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Abstract

The focus of this thesis is on modelling forward and spot prices for energy com-
panies. The two main ways of modelling power prices are stochastic models and
fundamental models. The purpose of the thesis is to investigate the different ap-
proaches to modelling and understand which approach is most appropriate for
particular applications within an energy company. A stochastic model will be
implemented based on recent literature, and applied to multiple markets (coal,
gas and power). The fundamental model is a mixed-integer programming stack
model. It will be implemented in R as a mixed integer prototype but we will then
use the industry standard software Plexos (which has heuristics which enables us
to obtain large scale suboptimal solutions). A hybrid model will be implemented
which combines both approaches.
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Chapter 1

Introduction

1.1 UK Power Markets

1.1.1 History

In the late 1980’s the UK Government wanted to restructure the power industry to
be more competitive. The problem was achieving fairer prices, whilst also ensur-
ing the stability of the system itself. Many South American countries had deregu-
lated their markets already. In 1990, the UK achieved this aim under the New
Electricity Trading Arrangements (NETA) and with mass privatisation. Other
countries followed suit. The focus was no longer on how to achieve a more ef-
ficient market, and whether that was possible, but on concepts that were already
mainstream in other markets - risk management and modelling techniques. How
should these new private companies manage risk? Was it possible to manage risk?
Was it possible to model power prices?

Black and Scholes had formulated their infamous option pricing formulas 26 years
earlier and the power industry was only beginning to attract research interest for
the first time. However, in the early 1990’s these researchers faced a lack of data.
Only towards the end of the 1990’s and early 2000’s did we start to see research
into stochastic processes designed to model power [14, 9].
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1.1.2 Forward and Spot Market

The electricity market in the UK is split into half-hour periods. For a given half-
hour period, each electricity generator submits a Final Physical Notification (FPN)
one hour before the beginning of the half-hour to the Grid Operator specifying its
planned generation output. In the lead up to a half-hour of generation, there are
3 separate markets that a generator normally participates in. Initially, a generator
will normally build up a position in the long term forward market. This is by en-
tering bilateral agreements with other generators or suppliers through a broker or
directly for the physical delivery of electricity. Physical delivery means that elec-
tricity must contractually be delivered or consumed. These contracts are agreed
in most cases for hedging reasons; most companies would rather reduce price risk
by selling (or buying for a net consumer of electricity) some of their final delivery
position in advance. Hedging is the reason why it is so important to be able to
model the forward price dynamics. The type of products that may be purchased in
this way vary. Most of the time they will be standard contracts for a certain period
of time. A calendar that is useful in the energy industry is the EFA calendar. An
EFA day starts at 23:00 and consists of 6 4-hour blocks, labelled 1-6. The stan-
dard contracts are Baseload (24 hours, 7 days per week), Peak (EFA blocks 3-5
on weekdays) and Overnights (EFA blocks 1 and 2). These products are traded
for various delivery periods in the future, which can be EFA Seasons (Winter -
EFA week 40 - 13 - or Summer - EFA week 14 - 39), EFA Quarters (Q1-4), EFA
months, weeks or days. The further into the future a delivery period is, the less
liquid it is generally.

There also exist bilateral bespoke forward contracts with different delivery vol-
umes for different half-hour periods within a day (called shape contracts). These
must be priced somehow, and it is one of the motivations for obtaining a good
model for half-hourly granularity power.

The ‘spot’ exchange is managed by the APX Group where it is possible to trade
individual half-hour blocks (from 49.5 hours prior to the start of delivery). These
trades are volume weighted to give a reference price, the APX price. Prices are
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Figure 1.1: Examples of liquid forward contracts

quoted as £/MWh. Note that technically this is not a spot market in the truest
sense, it is merely a very short term forwards market. A classical spot market is
not possible because the Grid Operator needs advanced notice to check that the
schedule is feasible and within various transmission constraints.

There is also a liquid Day-Ahead market via broker trades. It is more liquid than
the exchange products so its closing price will be used as a spot price benchmark
unless we have to look at the half-hour level, when we will use the APX exchange
half-hourly reference price as a benchamrk. Note that these spot price benchmarks
are strictly based on forward trades.

1.1.3 Balancing Market

The Grid Operator will ensure that agents that are under or over-contracted must
pay/receive money for any imbalance. To facilitate this, the Grid Operator is noti-
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fied of all forward contracts in advance. It is then the role of the Grid Operator to
ensure that the system is balanced, i.e. that supply meets demand, and this is done
using the Balancing Mechansim. This is an optional market where agents may
submit bids (to reduce generation/increase consumption) and offers (to increase
generation/reduce consumption). The cost of balancing the system in this way
is recovered by the Grid Operator through a BSUoS (Balancing Services Use of
System) charge, on a £/MWh basis. Agents also pay or are charged for energy im-
balances (the difference between their physical metered energy output/input and
their contracted output/input) according to some prices specified by the Grid Op-
erator. These prices give agents the financial incentive to match physical delivery
with their contracted position.

1.1.4 Reserve Market

Additionally there are reserve contracts where generators are contracted by the
Grid Operator to remain on standby. They also receive additional payments if
they are utilised. These are known as STOR (Short Term Operating Reserve)
contracts. There are also BM Start-up contracts which are paid to warm up certain
kinds of generating plants (Oil) which have long start up times and high fuel costs.
Conceptually, reserve is often split into two cases, spinning reserve and standing

reserve. Spinning reserve are units that are in an on state and are able to raise or
lower their generation as instructed by the Grid Operator. Standing reserve are
units that are off, waiting for the intruction to be called on.

1.2 Gas and Coal markets

1.2.1 Gas market

The National Balancing Point (NBP) is a virtual trading location for the sale and
purchase of UK natural gas. It is similar to the Henry Hub in the US, except that
it is not an actual physical location. The most granular forward contracts for gas
in the UK are Day Ahead NBP Prompt Gas contracts, so from the point of view
of this thesis, this will be our proxy for spot. These are contracts for delivery of
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some amount of gas by the end of the following day. The contracts are priced in
pence/therm. The system is operated by National Grid Ltd who are responsible
for the actual physical transportation of gas. Trades are made through an anony-
mous trading service operated by APX-ENDEX where it is possible to post bids
or offers for gas contracts. The UK is connected to Europe via several pipelines;
in particular the UK-Zeebrugge (Belgium) interconnector, the pipeline to Lan-
geled, Norway and the BBL pipeline between UK and the Netherlands. In the
UK, the Gas market is seasonal, with demand being highly dependent on temper-
ature. There is the ability to store Gas to some extent in gas storage facilities.

1.2.2 Coal market

Coal is traded in three main locations in the world. ARA (Amsterdam-Rotterdam-
Antwerp) coal, RB (Richards Bay, South Africa) coal and coal traded at Newcas-
tle, Australia. Each of these trading centres have corresponding price benchmarks
known as the API indices. API 2 corresponds to ARA coal, API 4 corresponds to
RB coal and API 6 to Newcastle coal. API financial contracts are traded both bi-
laterally and on the European Energy Exchange (EEX)[3]. The forward contracts
of shortest granularity are monthly contracts.

1.3 Why do companies need spot and forward price
models?

Before attempting to build any models, it is important to understand why they are
needed. The common reasons are:

- Investment decisions. This could be a decision to invest in new plant, or
whether to accept an offer for part of the company’s fleet. The decision to
install costly desulphurisation or carbon capture facilities or not relies on
good models. Modelling spreads are important - as will be explained later
on.

- Pricing contingent claims such as options.
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- Pricing of standard forward contracts as well as bespoke ‘shape’ contracts
(more complex contracts for different volumes at different times of day).

- Informing hedging decisions (and their timing). How much volume should
be hedged and when?

- Assessing risks around market prices. Assuming that a model is well-
specified, it gives us accurate distributions of prices which enable us to
assess risks using measures such as Value at Risk and Earnings at Risk.

It is important to emphasise how spreads are important in the energy industry, as
this is one of the main motivations for a hybrid model. Some definitions:

Definition 1.3.1. The spark / dark spread is the gross theoretical margin in £ of a
gas / coal power plant from selling a MWh of electricity, having bought the fuel
required to produce the MWh of electricity.

Definition 1.3.2. The clean spark / dark spread is the spark / dark spread minus the
cost of the CO2 emission allowances required to produce the MWh of electricity.

Generally there is a premium on average for power over both gas and coal in the
UK. This is because the ‘fuel mix’ is mainly gas and coal; and the gas and coal
generators will only run if they make a profit. Therefore, coal/gas power gen-
erating assets may be regarded as real options on the clean dark/spark spreads.
This is because the generator has the option to dispatch or not to dispatch. It will
only dispatch when it is profitable to do so, and that is when the price of power is
greater than the price of the fuel (plus any other operating costs). Real option the-
ory is the application of derivative pricing theory to the optionality embedded in
real assets. The traditional approach to valuing a power station was to run N fuel
and electricity simulations, then to sum the discounted expected earnings for each
time period. A distribution of earnings would be obtained this way. An analogy
from the world of derivatives would be to price European call options by running
N simulations of the underlying asset, holding the option until expiry and taking
the price to be the discounted expected payout. This generally underestimates the
value of the option. An intuitive way of thinking about the option is that it com-
prises an intrinsic value and a time value (sometimes called extrinsic value) and by
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holding the option until expiry, only intrinsic value will ever be realised. The op-
timal way to extract the value of the option is by delta hedging - ignoring various
real-life constraints such as transaction costs, non-continuous price paths and in-
complete markets. More on delta hedging can be found in any of the introductory
mathematical finance texts - for instance, Hull [13]. However, not so common
is the application of delta hedging to pricing real assets. The power generator
can also be delta hedged (at least to some extent) with a self-financing replicating
portfolio and it is possible to extract the time value of the real option in that way.
We will not look further into the subject of delta hedging real options. For an ex-
cellent introduction, see [11]. Deng, Johnson and Sogomonian [10] show how the
theory can be used to price generation assets under the assumption of Brownian
motion and mean-reverting price processes.

Because it is possible to think of the power station as an option on the clean
dark/spark spread, which can be delta hedged, the distribution of the spread itself
is perhaps the most important aspect of modelling for hedging and investment
purposes. This will be our eventual goal - the creation of a hybrid model which
is able to provide distributions of spreads. Why is the model called hybrid you
may ask? It is a blend of modelling approaches. The fuel prices will be modelled
stochastically and the fundamental model will use those fuel prices to give a power
price.
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Chapter 2

Stochastic Models

2.1 Mathematical formulation

Electricity is delivered and consumed continuously. However, the physical ‘spot’
market has a discrete granularity of half an hour. Also, (forward) products with
observable prices widely differ regarding their delivery structure (time and length
of delivery).

Definition 2.1.1. Market Granularity is the smallest delivery length of any type
of spot or forward contract. In the UK this is a half-hour.

Most forward contracts in fact have much longer delivery length than market gran-
ularity. An example of a liquid forward would be Summer 11 Baseload, which is
a contract to deliver a predetermined volume of electricity in each half hour of
Summer 2001.

Definition 2.1.2. Any forward product with delivery length being equal to the
market granularity is an unitary product.

Definition 2.1.3. The set of forward prices {F(T ) : T = 0, 1, 2, ...,N} of all unitary
products for delivery times T , in units of market granularity, is called the forward

curve.

Since forwards can be traded at any time given sufficient liquidity, we have a
continuous-time forwards market. However, the spot market quote prices on a
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half-hourly basis and therefore should strictly be modelled as a time series as op-
posed to a continuous process as Benth, Benth and Koekebakker [4] point out.
They show however that it is valid to introduce an unobserved continuous-time
stochastic process S̃ (t) which represents the instantaneous spot price of electricity
at time t with delivery in the interval [t, t + dt), with respect to a filtration Ft and
to use this to define S (t) = S̃ (t) for discrete t. This is quite intuitive and is in fact
assumed without comment in other papers [17]. This allows us to think of the
spot price as a continuous process, which makes it easier to obtain the consistency
we would like between the forward and the spot dynamics. It is important also
to emphasise that the spot price in the UK is neither tradable nor is it observable.
We use APX half-hourly prices as a proxy for spot prices when we need to build
a model with half-hourly granularity. APX half-hourly prices are in fact volume
weighted average traded prices for very short term forwards. Another application
will be to build models with daily granularity. We will use broker Day Ahead
closing prices in this case.

Assume we have a filtered space (Ω,F , {Ft},P) sufficiently rich such that all mod-
els under consideration may be defined on it.

2.2 Traditional models: drawbacks and pitfalls

2.2.1 What’s wrong with Geometric Brownian Motion?

In equity markets, there is a long history of modelling prices using Geometric
Brownian Motion (GBM). Explicitly in shorthand notation 1:

dS
S

= µtdt + σtdW.

Johnson and Barz (1999) [14] were among the first to explicitly discourage the use
of this model for pricing electricity. They summarized the properties of electricity
prices as follows:

1All equations between stochastic variables throughout this disertation are to be understood as
almost surely equations under the given probability measure.
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- Mean reversion. The cyclical nature of demand causes mean-reversion in
the short term, whilst there is long term mean reversion due to the cost of
new generating plant.

Seasonal effects. There are weekly and yearly periodic fluctuations in prices
in the UK market. For example, business days generally have a higher av-
erage price than non-business days; Winter has higher prices than Summer.

-- Price-dependent volatility. The higher the prices, the more volatile they are
generally.

- Occasional price spikes.
They noted that GBM did not capture these properties and gave evidence of this
using data from the 90’s. We will compile descriptive statistics based on recent
data to verify this.

Figure 2.1: Log daily average of APX ‘spot’ prices from 1st July 2004, with a
seasonal fit.

We attempt to remove any seasonality from the data by fitting a seasonal periodic
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function to the log-returns. Write

Λ(t) = a1 + a2t +

2∑
k=1

a2k+1 cos(2πlk(t − a2k+2))

for l1 = 52, l2 = 1 (weekly and yearly seasonality). Applying Non-linear Least
Squares gives us the following coefficients.

Parameter Value

a1 3.3465
a2 0.0832
a3 0.0068
a4 -0.497
a5 0.059
a6 -0.5486

Figure 2.2: Seasonal fit parameters.

Then we can subtract the deterministic seasonal effect from the log-prices and
gather some descriptive statistics on the log-returns (log S t+1 − log S t):

Statistic Value

Mean 0
Standard Deviation 0.173

Skewness 0.262
Kurtosis 5.90

Figure 2.3: Power log-return descriptive statistics.

Observe that the log-returns are leptokurtic compared to what we would expect
if they follow a Brownian Motion (where the log-returns should be distributed
normally and therefore should have sample kurtosis of 3). Under the Geometric
Brownian Motion model we would also expect any tests for stationarity to be re-
jected because the AR(1) process with a unit root (i.e. non-stationary) is a discrete
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approximation of the Brownian Motion. Denote the log of the price in time period
t as Xt. Assuming that the model specification of the deseasonalised log-prices is:

Xt+1 = ρXt + εt ,

with
H0 : ρ = 1

and
H1 : ρ < 1.

We apply the Dickey-Fuller test in R. The null hypothesis is rejected at the 99%
level. The Dickey-Fuller statistic obtained was −10.7749 - highly indicative of
mean-reversion.

Additionally we examine day-ahead gas and coal prices in the same manner. Coal
is not seasonal in nature because it can be stored easily. Therefore we fit the trend
function Λ(t) = a0+a1t by Ordinary Least Squares (OLS). Data was only available
from 7th March 2006 in this case.
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Figure 2.4: Log daily average of Coal ‘spot’ prices from 7th March 2006, with an
OLS trendline.

Statistic Value

Mean 0
Standard Deviation 0.026

Skewness -0.422
Kurtosis 6.88

Figure 2.5: Coal log-return descriptive statistics.

Observe that the standard deviation (“volatility”) is far less than that of power and
once again, the sample kurtosis is much higher than 3, and higher than the sample
kurtosis of power. The unit root null hypothesis is rejected at 99.9% level (Dickey
Fuller statistic = -25.54) indicating that mean-reversion is present (assuming the
model specification above).
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Figure 2.6: Log daily average of Gas “spot” prices from 1st July 2004, with sea-
sonal fit

Statistic Value

Mean 0
Standard Deviation 0.1

Skewness 0.39
Kurtosis 27.1

Figure 2.7: Gas log-return descriptive statistics.

Again we have an extremely leptokurtic sample, in part due to the extreme price
crash that occurred in October 2006. Note that the sample kurtosis is not a ro-
bust estimator and is sensitive to outliers like this. The unit root null hypothesis
is rejected at 99.9% level (Dickey Fuller statistic = -38.57) indicating that mean-
reversion is present (under the model specification above).
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Figure 2.8: Q-Q plots of normalized commodity log-returns against the standard
Normal distribution.
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The Jarque-Bera test for normality was applied to the deseasonalised log-returns
of all three markets and H0, the null hypothesis that the samples were from a nor-
mal distribution was rejected at the 99.99% level. These unit root tests suggest that
we should at least be looking at models that specify mean-reversion. We will build
a two-factor mean-reversion model. In fact we should also consider implement-
ing jump-diffusion models which would give us more leptokurtic distributions,
but this will be the subject of future work outside this thesis.

2.3 Risk-neutral probability measures and risk pre-
mium

The bulk of financial mathematics involves using continuous or càdlàg submartin-
gale processes to model prices using a real-world probability measure P. The
main reason for this is the existence of a set of risk neutral probability measures,
usually denoted by Q, under which the submartingale processes become (local)
martingales. This is a consequence of Girsanov’s theorem (given some assump-
tions, see for example [19, 15]). We also need to assume that our underlying
market satisfies certain properties if we are to substitute our real-world probabil-
ity measure for a risk-neutral one.

Assumption 2.3.1. The market is arbitrage-free (i.e. arbitrage opportunities do
not exist).

Note that this assumption is rarely true in practice in any market and the power
market is no exception. However, any arbitrage opportunities that exist will quickly
be exploited by market competitors.
We invoke the Fundamental Theorem of Asset Pricing [18]. Since the market
is arbitrage-free, the set of risk-neutral measures that are equivalent to P is non-
empty.

Definition 2.3.1. A market is complete if every contingent claim admits a unique
arbitrage-free price.

Recall that under a risk-neutral probability measure all tradable assets are martin-
gales after discounting. The spot asset is not tradable, so we are left with the bank

18



account, which trivially becomes a martingale under any equivalent measure Q.
It is not possible to establish a unique forward price dynamics based on arbitrage
arguments, and the market is incomplete.

Take Q to be the forward measure with the zero-coupon bond as numeraire (for
more information regarding this risk adjusted measure see [6]).

Under the forward measure, forward prices are martingales. Defining the spot
price S t as the limit of the forward prices as t approaches T , assuming we can
pass limits through the expectation, we have:

F(t,T ) = EQ(S (T )|Ft),

Assumption 2.3.2. Assume that the rational expectation hypothesis holds which
states that the forward price is the best prediction of the spot price at delivery, i.e.:

F(t,T ) = EP(S (T )|Ft).

Definition 2.3.2. The risk premium denoted by RP(t,T ) is given by

RP(t,T ) = F(t,T ) − EP[S (T )|Ft]

Stating that the rational expectation hypothesis holds is equivalent to stating that
there is no risk premium. The presence of a risk premium would indicate that
hedgers would prefer buying forwards over spot or vice versa. This topic in itself
has attracted much research, with some arguing that the rational market hypothesis
does not hold (in other markets). Evidence from the Pennsylvania-New Jersey-
Maryland market shows that the rational market hypothesis does not hold [16], but
it is not known whether similar research has been attempted for the UK market.
We adopt the current EDF Energy viewpoint that there is no risk premium. This
helps us from a modelling point of view - we can choose Q = P for the remainder
of the chapter.
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2.4 2-Factor Heath-Jarrow-Morton model

In bond pricing applications instead of modelling via spot models the forward
rates are specified [5]. Clewlow and Strickland [8] propose a similar approach
for energy markets which relies on taking a forward curve and simulating how
this forward curve will evolve through time. The Stochastic Differential Equation
describing the process followed by the unitary forward curve F(t,T ) is:

dF(t,T )
F(t,T )

=

n∑
k=1

σk(t,T )dWQ
k (t) ,

where Wk, k ∈ {1, ..., n} are possibly correlated Brownian motions under the for-
ward measure Q(= P). The model assumes that the structure of market prices are
described by these Brownian motions. Each factor has its own associated volatil-
ity term structure σk(t,T ).
We will now look specifically at a two factor mean-reverting forward curve case
with volatility functions as defined by Clewlow and Strickland. That is, n = 2.
This will be the model that will be implemented.
Define

σ1(t,T ) = σse−a(T−t)

and
σ2(t,T ) = σl ,

where a > 0. Implicit in this formulation is an assumption that volatility is not
seasonal, which is not necessarily the case [4], but it is adopted for simplicity. The
SDE becomes

dF(t,T )
F(t,T )

= σse−a(T−t)dzs,t + σldzl,t ,

with mean reversion speed a, short-term volatility σs and long-term volatility σl

and where zs and zl are Brownian Motions with correlation ρ.
We apply Itô’s formula for semi-martingales to the SDE to give an expression for
the forward price. We are assuming that F is a continuous semi-martingale.
Define a twice-differentiable function

f (x) = log x.
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Itô’s formula states that for a continuous semi-martingale X:

d f (X) = f ′(X)dX +
1
2

f ′′(X)d〈X〉.

Then we get

d log F(t,T ) =
dF(t,T )
F(t,T )

−
1

2F(t,T )2 d〈F(t,T )〉.

We denote F(t,T ) as F for conciseness:

d〈F〉 = d〈F(e−a(T−t)σszs,t + σlzl,t)〉

= F2(e−2a(T−t)σ2
s + σ2

l + 2e−a(T−t)ρσsσl
)

dt.

Therefore

d(log F) =
dF
F
−

1
2
(
e−2a(T−t)σ2

s + σ2
l + 2e−a(T−t)ρσsσl

)
dt.

If we note

V(t0, t,T ) =

∫ t

t0
σ2

se
−2a(T−u)du +

∫ t

t0
σ2

l du +

∫ t

t0
2ρσlσse−a(T−u)du , (2.1)

Ws(t0, t) =

∫ t

t0
σseaudzs,u , (2.2)

Wl(t0, t) =

∫ t

t0
σldzl,u. (2.3)

Substituting dF
F and rearranging then gives:

F(t,T ) = F(t0,T ) exp(−
1
2

V(t0, t,T ) + e−aT WS (t0, t) + WL(t0, t)). (2.4)

The spot price can then be defined as S t = F(t, t) and the spot price dynamics
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follow directly:

S t = F(t0, t) exp(−
1
2

V(t0, t, t) + e−atWS (t0, t) + WL(t0, t)). (2.5)

2.4.1 Volatility Term Structure

Unlike the Geometric Brownian Motion which has a single volatility value at each
point in time, the 2-factor model has a volatility term-structure. This means that
the instantaneous volatility of a particular point on the forward curve depends
on the valuation date t and the delivery time T . The term structure tells us how
volatile the price is depending on how far the product is from delivery.

Definition 2.4.1. We call instantaneous volatility of a particular unitary forward
product F(t,T ) the time-to-maturity varying volatility function Σinst(t,T ) obtained
while representing the log-return of the product as a unique Brownian Motion
process. It is a measure of how volatile the price is with respect to the time-to-
delivery.

This definition assumes that we can write the process as:

dF(t,T )
F(t,T )

= σse−a(T−t)dzs,t + σldzl,t = Σinst(t,T )dZ̃t ,

for a new Brownian Motion Z̃.

Lemma 2.4.1. Let z∗t be a Brownian motion independent to zs,t. The linear combi-
nation of Brownian Motions ρzs,t +

√
1 − ρ2z∗t is also a Brownian motion and has

correlation ρ with zs,t.

Proof. First of all, a linear combination of Brownian motions is obviously a mar-
tingale, with initial value 0. Secondly, we calculate the quadratic variation of the
linear combination:

〈ρzs,t +
√

1 − ρ2z∗t 〉 = ρ2t + (1 − ρ2)t = t

Therefore, by Lévy’s Characterization Theorem it is a Brownian motion. The
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covariance is calculated as follows:

Cov(zs,t, ρzs,t +
√

1 − ρ2z∗t ) = E[zs,t(ρzs,t +
√

1 − ρ2z∗t )]

= E[ρz2
s,t +

√
1 − ρ2zs,tz∗t ]

= ρt.

Therefore we have correlation

Corr(zs,t, ρzs,t +
√

1 − ρ2z∗t ) = ρt/t = ρ.

�

Therefore we can represent two correlated Brownian motions as a linear combi-
nation of two independent Brownian motions, which is itself a Brownian motion
(the proof of this is based on the fact that the sum of two independent Normal vari-
ables are Normally distributed, but we will omit this). Therefore the assumption
we make in the definition is valid.
Then we can calculate the quadratic covariation of the left hand side and equate it
to the quadratic variation of the right hand side

〈dF
F

〉
= 〈σse−a(T−t)dzs,t + σldzl,t〉

= (σ2
se
−2a(T−t) + σ2

l + 2ρσsσle−a(T−t))dt

= Σ2
instdt = 〈ΣinstdZ̃t〉.

This implies that

Σinst(t,T ) =

√
σ2

se−2a(T−t) + σ2
l + 2ρσsσle−a(T−t) .

The equation shows that:

- as T becomes large, the instantaneous volatility tends to σl and the forward
product behaves like a Geometric Brownian Motion,
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- as T − t approaches zero, the forward product also behaves like a Geometric
Brownian Motion, but with volatility

√
σ2

s + σ2
l + 2ρσsσl.

This type of behaviour is observable in the market where the volatility increases
as we approach delivery and products with far delivery tend to follow a simple
random walk.

Definition 2.4.2. We will call equivalent volatility2 Σeq(t0, tm,T ) of the forward
product for delivery at time T the average of the instantaneous volatility of F(t, T)
between 2 dates t0 (the quotation date) and tm (m for maturity).

Σeq(t0, tm,T ) =

√
1

tm − t0

∫ tm

t0
[σ2

se−2a(T−u) + σ2
l + 2ρσlσse−a(T−u)] du.

This is a very important notion for the following reasons:

- Seen as a function of time-of-delivery T , the equivalent volatility defines
the volatility term-structure of all forward prices. This term-structure can
be observed in the market.

- It can be seen as the volatility to be used when pricing a vanilla option on
the forward at delivery T expiring at time tm via standard methods (namely
Black-Scholes closed-form formulas).

- It will be the volatility used for model parameter estimation.

2.4.2 Extension to multi-commodity simulations

Another advantage of this model is that it is also popular for modelling other
commodities [8]. In our case, those relevant commodities are coal and gas. The
model can be extended to simulate the prices of other commodities, capturing
the correlation between them. The spot and forward price dynamics are given in
Equations 2.5 and 2.4 when the volatility, correlation and mean-reversion param-
eters of the underlying single commodity are known. However, markets (power,

2The equivalent volatility is sometimes referred to as marginal volatility or model-implied
volatility.
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gas and coal in particular) are inter-correlated, so it is necessary to include the
correlation between markets if we are going to be modelling, say, distributions
of spreads. Stochastic simulations over a set of markets must then be done in a
consistent way while drawing random numbers. There will be extra correlation
parameters between the risk factors of different markets.

If we have M commodity markets, the number of random variables to draw for
each step of a forward curve movement or spot price simulation is 2M (short-
term and long-term Brownian motion). Denote the correlation coefficient between
variables i and j amongst those 2M risk factors by ρi j. The correlation matrix C =

(ρi j)i, j=1,..,2M describes how the 2M risk factors are related. A correlation matrix is
always symmetric and positive-semidefinite so it has a Cholesky decomposition.

C = LLT .

If we draw a vector of 2M independent standard normal variables, it is possible to
obtain correlated variables Ỹ by the following operation:

Ỹ = LY.

This is by well-known properties of the multivariate normal distribution.

2.4.3 Correction for Product Delivery Period

The equations above are only valid for instantaneous product delivery. In reality,
there is no such thing in power markets. Power forwards are for a specified deliv-
ery period; days, weeks, months, seasons or years. The simulations produced for
products with long delivery periods will have volatilies that are too high in reality,
because the actual price path within the product is in effect averaged to give the
actual product price, and this will affect the volatility of the product itself. It is
quite intuitive to expect the volatility of yearly products to be much less than daily
products, for example.
To cater for this we adopt the Clewlow and Strickland approach of reducing the
volatility before it gets used in the simulations by a certain amount based on the
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delivery period of the product. Given an unitary forward curve, from a simple
no arbitrage argument, the price of a non-infinitesimal forward product Fp(t,T, θ)
specified by a delivery time T and delivery period θ is given by:

Fp(t,T, θ) =
1
θ

∫ T+θ

T
F(t, u)du. (2.6)

For our simulations, θ will be one day but we keep it general for now to emphasize
that it can be used for other delivery lengths. The ‘spot’3 price associated with the
same product is:

S p(t, θ) =
1
θ

∫ t+θ

t
F(t, u)du.

Manipulating Equation 2.6 leads to:

Fp(t,T, θ) − Fp(t0,T, θ) =
1
θ

∫ T+θ

T
(F(t, u) − F(t0, u))du.

Then from the definition of the model in Equation 2.4 in integral form we have:

Fp(t,T, θ) − Fp(t0,T, θ) =
1
θ

∫ T+θ

T
F(t, u)

( ∫ u

k=t0
σse−a(u−k)dzs,k +

∫ u

k=t0
σldzl,k

)
du.

(2.7)

Then the aim is to find a model for the dynamics of the product Fp(t,T, θ). This
means we no longer want the instantaneous-delivery forward prices F(t, u) to ap-
pear in the right hand side of the previous equation. A simple approximation in-
volves assuming that F(t, u) can be approximated by Fp(t,T, θ) for u ∈ [T,T + θ].
Our justification is that the time period [T,T + θ] is relatively small because we
will be simulating for daily delivery periods. We offer no theoretical basis for
this estimate, but it will be possible to validate our assumptions by comparing the
volatility of our simulations to the volatility of the empirical data used to calibrate
the model. It would also be possible to introduce a seasonal deterministic ‘shape
factor’ for longer periods. With slight abuse of notation (differential notation on
the left hand side, integral notation on the right):

3The word ‘spot’ should be understood here as ‘instant delivery of a non-instantaneous product’
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dFp(t,T, θ) =
1
θ

∫ T+θ

T
Fp(t,T, θ)

[ ∫ u

k=t0
σse−a(u−k)dzs,k +

∫ u

k=t0
σldzl,k

]
du

Therefore we can write

dFp(t,T, θ)
Fp(t,T, θ)

=
1
θ

∫ T+θ

T

( ∫ u

k=t0
σse−a(u−k)dzs,k +

∫ u

k=t0
σldzl,k

)
du

=
1
θ

∫ T+θ

T

(
e−a(u−T )

∫ u

k=t0
σse−a(T−k)dzs,k +

∫ u

k=t0
σldzl,k

)
du

=
1
θ

∫ T+θ

T

(
e−a(u−T )

∫ T

k=t0
σse−a(T−k)dzs,k +

∫ T

k=t0
σldzl,k

)
du

+
1
θ

∫ T+θ

T

(
e−a(u−T )

∫ u

k=T
σse−a(T−k)dzs,k +

∫ u

k=T
σldzl,k

)
du

The final term in the last statement makes the model non-markovian, which intro-
duces problems in our simulation. It doesn’t seem to be easy to simplify either.
We must make another approximation. The integrals inside the final term have
expectation 0 (property of a Brownian stochastic integral). For relatively small
θ the integrals have relatively small variance. Therefore we will assume that the
integrals are very small, approximately zero. This gives us the following SDE for
the product with delivery period θ. For larger theta the approximation is less valid.

dFp(t,T, θ)
Fp(t,T, θ)

=
1
θ

∫ T+θ

T
e−a(u−T )du σse−a(T−t)dzs,t + σldzl,t

= ca,θσse−a(T−t)dzs,t + σldzl,t ,

where we define a new constant

ca,θ :=
1
aθ

(1 − e−aθ).

Then Itô’s formula is applied in exactly the same way as in Equation 2.5 to give
new dynamics. This is simple manipulation and the details are omitted.
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2.4.4 Monte Carlo simulation

This following section describes how we can generate price simulations using
this model in R. We will implement the multi-commodity spot model with non-
infinitesimal delivery period. The spot model is essentially the same as the for-
ward model but the observation date is the same as the delivery date, i.e. instant
delivery, T = t. We will be implementing the model for a daily granularity, with
daily delivery period. The constant ca,θ will be used, as defined in the previous
subsection.
Rewriting Equations 2.1 - 2.3 we have:

S (t) = F(t0, t) exp[−0.5(Vl + Vs + Vsl) + e−atWs + Wl] ,

where

Vl =

∫ t

t0
σ2

l du = σ2
l (t − t0) ,

Vs =

∫ t

t0
c2

a,θσ
2
se
−2a(T−u)du =

c2
a,θσ

2
s

2a
[e−2a(T−t) − e−2a(T−t0)] ,

Vsl =

∫ t

t0
2ca,θρσlσse−a(T−u)du =

2ρca,θσlσs

a
[e(T−t) − e(T−t0).]

Note that only two random processes are required to define a complete forward
curve. It is straightforward to compute the deterministic terms (Vl, Vs and Vsl).
Let us examine the short-term random variable Ws(t0, t).
Recalling its definition, with adjustment for the non-infinitesimal delivery period,
we have

Ws(t0, t) =

∫ t

t0
ca,θσseaudzs,u.

This is a Brownian stochastic integral. From the properties of the stochastic inte-
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gral, for some arbitary time for a small increment dt:

Ws(t0, t + dt) −Ws(t0, t) ∼ N
(
0,

∫ t+dt

t
c2

a,θσ
2
se

2audu
)

∼ N
(
0,

c2
a,θσ

2
s

2a
e2at(e2adt − 1)

)
∼

√
σ2

s

2a
e2at(e2adt − 1) εs ,

where εs ∼ N(0, 1). Similarly it can be shown that

Wl(t0, t) ∼
√
σ2

l (t − t0) εl.

Therefore it is possible to approximate the stochastic processes by generating Ws

and Wl step-wise. In the single commodity model, we can correlate the approx-
imate Brownian motions at each stage by drawing two independent N(0,1) dis-
tributed variables ε and ε̃ then

εs = ε ,

εl = ρε +
√

1 − ρ2 ε̃ ,

where ρ is the correlation required between εs and εl. This is extended for multiple
commodity markets using the approach suggested in the earlier subsection ‘Ex-
tension to multi-commodity simulations’. For the interested reader, the code for
the implementation of the spot model is available in the appendix. The antithetic
variance reduction technique was used in the Monte Carlo simulations to reduce
the number of simulations required.

Below are some examples of simulations for the coal and gas markets using for-
ward curves provided by EDF Energy, using the following parameters, which are
typical of the markets (we will investigate this further in the next section on cali-
bration).
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Gas ST Gas LT Coal ST Coal LT

Gas ST 1 -0.12 0 -0.08
Gas LT -0.12 1 0 0.56

Coal ST 0 0 1 0
Coal LT -0.08 0.56 0 1

Figure 2.9: Example correlations between the gas and coal short and long term
factors.

Gas Coal

ST Vol 94.4% 0%
LT Vol 38.1% 30.5%

a 14.5 1

Figure 2.10: Example parameters for the coal and gas markets.
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It is interesting to observe the effect of antithetic sampling between simulations 1
and 2 and simulations 3 and 4.

2.4.5 Parameter Estimation

Two approaches to parameter estimation are described. The first, a linear program-
ming approach, appears to work well initially but it turns out to have drawbacks.
An second iterative method is developed and implemented instead which gives
better results.

The granularity is set to be equal to 1 day. Recall that the market consists of prod-
ucts with different delivery lengths. The following products have a closing price
for each day: Day Ahead, Week Ahead, Week 2, Month 1, M2, M3, M4; Quarter
1, Q2, Q3, Q4, Season 1, S2, S3, S4, S5, and the time periods are consistent with
the EFA calendar. There is some product overlap. For example, Season 1, which
is either Winter or Summer, will be either Q1 and Q2 or Q2 and Q3. Month 1 may
or may not comprise Week 1 and/or Week 2 and so on. As a concrete example,
assume today is 21 May 2010. The Day Ahead product is 22 May 2010. Week
Ahead is 24-30 May 2010. Week 2 is 31 May - 6 June. Month 1 is 31 May - 4
July (EFA June). Q1 is 5 July - 4 October. Season 1 is 4 Oct 2010 - 3 April 2011,
etc.

Define t0 as the time a product first becomes available to trade in the market, tm

as the time a product is no longer available to trade in the market, and T the start
of the delivery period for that product. Each product can have a different delivery
period length θ, which as shown previously affects the volatility. Below is a table
with the parameters of different electricity products.
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Product tm − t0 θ T − tm Mean Time to Delivery

Day Ahead 1/365 1/365 0 0.5/365
Week Ahead 1/52 1/52 0 0.5/52

W2 1/52 1/52 1/52 1.5/52
M1 1/12 1/12 0 0.5/12
M2 1/12 1/12 1/12 1.5/12
M3 1/12 1/12 2/12 2.5/12
M4 1/12 1/12 3/12 3.5/12
Q1 1/4 1/4 0 0.5/4
Q2 1/4 1/4 1/4 1.5/4
Q3 1/4 1/4 2/4 2.5/4
Q4 1/4 1/4 3/4 3.5/4
S1 1/2 1/2 0 0.5/2
S2 1/2 1/2 1/2 1.5/2
S3 1/2 1/2 2/2 2.5/2
S4 1/2 1/2 3/2 3.5/2
S5 1/2 1/2 4/2 4.5/2

Figure 2.11: Properties of different electricity forward products

Daily price data for the period 1st May 2009 - 30 April 2010 was obtained for
these products. The annualized log-returns Rt were computed in the usual manner
(Rt =

√
1/252 log S t/S t−1). The standard deviation of the annualized log-returns

of these products give us an estimate of their historical volatilities. It is important
to filter out any log-returns that are due to the change in the underlying product
itself. For example, on 30 May 2010, the M1 product is June power, but on 31
May, M1 becomes July power, so we would disregard the log-return between
these dates because it is misleading. From the definition, with adjustment for the
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non-infinitesimal product delivery length, equivalent volatility is given by

Σeq(t0, tm,T ) =

√
1

tm − t0

∫ tm

t0
[c2

a,θσ
2
se−2a(T−u) + σ2

l + 2ca,θρσlσse−a(T−u)] du

=

√
1

tm − t0

(
c2

a,θ

σ2
s

2a
[1 − e−2a(tm−t0)] + σ2

l (tm − t0) +
2ca,θρσsσl

a
e−a(T−tm)[1 − e−a(tm−t0)]

)
.

The equivalent volatility best fit (relative to historical volatility) should give us
our optimal parameters (â, σ̂s, σ̂l, ρ̂). Initially a linear programming approach was
adopted for calibration in a single market (electricity) setting. The following LP
was set up and solved.

For products i ∈ {1, ..., P}, minimize the objective function:

p∑
i=1

(Σhist,i − Σeq,i)2

subject to the constraints:

|ρ| ≤ 1

σs ≥ 0

σl ≥ 0

a > 0.

The best fit results obtained for the electricity market are noted in the tables below.

Parameter Value

σs 87.3%
σl 19.5%
a 100.3
ρ 0.67

Figure 2.12: Best fit parameters for electricity.
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Product Mean Time to Delivery Historic Vol. (%) Equivalent Vol. (%)
Day Ahead 0.001 81.7 81.4

Week Ahead 0.01 32.9 34.8
W2 0.03 26.6 21.3
M1 0.04 21.3 20.5
M2 0.13 19.4 19.51
M3 0.21 19.0 19.51
M4 0.29 19.6 19.51
S2 0.75 18.9 19.51
S3 1.25 18.4 19.51
S4 1.75 17.1 19.51

Figure 2.13: Fitting Equivalent Volatility to Historic Volatility with best fit param-
eters.

with the following plot of best fit we obtained for the volatility term structure.

Unfortunately however there are some problems with this method. One problem
is that of apparent redundancy in the parameters. This was apparent if we fixed
ρ = 0 (for example) and re-solved the LP to give new parameters.
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Parameter Value

σs 97.5%
σl 19.7%
a 78.9
ρ 0

Figure 2.14: New model parameters with fixed ρ.

Comparing the graphs of both solutions, there is little diffference. We would like
to find a way to break this apparent redundancy. Also, this approach does not
solve the multiple market calibration problem. Is there more information in the
historical data? We develop an iterative parameter estimation procedure which
estimates the parameters in a more robust way.
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Recall the stochastic differential equation that each product p ∈ {1, ..., P} satisfies:

d(log Fp) +
1
2

Σ2
inst(t,T, a, σs, σl, ρ)dt =

dFp(t,T )
Fp(t,T )

= ca,θpσse−a(T−t)dzs + σldzl.

Assuming that the model accurately represents historical prices, this implies that
the log-returns Ri,p of a product p in observation period i ∈ {1, ...,N} can be written
as:

Ri,p +
1
2

∫ ti+1

ti
Σ2

inst(s,T, a, σs, σl, ρ)ds ≈

√
c2

a,θσ
2
s

2a
e2a(ti−T )(e2a(ti+1−ti) − 1)εs,i +

√
σ2

l (ti+1 − ti)εl,i

for each product p where εs,i, εl,i ∼ N(0, 1), assuming that the time between obser-
vation periods is small.

The left hand side (LHS) of the equation above for a specific product consists of
the product’s log-return in time period i plus a deterministic term which is a func-
tion of ti, ti+1 and T and the parameters a, σs, ρ and σl. Using the first approxi-
mation of the parameters that we obtained from our Least Squares regression, the
LHS can be computed for each time period i and for each product p.

Take a ‘far-out’ product such as Season 4 in the table above. We can assume that
the short term volatility is negligible on the right hand side (RHS) of the equation
for such a product. This makes it possible for us to compute estimates of the ‘long-
term shocks’

√
σ2

l (ti+1 − ti)εl,i for each time period i. This implies that the returns
of the Day Ahead product has the same long-term shocks. Using the initial OLS
parameters, we can calculate LHS for the Day Ahead product and use the derived
long-term shocks to give us the short term shocks σsεs,i. We then measure the
correlation between the short term shocks and the long term shocks.

Corr(σlεl,i, σsεs,i) = Corr(εl,i, εs,i)

≈ Corr(zl, zs) = ρ

We have a new estimate for ρ.
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This gives us an iterative procedure, which can be applied across several com-
modity markets. These are the steps:

- Step 1: Solve the LP for the 1st market to give the initial solution P0 =

(ρ0, a0, σs0 , σl0);

- Step 2: Compute estimates of short term and long term shocks using the
above procedure using parameters Pi

- Step 3: Compute a new ρi based on the correlation between the short term
and long term shocks;

- Step 4: Resolve to give new estimates for σs, σl and a, with ρ fixed (= Pi);

- Step 5: Repeat step 2-4 until convergence is attained (e.g. ρi+1 − ρi < ε);

- Step 6: Repeat for each commodity market;

- Step 7: Calculate the correlations between short and long term shocks of
different markets to give us correlation matrix C.

This method ensures that we have correlations across multiple markets that are
reasonable and consistent with historical data (no proofs are given regarding the
validity of this iterative procedure).

σs(%) σl(%) ρ a Objective Function

S ∗0 87.3 19.5 0.68 100.3 0.0039
ρ1 -0.055
S ∗1 98.4 19.7 77.09 0.005
ρ2 -0.055

Figure 2.15: Power iteration scheme results.
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Power Parameter Value

σs 98.4%
σl 19.7%
a 77.09
ρ -0.055

Figure 2.16: Power 2-factor model parameters.

We estimate the parameters for the coal and gas markets together. We keep the
power market separate for reasons that will become clear later on. A practical
point about the coal market is that prices are quoted in US Dollars. For the pur-
poses of this model we simply use historical spot currency rates to convert the
prices into UK pounds.

σs(%) σl(%) ρ a Objective Function

S ∗0 33.00 18.57 -0.223 0.89 0.0000154
ρ1 -0.124
S ∗1 31.2 18.1 0.953 0.0000162
ρ2 -0.124

Figure 2.17: Coal iteration scheme results.

Coal Parameter Value

σs 31.2%
σl 18.1%
a 0.953
ρ -0.124

Figure 2.18: Coal 2-factor model parameters.
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σs(%) σl(%) ρ a Objective Function

S ∗0 64.7 35 0.71 5.78 0.0457
ρ1 -0.261
S ∗1 91.7 35.1 2.92 0.059
ρ2 -0.261

Figure 2.19: Gas iteration scheme results.

Gas Parameter Value

σs 91.7%
σl 35.1%
a 2.92
ρ -0.261

Figure 2.20: Gas 2-factor model parameters.

Gs Gl Cs Cl

Gs 1 -0.26 0.03 0.06
Gl -0.26 1 0 0.32
Cs 0.03 0 1 -0.12
Cl 0.06 0.32 -0.12 1

Figure 2.21: Correlation between Gas and Coal short-term and long-term factors.
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Figure 2.22: Model volatility term structure fit against historical data for Gas.

41



Figure 2.23: Model volatility term structure fit against historical data for Coal.

The fits for Coal and Power look good. The fit for Gas is not quite so good and
it is recommended to check the data quality before these parameter estimates are
used.

2.5 How appropriate is the HJM two-factor model
for power, gas and coal?

Unfortunately the 2-factor HJM model does not capture the excess kurtosis in the
power, gas or coal markets. The deseasonalized log-returns of our simulations will
necessarily have kurtosis of 3 on average; we have shown in an earlier section that
the actual kurtosis is far higher in power, coal and gas markets.
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Figure 2.24: Histogram of the sample kurtosis of 200 simulations.

This kurtosis is a result of extreme jumps that occur more often than a normal
distribution predicts. There is a great deal of recent literature on stochastic jump-
diffusion models in the power market but we shall not go into detail about these
in this thesis. For a comprehensive treatment see [4].

The skewness of the log-returns of our simulations will be 0 on average; compare
this to the descriptive statistics in the earlier section where we saw that power and
gas are slightly positively skewed, and coal is slightly negatively skewed.

There is also a reason why it may be inappropriate to build a 3-market model
to compute the distribution of spreads. Recall the definition of clean spark/dark
spreads - the price of power minus the price of coal and emission credits required
to generate that power. Given the fuel mix of the UK power market, if clean
spark and dark spreads both were negative at the same time, then it would not be
economical for gas or coal power stations to run. If none of these power stations
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ran, then there would not be sufficient power. This effectively forbids the price of
these spreads to go negative at the same time. However, our 2-factor model with
3 markets allows negative coal and gas spreads. This would give spurious spread
distributions. This is why we investigate the concept of the fundamental model.
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Chapter 3

Fundamental Models

3.1 Background

The UK has roughly 80 GW of capacity which can convert some fuel (strictly,
some energy resource) to power. The fuel split is roughly 20% nuclear, 35% gas,
35% coal, with the remaining capacity being provided by oil and renewables. Not
all of this capacity will be available on a given day due to plant outages. Plant out-
ages arise when either maintenance work is required (a planned outage) or when
a generator fails (a forced outage). Generators notify the Grid Operator of their
available capacity for each half-hour period. This is called a MEL (Maximum
Export Limit). We will need a few definitions.

Definition 3.1.1. The Heat Rate is a generator’s efficiency expressed in GJ/MWh.

Definition 3.1.2. The marginal cost of a generator is its Heat Rate (GJ/MWh) *
Fuel Cost (£/GJ) + Emissions Rate (Tonne/MWh) * Emissions Cost (£/Tonne).

Each generator of a given fuel type will have a similar marginal cost. Therefore it
is possible to construct a generation availability stack as shown below.
In a given half-hour period generation must satisfy demand. A simple stack price
model assumes that the cheapest available generation will satisfy the required de-
mand, and that no generator will run at a price below its marginal cost. This is the
behaviour that would occur in perfectly competitive markets. Of course this is a
simplistic assumption. Alternatives to the perfect competition assumption would

45



Figure 3.1: UK Availability Stack, Jan 15th 2010 17:00.

be to incorporate Cournot or Bertrand competition [12]. From the curve it is ev-
ident that power price jumps can be explained by the extreme convexity of the
stack. When the margin (the difference between availability and demand) is tight,
then a small change in demand may cause a large change in price. It is an easy
problem to solve mathematically - the stack is ordered according to marginal cost
then generation is added until demand is met. The system cost will be the maxi-
mum marginal cost of the units that are utilised.

Unfortunately generators have substantial start costs, and the effect of these is not
captured by the simple stack model. Additionally, there are physical constraints
which force a generator to be on/off for a period of time, minimum up time and
minimum down time. Suddenly, our simple stack is no longer valid. We need the
concept of ON/OFF to reflect these properties and a mathematical formulation.
We formulate a mixed integer program to attempt to model these features.
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3.2 Mixed Integer formulation

Let I be the number of generators and T be the number of time periods in our
problem. Define I and T as the index sets {1, 2, ..., I} and {1, 2, ...,T }.
Define IT binary variables {xit : i ∈ I, t ∈ T }. xit = 1 if generator i is ON in time
period t, and xit = 0 if the generator is OFF. Each generator has a Minimum Stable
Level (MSL), mi, and a Maximum Export Level (MEL), Mi. Each generator may
generate between its MSL and its MEL. To allow this we introduce variables yit,
which are continuous between 0 and 1, and impose the constraint that yit ≤ xit.
Each generator has a start cost ci. We introduce variables wit with the constraint
wit ≥ xit − xi,t−1. This is 1 in a period when a generator starts and 0 otherwise.
Although wit are integer variables we do not have to impose this condition. It is
possible to define it as a continuous variable under a suitable constraint. Define
pit as the marginal cost of generator i in time period t and dt the demand in time
period t. We ignore stopping costs and minimum up/down times for now. Using
these variables we may define the MIP problem as:

min
T∑

t=1

I∑
i=1

(xitmi + yit(Mi − mi))pit + witci

subject to the constraints:

I∑
i=1

xitmi + yit(Mi − mi) ≥ dt

for t ∈ T

yit ≤ xit

and
wit ≥ xit − xi,t−1

for t ∈ T and I ∈ I

xit ∈ {0, 1}.

This is known in the literature as the unit commitment problem. We implemented
this Mixed Integer program in the R programming language, with the option of
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using either the Symphony or the GLPK open-source solvers [2, 1]. Both solvers
use some implementation of the branch and bound method. The code as well as
example output are documented in the Appendix. To appreciate the power of the
branch and bound solvers it is worth considering how many possible combina-
tions of integer variables there are. For a 10 generator system, in an individual
time period, our problem has 10 integer variables. Therefore there are 210 − 1
combinations of those variables. For a 48 period problem, there are (210 − 1)48

combinations of integer variables. Also it is worth noting how many variables and
constraints we have. We have 3IT variables and 48 + I(2T − 1) constraints.

In practice then it is not surprising that the MIP formulation takes a long time to
run. A test was conducted with 48 time periods and a variable number of gener-
ators for a given demand to see how long it would take. These experiments were
conducted on a 3.00 GHz Intel Core 2 Duo PC with 3.5 GB of RAM.

Generators Symphony GLPK Matrix Size (MB)

10 1 2 5.7
15 1.76 5.2 12.7
20 5.65 28.2 22.4
25 9.44 89 34.9
30 672 - 50
40 - - 88.6

The problem is prepared in an Ax ≥ b format and passed to the solver. The matrix
has constraints multiplied by variables elements. Assume that each element uses
4 bytes. For a 10 generator, 48 period problem we have 1440 variables and 998
constraints. The matrix is approximately 5 MB in size. The matrix size increases
in proportion to the number of generators squared. It would be better to use a
sparse matrix data structure, which stores the position and value of non-zero ma-
trix elements only. This would be useful in our case because our matrix consists
of zeros mostly. However these solvers did not have routines to allow us to take
advantage of the sparse nature of the matrix. It would be wise to use sparse matri-
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ces if there is an option in the solver to use them.

3.2.1 Additional constraints

We will add spinning reserve, standing reserve and minimum up time to the math-
ematical formulation. Reserve constraints are relatively easy to solve because we
will only need to add 3T extra constraints, however minimum up time imposes
many constraints between time periods (known as temporal constraints) which
add great complexity to the problem. Let us define a generator’s raise spinning re-
serve as any remaining capacity a generator has when it is on. Define SPIN ⊆ I
as the index set of generators that may provide raise spinning reserve, and let rt

and lt be the amount of raise and lower spinning reserve that must be provided
in each time period respectively. The additional raise spinning reserve constraint
becomes: ∑

i∈SPIN

(xit − yit)(Mit − mit) ≥ rt ,

and the lower spin reserve constraint is:∑
i∈SPIN

yit(Mit − mit) ≥ lt

for t ∈ T .
Similarly with standing reserve, define STAND ⊆ I as the index set of genera-
tors which may provide standing reserve, and Rt as the amount of standing reserve
that must be provided in each time period. We have:∑

i∈STAND

(1 − xit)(Mit − mit) ≥ Rt

for t ∈ T .

Define ui as the minimum up time of generator i. The uptime constraints are:

xit − xi,t−1 ≤ xi,τ
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∀τ ∈ [t + 1,min(t + ui,T )].

This adds much more complexity to the problem: for each generator i we have
added approximately uiT constraints. Unfortunately it also means that the prob-
lem is no longer practical as a MIP.

EDF Energy use a commercial software product called Plexos to solve this prob-
lem. Plexos uses a heuristic to get around the problem of solving this complex
MIP. It works by allowing the integer variables to be continuous, then solving the
LP. Then it applies the rounding heuristic - setting the integer variables to either 0
or 1 whilst maintaining the validity of the constraints. Plexos does not give much
information about how the product works but they do say that it takes about twice
as long as the LP solution. More information about various rounding heuristics
can be obtained from Burkard, Kocher and Rudolf [7]; these strategies are how-
ever beyond the scope of this thesis.

3.2.2 Computing a System Marginal Price (SMP)

We define the System Marginal Price for a time period t as follows:

SMPt = max(pit) ∀i ∈ {i : yit > 0}.

The SMP is the maximum marginal cost of all generators that are running in a
given period, except the generators that are running at MSL. The generators run-
ning at MSL are ignored for price setting purposes because most of the time gen-
erators will only run at MSL to avoid start costs in the future. We would not want
these generators to be setting price because they would be willing to run at a loss.

3.2.3 Uplift

Consider the generator with the highest marginal price. When it is running (above
MSL) then SMP will be its marginal cost. It will receive SMP for running. How-
ever, it has not and will not recover its start costs, and will be making a loss. It
makes sense to add some amount to the System Marginal Price to compensate
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them for their start costs. Plexos has its own algorithm for adding Uplift to SMP
to give a Region Price. Developing an uplift model is beyond the scope of this
thesis.

3.3 Results

A model of UK generators was set up in Plexos using the EDF Energy plant
database. The model was then backtested against historical data. The model price
is SMP + Plexos Uplift. Specifically it was possible to obtain historical demand
and historical availability, as well as historical fuel spot prices to give us a price for
power. We then compared this to the outturn ‘spot’ price of power. What should
we use as the benchmark price of spot power? At daily granularity, we use the
Day Ahead closing price. The Day Ahead closing price represents the last traded
price of the next day’s power. The reason for using Day Ahead closing price is
that it is a more liquid market than the APX half-hourly market.

3.3.1 Daily granularity - backtest against closing Day Ahead
prices

We also gather descriptive statistics of the Model and Day Ahead prices and their
log-returns. The data was for the period 30 March 2009 - 4 April 2010. Spot fuel
prices and actual demand were used in the model.

Sample Statistic Day Ahead Model Day Ahead log-returns Model log-returns

n 371 371 370 370
Mean 34.12 33.2 0 0

Standard Deviation 3.1 3.528 0.13 0.14
Skewness 0.36 0.66 0.16 0.47

Kurtosis 4.85 5.36 3.72 4.44
Min 29.55 26.68 -0.44 -0.45
Max 44.77 50.17 0.39 0.55

75th percentile 36.08 35.98 - -
99th percentile 44.78 44.20 - -
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This is the model we will use in the next chapter. Notice that the mean is slightly
lower in our model than in the Day Ahead market, but otherwise the distribution
is reasonably similar.

3.3.2 Half-hourly granularity - backtest against APX prices

Recall that one reason for needing to have price models was to price ‘shape’ con-
tracts. The only market where it is possible to trade half-hourly periods is the
APX market, so it is the only benchmark we have. It is less liquid than the Day
Ahead market. We must use the APX reference price (half-hourly granularity)
instead of the Day Ahead closing prices (daily granularity). Recall that the APX
reference price is a weighted average of short term forwards, traded up to 7 days
in advance. The raw descriptive statistics show that the half-hourly model results
have different properties to the APX prices.

Sample Statistic APX Model APX log-returns Model log-returns

n 17804 17804 17803 17803
Mean 34.68 33.22 0 0

Standard Deviation 12.41 7.88 0.098 0.086
Skewness 2.72 6.75 0.758 0.34

Kurtosis 21.21 120.4 13.76 194.9
Min 5.27 3.82 -0.91 -2.06
Max 199.29 253.63 1.31 2.09

75th percentile 38.69 36.75 - -
99th percentile 79.36 51.74 - -

99.9th percentile 144.83 140.83 - -

Bear in mind that the APX reference price is a weighted average of forwards.
When a forward trade is agreed, neither the buyer nor the seller know the demand
or the availability of the generators. Contrast this with the fundamental model
which has demand and availability as a deterministic input.

Assumption 3.3.1. The APX reference price comprises 1 day of demand and out-
age uncertainty (outage uncertainty may also be called availability uncertainty).
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Definition 3.3.1. Define FA
ti as the APX reference price for period ti and S ti as the

spot. Assuming the rational market hypothesis:

FA
ti = E(S ti |Fti−48).

(Aside: 48 is the number of half-hour periods in one day.)

Consider the half-hourly time series of Demand and Availability values Dti and
Ati respectively. Define

D∗ti = (Dti − Dti−48)/Dti−48 , A
∗
ti = Ati − Ati−48/Ati−48 .

These are the daily percentage changes.

We assume that they are normally distributed because we are restricted to using
the Normal distribution in Plexos, with the Standard Deviation as a percentage of
the demand value in the model for that half hour. Below are the Q-Q plots for the
demand and availability daily percentage change.

Figure 3.2: Q-Q plot of daily percentage
change in Business Day Demand against
the Normal distribution.

Figure 3.3: Q-Q plot of daily percentage
change in Non-Business Day Demand
against the Normal distribution.
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Figure 3.4: Q-Q plot of daily percent-
age change in Business Day Availability
against the Normal distribution.

Figure 3.5: Q-Q plot of daily percentage
change in Non-Business Day Availabil-
ity against the Normal distribution.

Unfortunately because of the restrictions imposed on us by the Plexos software,
we can only perform Monte Carlo simulations on the Demand and we have to
shoehorn the availability simulations into the demand. Otherwise we would model
the outages of individual generators. We omit further detail of this approximation.
It is also important to note that if we wanted to model the uncertainty in availabil-
ity in the fundamental model we would need to do so on the generator-level (not
total availability). Denote our estimated percentage change standard deviation
as σD+A. We then performed N Monte-Carlo simulations1 for each half hour to
compute the APX price simulation FA

ti as follows:

FA
ti =

1
N

N∑
j=1

S (ti,Dti(1 + σD+Aε j,ti)).

The results below for the half-hourly intra-day shape are very close to the APX
price. This appears to validate this approach for approximating the APX price.
More work should be done to establish how valid our ‘1-day of uncertainty’ as-
sumption is.

160 simulations of 365 days with 48 periods took 11.5 hours
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Figure 3.6: April 09 BD. Figure 3.7: April 09 NBD.

Figure 3.8: May 09 BD. Figure 3.9: May 09 NBD.

Figure 3.10: June 09 BD. Figure 3.11: June 09 NBD.
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Figure 3.12: July 09 BD. Figure 3.13: July 09 NBD.

Figure 3.14: August 10 BD. Figure 3.15: August 10 NBD.

Figure 3.16: September 09 BD. Figure 3.17: September 09 NBD.
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Figure 3.18: October 09 BD. Figure 3.19: October 09 NBD.

Figure 3.20: November 09 BD. Figure 3.21: November 09 NBD.

Figure 3.22: December 09 BD. Figure 3.23: December 09 NBD.

57



Figure 3.24: Jan 10 BD. Figure 3.25: Jan 10 NBD.

Figure 3.26: Feb 10 BD. Figure 3.27: Feb 10 NBD.

Figure 3.28: March 10 BD. Figure 3.29: March 10 NBD.

The April, May, June and July prices appear to be rather low. One explanation for
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this could be that this is when power stations aim to schedule their maintenance,
and therefore there is more variability in availability (we assume it has constant
variance). One improvement may be to model the seasonal variance in the avail-
ability. The descriptive statistics for the Adjusted Model with Simulations are:

Sample Statistic APX Model Adj. APX log-returns Model Adj. log-returns

n 17804 17804 17803 17803
Mean 34.68 34.34 0 0

Standard Deviation 12.41 9.83 0.098 0.08
Skewness 2.72 1.71 0.758 0.11

Kurtosis 21.21 10.06 13.76 11.43
Min 5.27 5.89 -0.91 -0.815
Max 199.29 119.5 1.31 0.9468

75th percentile 38.69 38.34 - -
99th percentile 79.36 70.32 - -

99.9th percentile 144.83 96.11 - -

The results are much more in line with the APX price distribution, and we con-
clude that this is a good model for pricing shape contracts. To emphasise this
point, and to highlight the differences between our original model and our ad-
justed model we compare the estimated kernel densities (using the R function
density).

59



Figure 3.30: Comparison of estimated density functions.
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Chapter 4

Hybrid Models

4.1 Concept

The hybrid model allows us to compute (spot) spread distributions. The concept
is as follows. Given that we are interested in simulating prices for a certain time
period which comprises discrete steps of time (half-hours).

- Generate N correlated fuel simulations. In our case, the fuels of interest
are coal and gas.

- Generate N simulations of demand for each time interval ti

- Generate N availability/outage schedules for each generator and each dis-
crete time step

- Split up the time period into intervals that the fundamental model can han-
dle. In our tests, daily steps were manageable.

- For each daily step, run the fundamental model N times using the fuel,
demand and availability inputs.

This gives us a spot power price based on fundamentals - and a more accurate
distribution for the spot spark/dark spreads.

61



4.1.1 Demand modelling

We developed a method for modelling deseasonalized half-hourly demand. His-
torical deseasonalized demand was provided by EDF Energy for calibration pur-
poses. EDF Energy were also able to provide a deseasonalized demand forecast
which we could use to generate the simulations. Again, we were working within
the constraints of Plexos, which forced us to specify standard deviation as a per-
centage change in the demand. Denote actual historical demand as dt and seasonal
historical demand as dS

t . We studied the process dRes
t =

dt−dS
t

dS
t

for autocorrelation
between its lags. Below is the partial autocorrelation function for the process dRes

t .

We approximate the percentage change in demand as an AR(2) process with the
following parameters:

AR1 AR2 Standard Deviation

1.167 -0.187 0.006

4.1.2 Availability modelling

There are two separate parts to modelling availability of a generator.

- The distribution of its survival time - how long it lasts until an outage oc-
curs

- The distribution of repair times for a generator
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- Analysis of outages for nuclear, gas and coal generators was conducted. The
analysis is outside the scope of this thesis as it is designed such that it is easily
applied in Plexos. If this was not the case, a preferred approach would be to model
survival time as a exponentially distributed Markov two-state model, then to draw
repair times from an empirical cumulative distribution function based on historical
data. Unfortunately, we did not have the flexibility to proceed in this way.

4.2 Results

The model above was implemented with 60 simulations. This took approximately
20 hours to run. The hybrid results revealed a bug in the 3rd party software which
is ongoing at the time of writing, so we omit them. However, it is clear from
the earlier section ‘Concepts’ that the validity of the hybrid relies only its inputs.
Importantly we have developed and implemented a methodology for generating
spark and dark spread distributions.

4.3 Criticisms and Conclusion

One of the main criticisms of the stochastic models implemented for power, coal
and gas is that jumps are not included. The assumption of gaussian distributed
shocks is perhaps too simplistic and jump-diffusion mean-reverting models could
be studied as a part of further research. However, it seems that the gaussian as-
sumption is a reasonable estimate at the daily granularity (although certainly not
so at the half-hourly level). The stochastic model we developed also has a forward
model in-built which we can use to simulate various hedging strategies.

Fundamental models appear to solve the problem of non-gaussianity also - gener-
ating power prices with the required jumps due to the non-linear nature of the UK
availability stack. The results from the fundamental model were encouraging. We
developed a new method of approximating half-hourly prices for the purposes of
pricing shape contracts. However, these models have assumptions of their own;
most notably the perfect competition assumption. We were also faced with not

63



being able to solve the mixed integer problem in an acceptable amount of time,
forcing us to use a sub-optimal proprietary heuristic. Unfortunately this also re-
stricted some of our other modelling decisions, such as the availability model.
With more time, we would have developed our own heuristics for solving this
large-scale unit commitment problem.

The hybrid model is the blending of both approaches and it is a good modelling
approach for obtaining spreads. The results will provide price signals which will
enable companies to improve the timing their hedges or to speculate in the market.
The main criticism of the hybrid model is that even with a sub-optimal heuristic
for its fundamental component, it takes a long time to run (20 hours for 60 sim-
ulations for a time period of 1 year). However, the speed of computer processors
increasing and their price decreasing by the day. Another limitation of the current
software is that it can only utilise a single computer processor, for all simula-
tions. The Monte Carlo simulations used in the hybrid would appear to be natural
candidates for a parallel computing approach. This is because each simulation is
independent of all others, which allows each simulation to be run on a separate
processor. This implies that even today, the hybrid run time is only limited to
approximately the time of the longest simulation, say 20 minutes, given enough
computer processors and a more optimal software architecture.
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Heath-Jarrow-Morton 2-factor
model for multiple commodities

testMultiFuelTwoFactor.R

1 source ( ” m u l t i t w o f a c t o r . R” )
2
3 f0<− l i s t ( )
4 f0 [ [ 1 ] ]<−read . csv ( ” gas c u r v e . csv ” , h e a d e r=TRUE) $ curve
5 f0 [ [ 2 ] ]<−read . csv ( ” c o a l c u r v e . csv ” , h e a d e r=TRUE) $ curve
6 c o r r<−read . csv ( ” c o r r e l a t i o n m a t r i x . c sv ” , h e a d e r=TRUE)
7
8 v o l s=c ( 0 . 9 4 , 0 )
9 v o l l =c ( 0 . 3 8 , 0 . 3 0 )

10 a=c ( 1 4 . 5 , 1 )
11
12 c o r r<−as . matrix ( c o r r , nrow=4 , nco l =4)
13 t h e t a<−1 / 365
14
15 S<−mul t iTwoFac to rSpo tS ims ( f0 , a , v o l s , v o l l , c o r r , t h e t a )
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multitwofactor.R

1 mul t iTwoFac to rSpo tS ims<− f u n c t i o n ( f0 , a , v o l s , v o l l , c o r r , t h e t a ) {
2 # f 0 : a l i s t o f f o rward c u r v e s
3 # a : a v e c t o r o f mean− r e v e r t i o n p a r a m e t e r s
4 # v o l s / v o l l : a v e c t o r o f s h o r t term / l ong term v o l a t i l i t i e s
5 # c o r r : l ong and s h o r t term c o r r e l a t i o n m a t r i x o f M m a r k e t s . S i z e i s 2M ∗

2M
6 # column / row o r d e r : marke t 1 s t , marke t 1 l t , marke t 2 s t , marke t

2 l t , e t c
7 # t h e t a : g r a n u l a r i t y o f t h e p r o d u c t i n y e a r s
8
9 # number o f m a r k e t s

10 M<− l e n g t h ( v o l s )
11 # c h o l e s k y d e c o m p o s i t i o n o f t h e c o r r e l a t i o n m a t r i x
12 c h o l e s k y<−cho l ( c o r r )
13
14 days<− l e n g t h ( f0 [ [ 1 ] ] )
15 t<− ( 0 : ( days −1) ) ∗ t h e t a
16 c<−rep ( 0 , M)
17
18 # number o f s i m u l a t i o n s s h o u l d be a m u l t i p l e o f 2 f o r a n t i − t h e t i c s a m p l in g
19 N<−200
20 eps<−0 .0001
21
22 V l<− l i s t ( ) ; V s<− l i s t ( ) ; V s l<− l i s t ( )
23 f o r ( i i n 1 :M) {
24 # a d j u s t m e n t f o r non− i n f i n i t e s i m a l p r o d u c t d e l i v e r y p e r i o d
25 i f ( a [ i ] > 0) {
26 c [ i ]<− (1 / ( a [ i ] ∗ t h e t a ) ) ∗ (1− exp (− a [ i ] ∗ t h e t a ) )
27 } e l s e {

28 c [ i ]=1
29 }

30 # d e t e r m i n i s t i c t e r m s
31 V l [ [ i ] ]<−v o l l [ i ] ˆ 2 ∗ t
32 V s [ [ i ] ]<− ( c [ i ] ˆ 2 ∗ v o l s [ i ] ˆ 2 / (2 ∗a [ i ] ) ) ∗ (1− exp (−2∗a [ i ] ∗ t ) )
33 V s l [ [ i ] ]<−2∗c [ i ] ∗ c o r r [ ( i −1)∗2+1 , ( i −1)∗2+2]∗ v o l s [ i ] ∗ v o l l [ i ] ∗ (1− exp (− a [ i ] ∗ t

) ) / a [ i ]
34 }

35
36 # c r e a t e s p o t p r i c e m a t r i x
37 S<− l i s t ( )
38 f o r ( i i n 1 :M) {
39 S [ [ i ] ]<−matrix ( nrow=days , nco l=N)
40 S [ [ i ] ] [ 1 , ]<− f0 [ [ i ] ] [ 1 ]
41 }

42
43 # t h e s t o c h a s t i c t e r m s are c a l c u l a t e d s t e p w i s e , f o r each s i m u l a t i o n
44 W s<− l i s t ( ) ; W l<− l i s t ( )
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45 f o r ( i i n 1 :N) {
46 f o r ( k i n 1 :M) {
47 W s [ [ k ] ]<−rep ( 0 , days )
48 W l [ [ k ] ]<−rep ( 0 , days )
49 }

50 # a n t i t h e t i c s a m p l i n g
51 i f ( abs ( i / 2 − f l o o r ( i / 2) )> eps ) {
52 #draw c o r r e l a t e d numbers
53 i i d norm<−matrix ( rnorm ( days ∗2∗M) , nrow=2∗M, nco l=days )
54 c o r r norm<−crossprod ( cho l e sky , i i d norm )
55 } e l s e {

56 c o r r norm<− c o r r norm∗ ( −1)
57 }

58 f o r ( k i n 1 :M) {
59 f o r ( j i n 2 : days ) {
60 W s [ [ k ] ] [ j ]<−W s [ [ k ] ] [ j −1]∗exp (− a [ k ] ∗ t h e t a )+ s q r t ( ( c [ k ] ˆ 2 ∗ v o l s [ k ] ˆ 2 / (2 ∗a

[ k ] ) ) ∗ (1− exp (−2∗a [ k ] ∗ t h e t a ) ) ) ∗ c o r r norm [ ( k−1)∗2 + 1 , j ]
61 W l [ [ k ] ] [ j ]<−W l [ [ k ] ] [ j −1]+ s q r t ( v o l l [ k ] ˆ 2 ∗ t h e t a ) ∗ c o r r norm [ ( k−1)∗2 + 2 ,

j ]
62 S [ [ k ] ] [ j , i ]<− f0 [ [ k ] ] [ j ] ∗exp ( −0.5 ∗ (V l [ [ k ] ] [ j ] + V s [ [ k ] ] [ j ] + V s l [ [ k

] ] [ j ] ) + W s [ [ k ] ] [ j ] + W l [ [ k ] ] [ j ] )
63 }

64 }

65 }

66
67 re turn ( S )
68 }
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Fundamental Unit Commitment
model

unitcommitment.R

1 # Uni t commitment problem u s i n g symphony or g l p k open s o u r c e s o l v e r s i n R
2 # Symphony p e r f o r m s b e t t e r , so i t i s t h e d e f a u l t
3 un i t commi tmen t s o l v e<− f u n c t i o n ( demand , g e n e r a t o r s , s o l v e r =”SYMPHONY” )
4 {

5 i f ( s o l v e r ==”SYMPHONY” ) {
6 l i b r a r y ( Rsymphony )
7 c a t ( ” Using Symphony s o l v e r \n ” )
8 c a l l s o l v e r<− f u n c t i o n ( obj , A, c o n s t r a i n t type , rhs , t y p e s , max=FALSE) {
9 Rsymphony s o l v e LP ( obj , A, c o n s t r a i n t type , rhs , t y p e s= t y p e s , max=max )

10 }

11 }

12 e l s e {

13 l i b r a r y ( Rglpk )
14 c a t ( ” Using GLPK s o l v e r \n ” )
15 c a l l s o l v e r<− f u n c t i o n ( obj , A, c o n s t r a i n t type , rhs , t y p e s , max=FALSE) {
16 Rglpk s o l v e LP ( obj , A, c o n s t r a i n t type , rhs , t y p e s= t y p e s , max=max )
17 }

18 }

19
20 # number o f v a r i a b l e s i n our problem
21 # x i t − b i n a r y u n i t commitment v a r i a b l e (0=OFF, 1=ON)
22 # y i t − g e n e r a t i o n be tween MSL and MEL as a p r o p o r t i o n (0 <= y i t <= x i t )
23 #w i t − b i n a r y s t a r t up v a r i a b l e (0=NO START UP, 1=START UP)
24 # a l t h o u g h w i t are b i n a r y v a r i a b l e s we can w r i t e them as a c o n t i n u o u s v a r i a b l e

w i t h a c o n s t r a i n t i n t e r m s o f x
25 # w i t >= x i t − x i , t −1 TODO: s o l v e r s have t h e == o p t i o n . Does t h i s improve

per fo rmance ?
26 v a r s<−3
27
28 # number o f t i m e s t e p s . Normal ly t h i s w i l l be 48
29 T= l e n g t h ( demand )
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30
31 # t i m e i n t e r v a l l e n g t h i n hours
32 h<−0 . 5
33
34 # read i n demand and g e n e r a t i o n da ta
35 names<−g e n e r a t o r s $names
36 srmc<−g e n e r a t o r s $ srmc
37 s t a r t c o s t<−g e n e r a t o r s $ s t a r t c o s t
38 msl<−g e n e r a t o r s $ msl
39 mel<−g e n e r a t o r s $ mel
40
41 # number o f g e n e r a t o r s
42 I<− l e n g t h ( names )
43 c a t ( ” S e t t i n g up u n i t commitment MIP wi th ” , formatC ( v a r s ∗T∗ I ) , ” v a r i a b l e s \n ” )
44 c a t ( ” B u i l d i n g o b j e c t i v e f u n c t i o n . . . \ n ” )
45 # b u i l d t h e o b j e c t i v e f u n c t i o n
46 o b j<−rep ( 0 , t i m e s =( v a r s ∗T∗ I ) )
47
48 f o r ( t i n 1 : T ) {
49 f o r ( i i n 1 : I ) {
50 # o b j e c t i v e f u n c t i o n c o e f f i c i e n t f o r x i t
51 o b j [ v a r s ∗ ( t −1)∗ I + v a r s ∗ ( i −1) + 1]= h∗ srmc [ i ] ∗msl [ i ]
52 # c o e f f i c i e n t f o r y i t
53 o b j [ v a r s ∗ ( t −1)∗ I + v a r s ∗ ( i −1) + 2]= h∗ ( mel [ i ]−msl [ i ] ) ∗ srmc [ i ]
54 # c o e f f i c i e n t f o r w i t
55 o b j [ v a r s ∗ ( t −1)∗ I + v a r s ∗ ( i −1) + 3] = s t a r t c o s t [ i ]
56 }

57 }

58
59 # b u i l d t h e m a t r i x A
60 #A has d i m e n s i o n s ( number o f c o n s t r a i n t s ) x ( v a r s ∗ I ∗ T )
61 #we have T demand c o n s t r a i n t s
62 #TODO: add T s p i n n i n g r e s e r v e c o n s t r a i n t s
63 # a l s o t h e r e are T−1 ∗ I c o n s t r a i n t s due t o c o n v e r t i n g w from i n t t o c o n t i n u o u s
64 c o n s t r a i n t s<− ( T+(T−1)∗ I ) +( I∗T )
65 c a t ( ” There a r e ” , formatC ( c o n s t r a i n t s ) , ” c o n s t r a i n t s \n ” )
66 c a t ( ” B u i l d i n g s o l v e r m a t r i x . . . \ n ” )
67 a<−rep ( 0 , t i m e s=v a r s ∗T∗ I∗ c o n s t r a i n t s )
68
69 # b u i l d m a t r i x − demand c o n s t r a i n t rows
70 f o r ( t i n 1 : T ) {
71 f o r ( i i n 1 : I ) {
72 # x i t
73 a [ ( t −1)∗T∗ I∗ v a r s + ( t −1)∗ v a r s ∗ I + ( i − 1) ∗ v a r s + 1]<−msl [ i ]
74 # y i t
75 a [ ( t −1)∗T∗ I∗ v a r s + ( t −1)∗ v a r s ∗ I + ( i − 1) ∗ v a r s + 2]<− ( mel [ i ]−msl [ i ] )
76 }

77 }

78 # u n i t commitment c o n s t r a i n t rows
79 row=T∗T∗ v a r s ∗ I−T∗ v a r s ∗ I +( I −1)∗ v a r s
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80 f o r ( t i n 1 : ( T−1) ) {
81 f o r ( i i n 1 : I ) {
82 # w i t − x i t + x i , t −1 >=0
83 row=row + T∗ v a r s ∗ I + v a r s
84 a [ row+1] = −1
85 a [ row+3]= 1
86 a [ row−v a r s ∗ I +1]=1
87 }

88 }

89
90 row=T∗T∗ v a r s ∗ I +(T−1)∗ I∗ ( T∗ v a r s ∗ I )−v a r s − T∗ v a r s ∗ I
91 f o r ( t i n 1 : T ) {
92 f o r ( i i n 1 : I )
93 {

94 row=row + T∗ v a r s ∗ I + v a r s
95 # x i t − y i t >= 0
96 a [ row+1]=1
97 a [ row+2]=−1
98 }

99 }

100
101 A= t ( matrix ( a , nrow=T∗ I∗ v a r s ) )
102 c a t ( ” S o l v e r m a t r i x has ” , formatC ( l e n g t h (A[ , 1 ] ) ) , ” rows and ” , formatC ( l e n g t h (A

[ 1 , ] ) ) , ” columns \n ” )
103
104 # b u i l d RHS
105 r h s<−rep ( 0 , t i m e s= c o n s t r a i n t s )
106 f o r ( i i n 1 : T ) {
107 r h s [ i ]<−demand [ i ]
108 }

109
110 # D e f i n e v a r i a b l e t y p e s : x i t B i na ry ; y i t , w i t C o n t i n u o u s
111 t y p e s<−rep ( c ( ”B” , ”C” , ”C” ) , t i m e s= c o n s t r a i n t s )
112 c o n s t r a i n t t y p e<−rep ( ”>=” , t i m e s= c o n s t r a i n t s )
113
114 c a t ( ” S o l v i n g . . . \ n ” )
115 o u t= c a l l s o l v e r ( obj , A, c o n s t r a i n t type , rhs , t y p e s= t y p e s , max=FALSE)
116
117 }
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main.R

1 source ( ” un i t commi tmen t . R” )
2
3 main<− f u n c t i o n ( s o l v e r =”SYMPHONY” )
4 {

5
6 # read g e n e r a t o r s f i l e
7 c a t ( ” Reading g e n e r a t o r s . c sv . . . \ n ” )
8 g e n e r a t o r s<−read . t a b l e ( ” g e n e r a t o r s . c sv ” , h e a d e r=TRUE, sep=” , ” )
9

10 # read demand f i l e
11 c a t ( ” Reading demand . csv . . . \ n ” )
12 d e m a n d l i s t<−read . t a b l e ( ” demand . csv ” , h e a d e r=TRUE, sep=” , ” )
13 demand<−d e m a n d l i s t $demand
14
15 s o l v e r T i m e<−system . t ime ( o u t<−un i t commi tmen t s o l v e ( demand , g e n e r a t o r s , s o l v e r ) )
16 c a t ( ”A s o l u t i o n was found . Time e l a p s e d : ” , formatC ( s o l v e r T i m e [ [ 3 ] ] ) , ” s e c o n d s \n ” )
17
18 # a n a l y z e t h e r e s u l t s
19 v a r s<−3
20 I<− l e n g t h ( g e n e r a t o r s $names )
21 T<− l e n g t h ( demand )
22 r e s u l t s<−o u t $ s o l u t i o n
23 p r i c e s<−rep ( 0 , t i m e s=T )
24
25 s c h e d u l e<− t ( matrix ( window ( r e s u l t s , d e l t a t =v a r s ) , nrow=I ) )
26 f o r ( t i n 1 : T ) {
27 maxsrmc=0
28 f o r ( i i n 1 : I ) {
29 i f ( s c h e d u l e [ t , i ]==1) {
30 i f ( g e n e r a t o r s $ srmc [ i ] > maxsrmc ) {
31 maxsrmc= g e n e r a t o r s $ srmc [ i ]
32 }

33 }

34 }

35 p r i c e s [ t ]= maxsrmc
36 }

37
38 schedFrame<−data . frame ( s c h e d u l e )
39 names ( schedFrame )<−g e n e r a t o r s $names
40 o u t<−data . frame ( schedFrame , Demand=demand , P r i c e = p r i c e s )
41 p r i n t ( o u t )
42
43 }
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Example Output
> main()

Reading generators.csv...

Reading demand.csv...

Using Symphony solver

Setting up unit commitment MIP with 1296 variables

Building objective function...

There are 903 constraints

Building solver matrix...

Solver matrix has 903 rows and 1296 columns

Solving...

A solution was found. Time elapsed: 1 seconds

Coal Gas Nuclear Oil Pumped CHP OCGT Hydro Wind Demand Price

1 1 1 1 0 1 0 0 1 1 1700 60

2 0 1 1 0 0 0 0 1 1 1360 25

3 0 1 1 0 0 0 0 1 1 1100 25

4 0 0 1 0 0 0 0 0 1 500 5

5 0 0 1 0 0 0 0 0 1 400 5

6 0 0 1 0 0 0 1 1 1 800 160

7 0 1 1 0 0 0 0 1 1 900 25

8 0 1 1 0 0 0 0 1 1 1300 25

9 1 1 1 0 0 0 0 1 1 1400 35

10 1 1 1 0 0 0 0 1 1 1500 35

11 1 1 1 0 0 0 0 1 1 1600 35

12 1 1 1 0 1 1 0 1 1 2330 60

13 1 1 1 0 1 1 0 1 1 2310 60

14 1 1 1 0 1 1 0 1 1 2499 60

15 1 1 1 0 0 1 0 1 1 2100 50

16 1 1 1 0 1 1 0 1 1 2400 60

17 1 1 1 0 1 1 0 1 1 2600 60

18 1 1 1 0 1 1 0 1 1 2700 60

19 1 1 1 1 1 1 0 1 1 2850 110

20 1 1 1 0 1 1 1 1 1 2833 160

21 1 1 1 1 1 1 0 1 1 2955 110

22 1 1 1 0 1 1 0 1 1 2700 60

23 1 1 1 0 1 1 0 1 1 2655 60

24 1 1 1 0 1 1 0 1 1 2555 60

25 1 1 1 0 1 1 0 1 1 2601 60

26 1 1 1 0 1 1 0 1 1 2615 60

27 1 1 1 0 1 1 1 1 1 2812 160

28 1 1 1 1 1 1 0 1 1 2850 110

29 1 1 1 1 1 1 0 1 1 2897 110

30 1 1 1 1 1 1 0 1 1 2989 110

31 1 1 1 1 1 1 0 1 1 3120 110

32 1 1 1 1 1 1 0 1 1 3111 110

33 1 1 1 1 1 1 0 1 1 3329 110

34 1 1 1 1 1 1 0 1 1 3400 110

35 1 1 1 1 1 1 0 1 1 3460 110

36 1 1 1 1 1 1 0 1 1 3500 110

37 1 1 1 1 1 1 0 1 1 3200 110

38 1 1 1 1 1 1 0 1 1 3100 110

39 1 1 1 1 1 1 0 1 1 3000 110

40 1 1 1 1 1 1 0 1 1 2900 110

41 1 1 1 0 1 1 1 1 1 2800 160

42 1 1 1 0 1 1 0 1 1 2700 60

43 1 1 1 0 1 1 0 1 1 2600 60

44 1 1 1 0 1 1 0 1 1 2500 60

45 1 1 1 0 1 1 0 1 1 2400 60

46 1 1 1 0 1 1 0 1 1 2300 60

47 1 1 1 0 1 1 0 1 1 2200 60

48 1 1 1 0 0 1 0 1 1 2100 50
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