn,t at time t is given for each contract n, we have:

∞∑
N=1

V ar(YN,t)

a2
N,t

=
∞∑
N=1

(
EXPN,t∑N
n=1EXPn,t

)2

· V ar(ZN,t). (4.11)

For all realization of Xt x, a conditional independence implies that

∞∑
N=1

V ar(YN,t|Xt = x)

a2
N,t

=
∞∑
N=1

(
EXPN,t∑N
n=1EXPn,t

)2

· V ar(ZN,t|Xt = x).

To apply Theorem (4.1) we have to show that this sum is finite. In accordance
to assumption about Zn,t, we know that for t = 0, . . . , T−1 and n = 1, . . . , N
it belongs to [0, 1]. Thus, V ar(ZN,t|Xt = x) is finite for any Xt = x. In that
case, for t = 0, . . . , T − 1 there exists the constant Mt such that

V ar(ZN,t|Xt = x) < Mt.

Moreover, using Assumption (A.2) we have that

EXPN,t∑N
n=1EXPn,t

= O
(
N−( 1

2
+τ)
)

for τ > 0,

and directly(
EXPN,t∑N
n=1EXPn,t

)2

=
(
O
(
N (− 1

2
+τ)
))2

=
(
O(1) ·N (− 1

2
+τ)
)2

=

= O(1) ·N (1+2τ) = O
(
N (1+2τ)

)
.

The lemma presented below and fact that

Rp
t =

∑N
n=1 Yn
aN

, for t = 0, . . . , T − 1

finishes the explanation why the assumption of theorem holds, what means
that Rp

t − E[Rp
t |Xt = x] → 0 for t = 0, . . . , T − 1.
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Lemma 4.1 If {bN} is a sequence of positive real numbers such that {bN}
is O(N−ς) for some ς > 1, then

∑∞
N=1 bN <∞.1

�
Intuitively, this proposition says that shrinking the exposure sizes of the
single contracts cause total diversification of the market risk. In the limit,
the loss ratio converges to the function depending on the market risk factor.
This is very useful, because we would like to know the distribution of portfolio
loss ratio.

According to Proposition (4.1) we can consider the conditional distrib-
ution of E[Rp

t |Xt = x], and then automatically we have the unconditional
distribution. Now it is natural, that we would like to know something about
the variance. It is reasonable that we may expect getting the variance of Rp

t

by computing the variance of E[Rp
t |Xt = x]. But for us it is more important

to obtain knowledge about the percentiles of the unconditional distribution,
because it expressed the capital requirements. We said that the capital re-
quirements, enabling covering α of the unexpected losses, are expressed by
the αth percentile. The ASRFM is using definition of percentile as follows:

qα(Y ) = inf{y : P(Y ≤ y) ≥ α} (4.12)

The first step to show that the α percentile of Rp
t can be turn into the α

percentile of E[Rp
t |Xt = x] for t = 0, . . . , T , is to prove a proposition below.

Proposition 4.2 If (A.1) and (A.2) hold, then for t = 0, . . . , T

lim
N→∞

(
V ar(Rp

t )− V ar(E[Rp
t |Xt])

)
= 0.

Proof: Similar like the proof of Proposition (4.1), this proof will be based
on Theorem (4.1). Moreover we will use the lemma below:

Lemma 4.2 Let {bN} and {cN} be sequences of real numbers such that
aN =

∑N
n=1 bn ↑ ∞ and cN → 0. Then 1

aN

∑N
n=1 bncn → 0.2

Let us take bn,t ≡ EXPn,t and cn,t ≡ EXPn,tPn
i=1 EXPi,t

for t = 0, . . . , T − 1 . Then,

similar as in the previous proof, Assumption (A.2) gives us that aN,t ↑ ∞
and cN,t → 0 if N →∞. Hence, according to the lemma

1∑N
n=1EXPn,t

N∑
n=1

(EXPn,t)
2∑n

i=1EXPi,t
−→ 0. (4.13)

1Knopp, Konrad, Infinite Sequences and Series, New York: Dover Publications, 1956
(a corollary of Theorem 3.5.2)

2Petrov, Valentin V., Limit Theorems of Probability Theory , n.4
‘Oxford Studies in Probability’, Oxford University Press (1995), Lemma 6.10
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Using the standard property of the conditional variance we get

V ar(Rp
t )− V ar(E[Rp

t |Xt]) = E(V ar[Rp
t |Xt]) =∑N

n=1(EXPn,t)
2 · E(V ar[Zn,t|Xt])(∑N

n=1EXPn,t

)2

Under Assumption (A.1) it exists for t = 0, . . . , T − 1 the constant Mt such
as

E(V ar[Zn,t|Xt]) < Mt

and then

V ar(Rp
t )− V ar(E[Rp

t |Xt]) < Mt ·
∑N

n=1(EXPn,t)
2(∑N

n=1EXPn,t

)2 =

=
Mt∑N

n=1EXPn,t
·
∑N

n=1(EXPn,t)
2∑n

i=1EXPi,t
<

Mt∑N
n=1EXPn,t

·
∑N

n=1(EXPn,t)
2∑n

i=1EXPi,t
−→ 0

based on (4.13). �
Therefore, we see that we can approximate the unconditional distribution of
the loss by the conditional distribution. This is very convenient for us because
it is easier to get the conditional distribution than the unconditional.

In particular, we will be interested in the approximation of the α per-
centile from the unconditional distribution by the percentile from the con-
ditional distribution. If this is possible then we can easily get the capital
requirements for the heterogenous portfolio.
We will start from the proposition below:

Proposition 4.3 If assumptions (A.1) and (A.2) hold then for any δ > 0
and

lim
N→∞

FN(qα(E[Rp
t |Xt])− δ) ∈ [0, α]

lim
N→∞

FN(qα(E[Rp
t |Xt]) + δ) ∈ [α, 1]

FN denotes the sequence of the cumulative distribution functions of the dis-
tribution of the Rp

t . The literal interpretation of this proposition is that the
αth percentile of E[Rp,t|X] covers almost whole distribution of the loss.

Proof: Due to the previous proposition and the fact that almost sure con-
vergence implies convergence in probability we have that for all x and ε > 0

lim
N→∞

P(|Rp
t − E(Rp

t |Xt)| ≤ ε |Xt = x) = 1. (4.14)
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Let FN be a cumulative density function of Rp
t , then (4.14) implies

lim
N→∞

(
FN(E(Rp

t |Xt) + ε |Xt = x)− FN(E(Rp
t |Xt)− ε |Xt = x)

)
= 1.

A cumulative density function is bounded in [0, 1], hence we get

lim
N→∞

FN(E[Rp
t |Xt] + ε |Xt = x) = 1,

lim
N→∞

FN(E[Rp
t |Xt]− ε |Xt = x) = 0.

Let S+
N denote the set of realizations x of Xt such that E[Rp

t |Xt = x] is less
than or equal to its αth quantile value, i.e.,

S+
N :=

{
x : E[Rp

t |Xt = x] ≤ qα(E[Rp
t |Xt])

}
.

Now,
P(Xt∈S+

N) = P
(
E[Rp

t |Xt] ≤ qα(E[Rp
t |Xt])

)
≥ α.

By the total probability theorem and the above we obtain

FN(qα(E[Rp
t |Xt]) + ε) = FN(qα(E[Rp

t |Xt]) + ε |Xt∈S+
N)P(Xt∈S+

N)

+ Fn(αq(E[Rp
t |Xt]) + ε |X /∈S+

n )P (X /∈S+
n )

≥ FN(qα(E[Rp
t |Xt]) + ε |Xt∈S+

N)P(Xt∈S+
N)

≥ FN(qα(E[Rp
t |Xt]) + ε |Xt∈S+

N) α.

(4.15)

A cumulative distribution is increasing and bounded in [0, 1], hence for all
x ∈ S+

N the following holds

1 ≥ lim
N→∞

FN(qα(E[Rp
t |Xt])+ε |Xt = x) ≥ lim

N→∞
FN(E[Rp

t |Xt]+ε |Xt = x) = 1

and we get
lim
N→∞

FN(qα(E[Rp
t |Xt]) + ε |Xt∈S+

N) = 1

Hence:
lim
N→∞

FN(qα(E[Rp
t |X]) + δ) ∈ [q, 1].

Similar we can define set S−N as follows:

S−n =
{
x : E[Rp

t |Xt = x] ≤ qα
(
E[Rp

t |Xt = x]
)}
.

Applying analogically approach like in the case of S+
N we get:

lim
N→∞

FN(qα(E[Rp
t |X])− δ) ∈ [0, q].
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�
The above proposition has a very important advantage. Due to this, we

can substitute the percentile of Rp
t by the percentile of E[Rp

t |Xt]. Moreover,
if we assume some additional restrictions, then the percentile of E[Rp

t |Xt] for
all t = 0, . . . , T is expressed in a simple and desirable form. So, let us assume
that:

(A.3) the market risk factor Xt is one-dimensional for t = 0, . . . , T − 1

(A.4) there exists an open interval I containing qα(Xt) and the number of
contracts in the portfolio p N0 ∈ R such that for all N > N0:

(a) E[Rp
t |Xt = x] is nondecreasing on I,

(b) infx∈I E[Rp
t |Xt = x] ≥ supx≤inf I E[Rp

t |Xt = x],

(c) supx∈I E[Rp
t |Xt = x] ≤ infx≥inf I E[Rp

t |Xt = x].

To give an explanation: the first assumption guarantees that qα(Xt) is deter-
mined uniquely, the assumptions (b) and (c) are needed to ensure that the
neighborhood of qα is associated with the neighborhood of the percentile of
E[Rp

t |Xt].

Proposition 4.4 If (A.3) and (A.4) hold, then for N > N0

qα(E[Rp
t |Xt]) = E[Rp

t | qα(Xt)]. (4.16)

Proof: To prove the proposition we will use Assumption (A.3). Let N > N0

be fixed.
Xt ≤ qα(Xt) −→ E[Rp

t |Xt] ≤ E[Rp
t |qα(Xt)] (4.17)

Hence,
P(E[Rp

t |Xt] ≤ E[Rp
t |qα(Xt)]) ≥ P(Xt ≤ qα(Xt)) ≥ α.

Similarly we can consider reverse implication in Equation (4.17) and then we
will get finally

inf{y : P(E[Rp
t |Xt] ≤ y) ≥ α} = E[Rp

t |qα(Xt)].

Note, that the left side of this equation is exactly the definition of the αth
percentile so the proposition is proved. �

To get the final formula we have to consider the continuity. We have
to avoid the discontinuity at the percentile, hence, for the certainty we will
provide additional constraints:
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(A.5) There is an open interval I containing qα(Xt) and for this interval
the following conditions hold:

(a) the cumulative distribution function of the market risk factor Xt

is increasing and continuous

(b) there exist κ, κ ∈ R such that

0 < κ < E[Rp
t |Xt = x] < κ <∞, for N > N0.

Due to this assumptions and previous ones as well we can use proposition:

Proposition 4.5 If (A.1) to (A.5) hold then for N →∞

P(Rp
t ≤ E[Rp

t |qα(Xt)]) −→ α, (4.18)

|qα(Rp
t )− E[Rp

t |qα(Xt)]| −→ 0.3 (4.19)

Using the above proposition and Formula (4.16) we can write that

lim
N→∞

qα(R
p
t ) = qα(E[Rp

t |Xt]).

It gives us an opportunity to use the expected distribution of the loss ratio
instead of the unexpected distribution in the computations.

Continuing, we can write based on Proposition (4.4) and the definition of
the loss fraction that:

lim
N→∞

qα(R
p
t ) = E[Rp

t |qα(Xt)] =

∑N
n=1EXPn,t · E[Zn,t|Xt = Φ−1(α)]∑n=1

N EXPn,t
.

Further, since the LGD’s are assumed to be known in the advance and de-
terministic

lim
N→∞

qα(R
p
t ) =

∑N
n=1EXPn,t · LGDn · P(Dn,t = 1|Xt = Φ−1(α))∑N

n=1EXPn,t
.

Inserting Formulas (4.3) and (4.5) we will get finally

lim
N→∞

qα(R
p
t ) =

N∑
n=1

wn,t · LGDn · Φ
(

Φ−1(PDn,t)−
√
ρnΦ

−1(α)
√

1− ρn

)
.

3 the proposition and proof we can find in M.Gordy. A risk-factor foundation for
risk-based capital rules. Journal of Banking and Finance, 24:119-142,2000
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Let us remark that we considered everything provided that the customers
depend on the same unique risk factor and any exposure has not the signif-
icant share in the portfolio. Hence as the number of the customers in the
portfolio N →∞, the α-percentile of the resulting portfolio loss distribution
approaches the asymptotic value

qα(Rp,t) =
N∑
n=1

wn,t · LGDn · Φ
(

Φ−1(PDn,t)−
√
ρnΦ

−1(α)
√

1− ρn

)
,

and similarly like in the approach on the contract level (Formula (4.4)) the
economic capital for nth company at time t is expressed by formula

ECAPn,t =
N∑
n=1

wn,t · LGDn ·
(

Φ

(
Φ−1(PDn,t)−

√
ρnΦ

−1(α)
√

1− ρn

)
− PDn,t

)
.

4.3.2 Homogeneous portfolio

The portfolios of financial institutions have different sizes and the size of
portfolio has significant influence on the efficiency of computations. Let us
imagine a portfolio with 1 million contracts. Then, the consideration of
each contract separately is time-consuming. To increase the efficiency we
can apply the same approach as Basel I proposed. We can split the whole
portfolio into smaller parts so-called subportfolios.

Each subportfolio contains some number of the contracts characterized
by the same exposure, the asset correlation, the probability of default, and
the loss given default. If we assume that in the range of one portfolio we
have S subportfolios, then the loss of each subportfolio is expressed by the
formula

Lst = LGDs · ws,t ·
Ns∑
n=1

Dn,t,

where s denotes one of the subportfolios, Ns denotes the number of contracts
in the sth subportfolio, and

Dn,t =

{
1, when An,t ≤ Φ−1(PDn,t),

0, otherwise

Because at time t = 0, . . . , T − 1 all contracts depend on the same market
risk Xt, the total loss of the portfolio is equal to

Lpt =
S∑
s=1

Lst =
S∑
s=1

LGDs · ws,t ·
Ns∑
n=1

Dn,t.
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In the case of one subportfolio,
∑Ns

n=1Dn,t denotes exactly the number of
contracts included in this subportfolio which defaulted at time t.

Assume like above that nth customer goes into default at time t with
the probability PDn,t and that we have k defaults for k ≤ Ns. Then, the
probability of having exactly k defaults is the average of the conditional
probabilities of k defaults, averaged over the possible realizations of Xt and
weighted with the probability density function φ(x).

P

(
Ns∑
n=1

Dn,t = k

)
=

∫ ∞

−∞
P

[
Ns∑
n=1

Dn,t = k|Xt = x

]
φ(x)dx. (4.20)

We mentioned before that the number of defaults is a binomially distributed
random variable, so the conditional probability is expressed as follows:

P

[
Ns∑
n=1

Dn,t = k|Xt = x

]
=

=

(
Ns

k

)
(P[Dn,t = 1|Xt = x])k(1− P[Dn,t = 1|Xt = x])Ns−k

We already know that according to the ASFRM model the individual condi-
tional default probability P[Dn,t = 1|Xt = x] is given by the formula

P [Dn,t = 1|Xt = x] = Φ

(
Φ−1(PDn,t)−

√
ρnx√

1− ρn

)
Therefore substituting this into Equation (4.20) yields

P

(
Ns∑
n=1

Dn,t = k

)
=

∫ ∞

−∞

(
Ns

k

)(
Φ

(
Φ−1(PDn,t)−

√
ρnx√

1− ρn

))k

·
(

1− Φ

(
Φ−1(PDn,t)−

√
ρnx√

1− ρn

))Ns−k

φ(x)dx,

and finally the distribution of the number of defaults is as follows

P

(
Ns∑
n=1

Dn,t ≤ l

)
=

l∑
k=0

∫ ∞

−∞

(
Ns

k

)(
Φ

(
Φ−1(PDn,t)−

√
ρnx√

1− ρn

))k

·
(

1− Φ

(
Φ−1(PDn,t)−

√
ρnx√

1− ρn

))Ns−k

φ(x)dx
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Above formula and everything which we said till this time works for sub-
portfolios with finite number of contracts. Of course, the subportfolios with
infinite number of contracts never occur. However, for completeness of the
model we will consider this case as well.

Let us assume that we have a subportfolio with very large Ns. Unfor-
tunately, we are not able to compute exact values, hence we will make the
approximation for large subportfolio. Because of that we will consider the
fraction of customers who defaulted.
Conditional on the realization x of Xt for t = 0, . . . , T the individual defaults
occur independently from each other. Hence, in a very large subportfolio, the
Law of Large Numbers ensures that the fraction is equal to the individual
default probability:

P

[∑Ns

n=1Dn,t

Ns

= PDn,t

∣∣∣Xt = x

]
= 1. (4.21)

Applying the same approach as above we have:

P

[∑Ns

n=1Dn,t

Ns

≤ l

]
= E

(
P

[∑Ns

n=1Dn,t

Ns

≤ l
∣∣Xt = x

])
=

=

∫ ∞

−∞
P

[∑Ns

n=1Dn,t

Ns

≤ l
∣∣Xt = x

]
φ(x)dx.

Knowing (4.21) we can write

P

[∑Ns

n=1Dn,t

Ns

≤ l

]
=

∫ ∞

−∞
P[PDn,t ≤ l|Xt = x]φ(x)dx

=

∫ ∞

−∞
I{PDn,t≤l}φ(x)dx =

∫ ∞

−x
φ(x)dx = Φ(x), (4.22)

where x is taken such that

PDn,t(−x) = l for x = x,

PDn,t(x) ≤ l for x > x.

The above formula and the application of the formula of the probability of
default given by the ASFRM, enables the computation of the value of x.
Hence:

x =

√
1− ρnΦ

−1(l)− Φ−1(PDn,t)√
ρn

.
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Inserting to Formula (4.22) we have that:

P

[∑Ns

n=1Dn,t

Ns

≤ l

]
= Φ

(√
1− ρnΦ

−1(l)− Φ−1(PDn,t)√
ρn

)

If now the αth percentile of the loss distribution is denoted by lα, then:

α = Φ

(√
1− ρnΦ

−1(lα)− Φ−1(PDn,t)√
ρn

)
,

and directly

lα = Φ

(
Φ−1(PDn,t) +

√
ρnΦ

−1(α)
√

1− ρn

)
.

Hence if we assume that the number of the customers in each subportfolio
N1, . . . , NS →∞, then the αth percentile of the portfolio loss distribution is
given by

qα(L
p
t ) =

N∑
n=1

EXPn,t · LGDn · Φ
(

Φ−1(PDn,t) +
√
ρnΦ

−1(α)
√

1− ρn

)
,

and the economic capital at time t:

ECAPn,t =
N∑
n=1

EXPn,t ·LGDn ·
(

Φ

(
Φ−1(PDn,t) +

√
ρnΦ

−1(α)
√

1− ρn

)
− PDn,t

)
.
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Chapter 5

Internal Return Capacity – IRC
Risk adjusted Return on
Capital – RaRoC

The measure which is used in the quantification of risk is the Risk-adjusted
Return on Capital denoted by RaRoC. According to definition presented
by the Basel Committee, the RaRoC is a risk-adjusted profitability mea-
surement and management framework for measuring risk-adjusted financial
performance for providing a consistent view of profitability across business.

Development of the RaRoC methodology began in the late 1970s. The
first steps in this field were made by a group at Bankers Trust. Their original
interest was to measure the risk of the bank’s credit portfolio, as well as
the number of the bank’s depositors and other debt holders to a specified
probability of loss. Since then, a number of other large banks have developed
the RaRoC with the aim, in most cases, of quantifying the amount of equity
capital necessary to support all of their operating activities.

The key principle of the RaRoC is adjusting for risk so that the rate of
return reflects the risk on a given facility. Hence, the RaRoC percentage is the
risk adjusted return as a percentage of the capital requirements. Generally
we can write:

RaRoCn,t =
Cash F lown,t

Capital Requirementsn,t
=

CFn,t
ECAPn,t

(5.1)

We already know that the Basel Committee provided two main methods
of computing the capital requirements. In the accordance to Basel I, the cap-
ital requirements are defined as 8% of the outstanding amount of money and
according to Basel II, they are expressed by the economic capital (the formu-
las using in the computations were presented in the previous chapters). In
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aftermath to this, we can also distinguish next to the RaRoC, measure which
was introduced by Basel I and is called Internal Return Capacity (IRC). Be-
cause of the model specification and its assumption, IRC is less risk-adjusted,
but the method of computations remains the same like in the RaRoC case.
Hence generally:

IRCn,t =
Cash F lown,t

Capital Requirementsn,t
=

CFn,t
RECAPn,t

(5.2)

In relation to the Cash Flow, Basel II does not propose any changes in
the computation, so the definition from Chapter 2 holds in both cases. As
a reminder, by Cash Flow we understand the net income diminished by all
costs, and the losses in case of default occurrences. We gave the specification
of the above components in the second chapter as well.

The IRC as well as the RaRoC give a information about contracts. Mainly,
they are the measures introduced to determine the risk. In that case, the
IRC and the RaRoC should give the information about the risk which was
related with the realized contract, and which will be taken by bank in connec-
tion with the acceptance of new contract. When considering the distinction
between the realized risk and the expected risk, this naturally leads to the
realized RaRoC and the expected RaRoC. In the case of IRC we rather do
not distinguish realized IRC and expected IRC. However, for purposes of this
thesis we will be consider both of them.

5.1 The Realized IRC and RaRoC

The realized RaRoC and realized IRC are the measures reflected the past.
More precisely, we use them to describe the contracts from the past. Because
these contracts are realized, we know everything about them. We have the
knowledge about all parameters, such as the costs, the net income, etc, and
about the course of contract. To put it differently, we know whether it
defaulted or not. Hence, the computations of the IRC and the RaRoC are
mainly based on summing up all discounted components and dividing by sum
of the capital requirements over the years.
If we denote the income by I, the costs by C and the loss by L then the
RaRoC for ith contract:

RaRoCn =

∑T
t=1

CFn,t

(1+rD)t∑T−1
t=0

ECAPn,t

(1+rD)t

=

∑T
t=1

(
In,t

(1+rD)t − Cn,t−1

(1+rD)t−1 − Ln,t−1

(1+rD)t−1 ·Dn,t−1

)
∑T−1

t=0
ECAPn,t

(1+rD)t

,
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and the IRC for ith contract:

IRCn =

∑T
t=1

CFn,t

(1+rD)t∑T−1
t=0

RECAPn,t

(1+rD)t

=

∑T
t=1

(
In,t

(1+rD)t − Cn,t−1

(1+rD)t−1 − Ln,t−1

(1+rD)t−1 ·Dn,t−1

)
∑T−1

t=0
CRn,t

(1+rD)t

,

where T denotes the contract time in years and rD is an annual discounted
rate.

Let us remark that value of the income, the costs, etc. discounted to
time 0 are called a present value of the income, the costs, etc.. Usually, the
present value is denote by prefix PV. Hence, to simplify the notation we can
write:

RaRoCn =

∑T
t=1 PV (CFn,t)∑T−1
t=0 PV (CRn,t)

IRCn =

∑T
t=1 PV (CFn,t)∑T−1
t=0 PV (CRn,t)

.

5.2 The Expected IRC and RaRoC

The state of the financial market changes very often. Because of that it
is very difficult to predict the economy and the future of contracts. Despite
that, financial companies would like to have some knowledge about a contract
before making the decision about acceptance or rejection. As long as the IRC
and the RaRoC are used, this knowledge is expressed by the expected IRC
and the expected RaRoC.

Distinct from the realized IRC, RaRoC, the expected IRC, RaRoC give
us information about future contracts. We do not know parameters which
describe the contract. Hence, we try to estimate them in some way. To this
end, we compute the IRC and the RaRoC over the years and we get the
excepted value of IRC , RaRoC multiplied by probability of default and a
survival probability. The survival probability for the nth contract in the tth
year is defined as 1− PDn,t.
More precisely, we assume a certain number of scenarios for the contract.
Because the contract can default in each year within the contract term or
finish normally without default, the number of possible scenarios is equal
to the contract term plus one. In connection with this, we can provide a
survived probability, which expresses probability that the customer survives
till tth year and then defaults in the tth year, or survives till the end of the
contract term. Hence, the survived probability is expressed by formula:

(1− PDn,1) · (1− PDn,2) · . . . · (1− PDn,t−1) · PDn,t.

As long as we would keep the assumption that the probability of default for
single contract is the same in each year, we can write:

(1− PDn)
t−1 · PDn.
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We mentioned above that the expected IRC, RaRoC are indeed the ex-
pected value of IRC, RaRoC. Hence, summarizing this section we can provide
the corresponding formulas, which are as follows:

E(RaRoCn) =
T∑
t=0

RaRoCn,t · (1− PDn,0) · . . . · (1− PDn,t−1) · PDn,t.

E(IRCn) =
T∑
t=0

IRCn,t · (1− PDn,0) · . . . · (1− PDn,t−1) · PDn,t.

The formulas presented above enable to consider the IRC and RaRoC on
the single contract level, but it also enables computations on the portfolio
level. The idea is to take as the nominator the sum of the cash flows over
the contracts included in this portfolio. Hence, for the realized IRC, RaRoC
as well as for the expected IRC, RaRoC, we aggregate the cash flows of all
contracts within each year into total cash flow for the portfolio within each
year and apply the same approach as in the case of one contract. To get
the total cash flow of the portfolio within the portfolio term, we sum up the
present values of the cash flows over years.
The methodology of computing of the capital requirements was presented in
details in Chapters 3 and 4. Therefore, we can directly conclude that:

RaRoCp =

∑T
t=1 PV (

∑N
n=1CFn,t)∑T−1

t=0 PV (ECAPp,t)
IRCp =

∑T
t=1 PV (

∑N
n=1CFn,t)∑T−1

t=0 PV (RECAPp,t)
,

where in accordance to our notation p means the portfolio with N contracts.
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Chapter 6

Comparison of Model
Performance between Basel I
and Basel II

In the previous chapters we have presented models, which are directly used
to compute the capital requirements, and indirectly to compute the IRC
and the RaRoC. However, everything that was presented till now enabled
us to get a theoretical overview. We have shown the framework of these
models, considered the mathematical and economical basis, and detailed the
assumptions that need to hold. Now, we will summarize the previous chapters
by comparing the models and support what we said by studying an example.

For the example, we will choose four companies with different ratings:
AAA, AA+, AA, and A. On account of the different ratings, these companies
are characterized by different confidence levels and cost of funds. We said
before that the higher rating, the greater the confidence level and the smaller
the cost of funds. Moreover, we consider the situation that each company
accepts the same contract. Hence, the conditions of this contract presented
in the table below, are the same for each company.

Company AAA AA+ AA A

Confidence Level 99,99% 98,08% 97,29% 92,51%
Net Principal Amount 1000 1000 1000 1000

Active Rate 5% 5% 5% 5%
Costs of Funds 2% 2,5% 3% 3,5%

Costs 0,7% 0,7% 0,7% 0,7%
LGD 20% 20% 20% 20%

Discounted Rate 4% 4% 4% 4%
Term 4 years 4 years 4 years 4 years
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Further, for each company we consider the variable PD to be in the range
(0%, 25%).

According to definitions, the IRC and the RaRoC reflect the risk level.
They are generally determined as the fraction of the cash flow and the capital
requirements. Let us emphasize, that the IRC is less-risk adjusted.
We said that both accords, the Basel I and the Basel II accord, provide the
same method of calculating the cash flow. Thus, it is obvious that as long
as the input data are the same, the results are the same for all companies as
well.

Therefore, the difference between the IRC and the RaRoC is the after-
math of the differences between the methods of computing the capital re-
quirements.

The models, which are presented in this thesis, are commonly used to
derive the capital requirements. For Basel I as well as Basel II, we showed
how to compute the amount of the required capital on the contract level and
on the portfolio level as well. The approach for both accords is mainly the
same. The models consider the default and the loss as the random variables,
determine the loss distribution and express the capital requirements as the
αth percentile of this distribution. However, they do this in a different way,
in particular, on the portfolio level.

Both models distinguish two types of risk: the market risk and the firm-
specific risk, and they express the market asset value as the weighted average
of the market risk factor and the firm’s risk factor. By the assumption that
these factors are normally distributed, it is guaranteed that the market asset
value is normally distributed. But the ASRFM (provided by Basel II) re-
quires, additionally, that the market asset value should have standard normal
distribution.
Next, they model the probability of default based on the Merton model, which
assumes that the default occurs when the market asset value is smaller than
the total debts. However, in the further computations, the model provided
by Basel I uses the unconditional probability, whereas the ASFRM uses the
conditional probability. Remember that the conditional probability is com-
puted provided that we know the value of the market risk factor. In other
words, when we know the situation of economy.

We said repeatedly that the capital requirements are kept to cover the
unexpected loss. Depending on the ratings of the financial institutions, com-
panies are obliged to hedge the contract to some extent, determined by the
confidence level. The general rule is that the lower rating, the smaller the
confidence level (but this is observed only in the Basel II accord). According
to the ASFRM model, the capital requirements depend on the quality of the
financial institution, and this is reflected in the ECAP’s formula.
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In comparison to Basel II, Basel I presents a poor assessment of the risk
incurred. Due to lack of granularity within risk levels, the same contracts
from different customers are treated the same. Hence, the model makes the
capital requirements on the contract level conditional only on the contract’s
condition. On the portfolio level, Basel I continues with the same approach.
Hence, on the portfolio level as well as on the contract level, Basel I requires
hedging the contract with 8% of the outstanding amount of money.

Distinct from Basel I, Basel II proposed some changes on the portfolio
level. First of all, it distinguishes between heterogenous and homogeneous
portfolios. The methods of computations are adjusted to these two types of
portfolios. Moreover, instead of the loss distribution, for the heterogenous
portfolio it considers the portfolio loss fraction distribution. However, for the
homogeneous portfolio the loss distribution is defined as the Bernoulli dis-
tribution with k successes (k contracts went to default) with the conditional
probability of default. The interpretation of the ECAP’s formula remains
without changes.

In relation to the IRC and the RaRoC, Basel I and Basel II keep the
same methods of computation. Thus, the difference is caused only by the
difference in calculating the capital requirements.

Summarizing, we can conclude that the Basel Committee rightly made a
decision about substituting the Basel I accord with the Basel II accord. First
of all, Basel I almost did not take the risk into account, even though it is very
substantial. Second, no distinction was made between the customers, despite
the fact that their risk profiles were significantly different. Besides, risk was
viewed on the contract level and not on the portfolio level. The risk-reducing
effects were only taken very marginally into account. Third, with reference
to the portfolio, Basel I did not take the correlation between the assets into
consideration. Due to all these shortcomings, the results given by the Basel
I model are not fully correct. Mainly, an accuracy of estimation depends on
the single contract and its characteristics.

In comparison to Basel I, Basel II presents a slightly different approach.
It takes into account everything that was omitted in the Basel I Accord. Due
to that, the ASFRM and all models recommended by Basel II give better
estimate. It is very important for correctness of model, that the accuracy of
the estimation depends on the model, not only on the single contract.
By more possibilities for banks, they can adopt models to their needs. It
guarantees better results. Looking at that from the economic point of view,
it is more profitable for banks. Banks can save more money, but from the
other side they keep enough to cover unexpected losses.
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Chapter 7

Conclusions

The Basel I and the Basel II are international agreements regulating gen-
eral rules in the banking. In this thesis we have compared both of these
documents, more precisely, the models which were or are commonly used.
Generally, these models give us the opportunity to compute the IRC and
the RaRoC, which are the tools to verify the decision about acceptation or
rejection the contract.

Models were built up from the most simple case provided by the Basel I
to the complex case of a heterogenous portfolio with different exposure sizes.
The last one was consistent with the Basel II convention and recommended
by the Basel Committee. As we said, the Basel II does not require from
banks using the same model. The banks can choose the model, which is the
most adjusted to their needs.

For the sake of taken assumptions these models are not the most general
ones. Namely, all models are one-factor models, what means that the market
risk factor, which is taken into account is only one. However, it is also
possible to consider the multi-factor models. The idea behind them is to
replace the random variable expressing the market risk factor by the random
vector. Then the dimension of the vector is equal to the number of the
market risk factors, and they are the coordinates of this vector. This idea
has very important advantage - it enables the application of the slightly
modified approach applied in the one-factor model. Therefore, we consider
the default and the loss as random variables, determine the loss distribution
and express the capital requirements as the α percentile of this distribution.
The method of computing the IRC and the RaRoC remains the same as well.

Due to comparison of the Basel I and the Basel II accord we could draw
the conclusions. Among them, the most important conclusion says that
indeed the Basel II presents the better approach. But even though it does not
make Basel II perfect. Basel II is better than Basel I, but still it bares several
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disadvantages. The assumptions taken by the models are more restrictive,
and because of that the models are less general. Hence, it will be developing
by Basel Committee. But as long as correctness of Basel II is sufficient for
all financial institutions, it will be commonly using by them.
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[10] J.C. Garcia Céspedes, “Credit Risk Modelling and Basel II”, Algo Re-
search Quarterly 5(1):57-66, 2002.

[11] M. Gordy, “A comparative anatomy of credit risk models”, Journal of
Banking and Finance 24:119-142, 2000.

50



[12] M. Gordy, “A risk-factor foundation for risk-based capital rules”, Jour-
nal of Financial Intermediation 12:199-232, 2003.

[13] M. Gordy, “Granularity adjustment in portfolio credit risk measure-
ment”, Risk Measures for the 21th Century edited by G. Szegö, Wiley,
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