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Abstract

Stochastic comparison is a method to prove bounds on performance metrics of stochas-
tic models. Here, coupling can be used to define two processes on a common probability
space, which makes it possible to compare the steady-state distributions of the processes.
Two processes are stochastically related if their steady-state distributions satisfy a certain
comparison relation. Such a stochastic relation can be more general than a stochastic or-
der. In this thesis, a thorough description of stochastic comparison using coupling for
the probability kernels of Markov processes is presented. Necessary and sufficient con-
ditions for the stochastic comparison of stochastically related Markov queueing networks
are given, in particular for the coordinate-wise and the summation relation. Also, an ex-
ample of a Jackson network with breakdowns is studied, and an explicit coupling which
preserves a subrelation of the coordinate-wise order relation is constructed. This allows to
conclude that the steady-state distributions of the breakdown models are coordinate-wise
comparable.

Keywords: coupling, stochastic comparison, stochastic order, stochastic relation, Strassen’s
theorem, Markov queueing network, Jackson network, probability kernel
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Chapter 1

Introduction

Stochastic queueing networks are networks of multiple interconnected service stations. Cus-
tomers arrive in some random manner at a station in the system, where they may have to
wait until they are served. After service, the customers jump randomly from one server
to another, or leave the system. Queueing networks are used to model a great variety
of applications. A few examples where queueing networks can be used in mathematical
modeling are:

• call centers, where calls arrive and are put through to different service desks,

• manufacturing models, where requests or materials have to move along different
production facilities or employees,

• the internet, where data packets are routed from source to end,

• many more applications in physics, biology and economy.

More on the variety and applications of queueing networks can be found in [Serfozo, 1999],
[Kelly, 1985] and [Kelly, 1991].

Our principal aim is to obtain information about system quantities. For queueing mod-
els we can think, for example, of the number of customers in the system, the waiting
time, the loss probability, or the busy period of a service station. System quantities can
be means, but also distributions, such as the waiting time distribution at a certain server.
The behaviour of a stochastic model is completely determined when we know the model
dynamics and the initial distribution of the network. In practice, distribution functions
may not be known, or their full dependence structure may be unknown.

Often, queueing models are too complex to analyze explicitly, but if it is not possible
to compute the probability distributions, it may still be possible to provide bounds on
the system quantities of the model. For example, by comparing the model to a simplified
model. Possible ways to prove the validity of the bounds are (i) simulation, which is useful
in practice because it is easy to implement, but only gives results for certain parameters of
the model; (ii) mean value analysis, for example by using the Markov reward approach
[van Dijk, 1998]; and (iii) stochastic comparison, which provides approximations for the
distributions of the processes. In this thesis, stochastic comparison of Markov queueing
networks is considered.

Stochastic orders are frequently used for the derivation of comparison results for
stochastic models. Formally, stochastic ordering is a partial ordering on the state space
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of probability measures. The term order refers to the strong or usual stochastic order. How-
ever, in this context we require a partial order on the state space where both processes live.
In [Müller and Stoyan, 2002] and [Shaked and Shanthikumar, 2007] the reader can find an
overview on stochastic orders. In [Kamae et al., 1977], characterizations for the partial or-
dering of probability measures are given. [Massey, 1987] and [Whitt, 1981] extended these
characterizations for the stochastic domination of continuous-time Markov processes, and
[Last and Brandt, 1995] extends it to more general jump processes. In [Leskelä, 2010], the
notion of stochastic orders is extended by defining stochastic relations. Unlike orders, re-
lations do not have to be reflexive or transitive. Also, a relation between two processes
is defined as an arbitrary subset of the product space in which the two processes live.
Therefore, the two processes do not have to take values in a common ordered space, and
the spaces do not have to be the same.

Coupling is a method for proving stochastic comparability. The main idea of cou-
pling is the joint construction of two random elements on a common probability space,
while adding dependencies on the processes. Adding dependencies allows comparison of
the distributions of the elements [Lindvall, 1992], [Thorisson, 2000]. In [Szekli, 1995] and
[Last and Brandt, 1995], several coupling constructions are described. Stochastic compar-
ison using coupling is often based on Strassen’s theorem, which ensures the existence of
an order-preserving coupling [Strassen, 1965]. Strassen’s theorem remains valid for rela-
tions, which allows us to use coupling methods to analyze stochastic relations. Leskelä
presents a characterization of stochastic relations and gives if and only if conditions for
the stochastic comparison with respect to relations. The existence of a coupling which
preserves some subrelation is sufficient to lead to strong comparison results.

Jackson networks are one of the simplest classes of Markov queueing networks to
study. Sufficient conditions for the stochastic comparison of Jackson networks with iden-
tical routing probabilities are given in [Lindvall, 1992]. In [López et al., 2000], necessary
and sufficient conditions for the stochastic comparison of Jackson networks with increas-
ing service rates are derived, by constructing an explicit coupling. In [Economou, 2003],
sufficient conditions are stated for the coordinate-wise ordering without assumptions on
the service rates. However, these conditions are not sharp. If and only if conditions for
the same problem are presented in [Delgado et al., 2004].

In this thesis, the theory of stochastic comparison with coupling is applied to Markov
queueing networks. A detailed introduction to couplings and stochastic relations is pre-
sented. In most applications, the queueuing models consist of a finite number of ser-
vice stations and the state spaces are countable. These assumptions allow simplification
of the theory of stochastic comparison. The model dynamics of Markov processes are
usually given by transition probability matrices. New notions of coupling of transition
matrices and coupling of transition rate matrices are defined. Although several compara-
bility conditions and characterizations have already been given in terms of probability
kernels [Kamae et al., 1977] and [Leskelä, 2010], couplings of transition matrices have not
been defined before. The definition of coupling of bounded transition rate matrices for
continuous-time Markov processes follows naturally from the discrete-time definition. We
prove that the definitions of a coupling of transition probability matrices coincide with
coupling of the related discrete-time Markov processes. The same result for a coupling
of transition rate matrices and continuous-time Markov processes is given, by writing
continuous-time Markov processes in discrete-time using the uniformization method as
in [Ross, 2007].

For Markov queueing networks on countable state spaces, we derive necessary and
sufficient conditions for the stochastic comparison of these networks, using a comparison
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CHAPTER 1. INTRODUCTION

result from [Leskelä, 2010]. We work out these conditions for two relations. In particu-
lar: the coordinate-wise order relation compares the number of customers in the networks at
each service station, while the summation relation compares the total number of customers
in the entire system. The results obtained for the coordinate-wise order relation are com-
plementary to the results in [Delgado et al., 2004]. Also, we consider a Jackson network
where breakdowns can occur. In this example, it is not possible to give a coupling for
which the required comparison relation is invariant, but still, the stochastic comparison
relation can be proved by defining a subrelation of the comparison relation. We give an
explicit coupling which preserves a subrelation of the coordinate-wise order relation, and
illustrate that this indeed leads to a strong stochastic comparison result.

The thesis is outlined as follows. We start in Chapter 2 with an example of a coupling
of two single-server queueing systems. Then, after some basic definitions and measure
theoretic revisions, the notion of coupling is defined. For Markov processes, the coupling
of probability (rate) matrices is studied. Stochastic comparison of random elements and
processes is discussed in Chapter 3. In Chapter 4 a basic Markov queueing network is
presented and the necessary and sufficient conditions for the stochastic comparison of
two of those Markov queueing networks are proved for two different types of relations.
For the coordinate-wise order relation, a new characterization for sharp comparison con-
ditions of general Markov queueing networks is stated. The conditions of this theorem
are analytically easy to verify. Chapter 5 illustrates how strong comparison results follow
from a coupling which preserves some subrelation. Chapter 6 concludes the thesis.
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Chapter 2

Coupling

Coupling is a possible way to compare two or more random variables or processes. By
coupling two processes we establish a joint construction on a common probability space.
This chapter gives an introduction to the coupling approach. We start by giving a basic
example of the coupling of two single-server queues in Section 2.1. In the second section
the formal definition of the coupling of stochastic measures, elements and processes is
given. In Section 2.3 and 2.4 we consider the coupling of respectively discrete-time and
continuous-time Markov processes and we express coupling in terms of the transition
probability kernels of the processes.

2.1 Single-server queue

We consider two single-server exponential queueing systems X and Y. In both systems
customers arrive at the service station in accordance with a Poisson process having rate λ.
That is, all inter-arrival times are independent and exponentially distributed with mean
1/λ. The service times are also independent and exponentially distributed with mean
1/µ for queueing system X, and mean 1/µ′ for system Y. As state description we use
the number of customers in the system, denoted by n with n ∈ N and 0 ≤ n ≤ N. The
notation N is used for all positive integers where we adopt the convention that 0 ∈ N.
Furthermore, we assume that the systems have a capacity constraint of N on the total
number of customers in the system. If n ≥ N, arriving customers are rejected and lost.

0 1 . . . N
λ

µ

λ

µ

λ

µ

Figure 2.1: Single-server queue (M/M/1)

The two systems differ only in the service rate: the service rate µ in system X is as-
sumed to be bigger than the service rate µ′ in system Y. So we expect that on average
there are less customers in system X, because the waiting and service times of the cus-
tomers in this system are shorter. We expect the loss rate of system X to be smaller than
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2.1. SINGLE-SERVER QUEUE

the loss rate of system Y. In this simple example we can easily compute the steady-state
distribution, for example, by solving the equation π = πP for the transition probability
matrix P [Ross, 2007]. In this example the state space is one-dimensional. In more dimen-
sional state spaces, however, we do not want to compute these steady-state distributions,
because it is too difficult or time-intensive.

The goal is to prove that process X is stochastically smaller than process Y in some sense.
If we do not want to compute the steady-state distributions we can use other approaches,
such as coupling. Formal definitions will be given in Section 3.1 and 3.2.

2.1.1 Three couplings

In this single-server example, X and Y are real-valued and live in a one-dimensional space.
A random variable X̂ is a copy or representation of X if X̂ and X have the same distribution.

X̂
d
= X if and only if P(X ≤ s) = P(X̂ ≤ s) for all s ∈ R. (2.1)
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λ
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λ
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Figure 2.2: The trivial coupling of X and Y.

A coupling of two processes X on S1 and Y on S2 is a third process Z = (X̂, Ŷ) on the
product space S1 × S2 such that X̂ is a copy of X, and Ŷ is a copy of Y. So the marginals
of the new process coincide with the original processes. For the two single-server queues
X and Y described above we can have for example the simplest coupling, called the trivial
coupling, shown in Figure 2.2. In this picture we can see that in any state (x, y) in the
product space, the marginal outgoing rates behave just the same as the outgoing rates
from state x of X and state y of Y. So a coupling (X̂, Ŷ) is a process on the product space
such that the marginal distributions behave just like X and Y.
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CHAPTER 2. COUPLING

0

1

2

0 1 2

(0, 0)

(0, 1)

(0, 2)

(1, 0)

(1, 1)

(1, 2)

(2, 0)

(2, 1)

(2, 2)

λ µ′

λ µ′

λ

µ

λ

µ

λ

µ′

λ

µ′

λ

µ′

λ

µ′
µ′

µ′

λ

λ

µ µ

∆ ∆

λ

∆

λ

∆

Figure 2.3: Maximal coupling of X and Y.

The trivial coupling always exists and does not give us any extra insight in the be-
haviour of the two original processes. Typically we want to include a certain amount of
dependency in the coupling (that is dependency between X̂ and Ŷ), although of course
the marginal distributions have to remain the same.

For our example, define ∆ := µ − µ′. Then we can adapt the coupling such that
whenever a departure occurs at process Y, there will also be a departure in process X, and
thus we have a joint departure rate of µ′. The arrival rates are also coupled. There exists
more couplings of X and Y. Figure 2.3 and Figure 2.4 gives two other couplings of X and
Y.

Summarized, we start with two processes X and Y, and we create a coupling of them

(X̂, Ŷ) such that X̂
d
= X and Ŷ

d
= Y, and such that X̂ and Ŷ have an interesting dependence

structure. Now let us consider what we actually want to achieve. We want to prove that
X is stochastically less than Y. For random variables this means

P(X ≤ s) ≥ P(Y ≤ s), for all s ∈ R. (2.2)

X̂
d
= X and Ŷ

d
= Y, and (2.2) is equivalent to

P(X̂ ≤ Ŷ) = 1. (2.3)

Consider Figure 2.4. The dotted area in this figure is exactly the area where X̂ ≤ Ŷ holds.
This is also the area where the relation R = {(x, y) : x ≤ y} is true. So, all we have to do is
to prove that in steady-state the process (X̂, Ŷ) is inside the dotted area R. The dotted area
is invariant (sometimes also called absorbing) for the process (X̂, Ŷ). That is, once entered
into this area the process will never leave the dotted area anymore. So if we start in this
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Figure 2.4: A third coupling of X and Y.

area, we will stay there forever, but also when we do not start in this area, the probability
that we never enter it is zero. So we found a coupling process for which in steady-state
the relation R is true with probability one.

Note that to compute a coupling for which the relation R is invariant, we can start with
the trivial coupling and add dependencies only in those states at the boundary of relation
R. That is the dotted line in Figure 2.4.

2.1.2 Stochastic Comparison

Figures 2.3 and 2.4 both present couplings for which the relation R is invariant. Now that
we found such couplings, we can prove that X ≤st Y. Assume x ≤ y, that is (x, y) ∈ R.
Let the initial states be X0 = x and Y0 = y. Then for all s ∈ R :

P

(

Xt(x) > s
)

(X̂t)t∈R+ is a copy of (Xt)t∈R+

= P

(

X̂t((x, y)) > s
)

due to the fact that P(X̂t((x, y)) > s, X̂t((x, y)) > Ŷt((x, y))) = 0

= P

(

X̂t((x, y)) > s, X̂t((x, y)) ≤ Ŷt((x, y))
)

because event (Ŷt((x, y)) > s) is a subset of (X̂t((x, y)) > s, X̂t((x, y)) ≤ Ŷt((x, y)))

≤ P

(

Ŷt((x, y)) > s
)
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CHAPTER 2. COUPLING

and, because (Ŷt)t∈R+ is a copy of (Yt)t∈R+

= P

(

Yt(y) > s
)

.

Thus, Xt(x) ≤st Yt(y) for x ≤ y for all t. Taking limits at both sides where we use πX to
denote the limit distribution of X, using Theorem 3.14 we get that the limit distributions
of X and Y exist and do not depend on the initial states. By Theorem 3.15, which ensures
us that the probability to stay out of the invariant subspace R is zero, we have πX ≤st πY.
We call the processes X and Y stochastically related with respect to relation R.

Usually, the explicit coupling is never given. Existence of a coupling for which a (sub-
relation of) relation R is invariant is sufficient to prove the strong stochastic comparison,
as we conclude at the end of the next chapter. Another explicit coupling of Markov queue-
ing systems is presented in Chapter 5, and more examples can be found, for example, in
[Jonckheere and Leskelä, 2008] or [Chen, 2005].

2.2 Coupling

In this section, we introduce some basic concepts required for the rest of this thesis. After
a brief revision of the concepts of measurability, random elements, stochastic processes, and
the definition of the distribution of a random element, we give the definition of coupling for
probability measures and random elements.

2.2.1 Stochastic process

We start by introducing the necessary measure-theoretic terminology and notation. A σ-
algebra on S is a non empty subset of the power set 2S which is closed under complements
and countable unions. A measurable space is a pair (S,S) where S is a set, and S is a
σ-algebra on S. A probability space (Ω,F ,P) is a measurable space with a probability mea-
sure. A mapping X between two measurable spaces (S,S) and (S′,S ′) is called measurable
if X−1(A′) ∈ S for all A′ ∈ S ′.

A random element in a measurable space (S,S), defined on a probability space (Ω,F ,P),
is a measurable mapping X : (Ω,F ,P)→ (S,S), and we denote

X−1(A) = {X ∈ A} := {ω ∈ Ω : X(ω) ∈ A} for A ∈ S .

A random variable is a random element in (R,B), where R denotes the real numbers and
B denotes the Borel subsets of R [Schilling, 2005].

A stochastic process with index set T is a family X = (Xt)t∈T where all Xt are random
elements defined on a common probability space (Ω,F ,P) taking values in (S,S). We
can think of X as a mapping X : Ω→ U ⊆ ST , or equivalently we can see the process X as
a collection of random elements Xt in the state space S with Xt : Ω → S for all t ∈ T (see
[Kallenberg, 2002], Lemma 3.1). In this work the index set T denotes the time line, which
is either discrete (T = N) or continuous (T = R+). The paths of a stochastic process X are
realizations X(ω) = (Xt(ω))t∈T, ω ∈ Ω. When we speak about a path, no randomness is
involved anymore (ω ∈ Ω is fixed) because the random elements (Xt)t∈T are fixed. The
path space U is the subset of all paths X(ω). Thus, X is a stochastic process on Ω with
paths in U. For discrete-time stochastic processes, U = SN, where

SN = {functions from N into S}.
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2.2. COUPLING

For continuous-time processes, the path space U is denoted by D = D(R+, S), where

D(R+, S) = {functions from R+ into S which are right-continuous and have left limits}.

Here, we restrict D ⊆ SR to the set of functions which are right-continuous and have left
limits to ensure measurability [Leskelä, 2010].

2.2.2 Coupling of probability measures

Let P be a probability measure on S1 × S2. The marginals of P are defined by

[P]1(A1) := P(A1 × S2) for all A1 ∈ S1, and

[P]2(A2) := P(S1 × A2) for all A2 ∈ S2.

Definition 2.1. [Coupling of probability measures]
Let PX and PY be probability measures in (S1,S1) and (S2,S2), respectively. A probability
measure P : S1 × S2 → [0, 1] is a coupling of PX and PY if the marginals of P equal PX

and PY. This means, P is a coupling of PX and PY if

[P]1(A1) = PX(A1) for all A1 ∈ S1,

and

[P]2(A2) = PY(A2) for all A2 ∈ S2.

2.2.3 Distribution

The distribution of a random element X (under measure P) is the probability measure on
(S,S) induced by X, namely PX−1, where

PX−1(A) = P(X ∈ A) = P({ω ∈ Ω : X(ω) ∈ A}) for A ∈ S .

A random element X′ in (S,S) is a copy or representation of X if the distributions of X and
X′ are equal, so

P(X ∈ A) = P(X′ ∈ A) for all A ∈ S .

We write X′
d
= X to indicate that X′ is a copy of X.

2.2.4 Coupling of random elements

Coupling is the joint construction of two (or more) random elements on one common
probability space. The idea of this probability space is that it is a common probability
space on which both random elements are defined.

Let X and Y be random elements in the spaces (S1,S1) and (S2,S2), respectively. We
introduce a third bivariate random element Z = (X̂, Ŷ) in a space (S,S). The random
element Z lives on the product space of (S1,S1) and (S2,S2). This common probability
space is the natural product space

(S1,S1)⊗ (S2,S2) = (S1 × S2,S1 ⊗S2),

where S1 × S2 denotes the ordinary Cartesian product of S1 and S2, and S1 ⊗ S2 is the
product σ-algebra generated by S1 and S2 (for reference see for example [Schilling, 2005]
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CHAPTER 2. COUPLING

or [Williams, 1991]). From Section 2.2.4 on, this product space will be denoded simply by
S1 × S2, leaving the σ-algebra implicit. Also, we do not need to care about measurability
of the different sets, because our state spaces are always countable. Measurability also
ensures us that all subsets of the state spaces are closed. We denote the first marginal of
PZ−1 by [PZ−1]1 or PX̂−1 and the second marginal by [PZ−1]2 (or PŶ−1):

[PZ−1]1(A1) := PZ−1(A1 × S2),

[PZ−1]2(A2) := PZ−1(S1 × A2).

Now we can give the formal definition of a coupling.

Definition 2.2. [Coupling of random elements]
Let X be a random element in (S1,S1) and Y a random element in (S2,S2). A random
element Z = (X̂, Ŷ) in S1 × S2 is a coupling of X and Y if the marginal distributions of Z
equal the distributions of X and Y. This means, Z = (X̂, Ŷ) is a coupling of X and Y if

[

PZ−1
]

1
(A1) = PX−1(A1) for all A1 ∈ S1,

and
[

PZ−1
]

2
(A2) = PY−1(A2) for all A2 ∈ S2.

In other words: a coupling Z = (X̂, Ŷ), defined on some probability space (Ω̂, F̂ , P̂), of
random elements X and Y is a measurable mapping Z : (Ω̂, F̂ , P̂) → (S1 × S2,S1 ⊗ S2)

such that X̂
d
= X and Ŷ

d
= Y.

Note that there always exists at least one coupling, namely the so-called trivial coupling
where X̂ and Ŷ are independent of each other (Fact 3.1 of Chapter 3 in [Thorisson, 2000]).

2.2.5 Coupling of random variables

Now that coupling is defined for random elements, by the definitions in the beginning of
the chapter we can specify the notion of coupling of random variables. A random variable
is a random element with values on the real line; in this case the distribution of a random
variable X is completely defined by P(X ≤ s) = PX−1((−∞, s]) for all s ∈ R. For a
bivariate random element Z defined in R×R, the marginal distributions are given by

[

PZ−1
]

1
((−∞, x]) := PZ−1((−∞, x], (−∞,∞)), for all x ∈ R,

[

PZ−1
]

2
((−∞, y]) := PZ−1((−∞,∞), (−∞, y]), for all y ∈ R.

Definition 2.3. [Coupling of random variables]
Let X and Y be two random variables on (R,B). A bivariate random element Z = (X̂, Ŷ)
in R ×R is a coupling of X and Y if the marginal distribution functions of Z are equal to
the distribution functions of X and Y. Hence, Z is a coupling of X and Y if

[

PZ−1
]

1
((−∞, x]) = PX−1((−∞, x]) for all x ∈ R,

and
[

PZ−1
]

2
((−∞, y]) = PY−1((−∞, y]) for all y ∈ R.
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2.3. COUPLING OF DISCRETE-TIME MARKOV PROCESSES

We make a few remarks on Definitions 2.2 and 2.3. First of all, it is important to
remark that for a coupling Z of X and Y, the marginal distributions coincide. Often for the
original elements X and Y, the joint distribution is not defined or at least not known. As
[Thorisson, 2000] says: X̂ and Ŷ live together, X and Y do not. This is exactly where couplings
can be useful. When constructing a coupling, only the marginals have to coincide, and
we have some freedom in constructing dependence between X̂ and Ŷ. The trick is thus
to find a coupling with a nice dependence relation of X̂ and Ŷ, which gives us some
comparison properties between X and Y. We study such comparison relations in Chapter
3. In Chapter 3 we will also present some theorems on the joint distribution of couplings.
Strassen’s Theorem (Section 3.3), for example, ensures the existence of a coupling which
preserves a certain ordering. In the next two sections we will consider coupling in a
Markov chain setting.

2.3 Coupling of discrete-time Markov processes

This section is focused on coupling of discrete-time Markov processes. A coupling of
transition probability matrices is defined, and we prove that a coupling of the transition
matrices of two processes is the transition matrix of a coupling of the processes.

2.3.1 Discrete-time Markov processes

Consider two discrete-time Markov processes X = (Xt)t∈T and Y = (Yt)t∈T having count-
able state spaces S1 and S2, where the time horizon is N. So each realization of process X
is an infinite path in SN

1 . At each time moment t ∈ N, the process jumps to another state
(or remains in the same state) with a certain probability. X(x, ·) is a Markov process with
transition matrix P1 on state space S1 and initial state x. We write X(x, ·) for (Xt(x))t∈N

where t stands for time and x denotes the initial state.
Process X has probability matrix, or transition matrix, P1 where P1(x, x

′) is the probability
to jump from state x to state x′. The second process Y, taking values in space S2, has
probability matrix P2. For all probability transition matrices, we must of course have that
all entries are greater or equal than zero and all rows sum to one.

2.3.2 Coupling of transition matrices

Definition 2.4 generalizes the notion of coupling to discrete-time Markov processes deter-
mined by the transition probability matrices.

Definition 2.4. [Coupling of transition matrices]
Let P̂ be a transition matrix on S1 × S2. Then matrix P̂ is called a coupling of P1 and P2 if
for all x ∈ S1 and y ∈ S2,

P1(x, x
′) = ∑

y′∈S2

P̂((x, y), (x′, y′)) for all x′ ∈ S1,

and

P2(y, y
′) = ∑

x′∈S1

P̂((x, y), (x′, y′)) for all y′ ∈ S2.

Theorem 2.5. [Coupling theorem for discrete-time Markov processes]
Let P1, P2 be transition matrices on S1 and S2. Let X(x, ·) = (Xt(x))t∈N be a discrete-time
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Markov process on S1 with transition matrix P1 and initial state x. Similarly, let Y(y, ·) =
(Yt(y))t∈N be a discrete-time Markov process on S2 with transition matrix P2 and initial state y.
Assume that P̂ on S1 × S2 is a coupling of P1 and P2. Let Z(z, ·) = (X̂(z, ·), Ŷ(z, ·)) be a Markov
process on S1 × S2 with transition matrix P̂ and initial state z = (x, y). Then the process Z(z, ·)
is a coupling of the processes X(x, ·) and Y(y, ·). In particular, Z(z, t) is a coupling of Xt(x) and
Yt(y) for all t.

As we know from the previous section, the realizations of process X are paths in the
state space. We are interested in P(X(x, ·) ∈ F) for subsets of paths F ⊆ SN. For the
proof of Theorem 2.5, we use the following lemma which states that the distribution of a
process X = (Xt)t∈N is completely determined by the distribution functions of its finite-
dimensional paths.

Lemma 2.6. [Finite-dimensional distributions]
Let X = (Xt)t∈N and Y = (Yt)t∈N be processes living in S, with time horizon N and paths in

SN. For each t, Xt and Yt are random elements in S. Then X
d
= Y if and only if

(Xt1 ,Xt2 , . . . ,Xtn)
d
= (Yt1 ,Yt2 , . . . ,Ytn) for all t1, . . . , tn ∈ N, n ∈ N.

For the proof of Lemma 2.6 see [Kallenberg, 2002], Proposition 3.2. In other words,
Lemma 2.6 states that if we are interested in P(X(x, ·) ∈ B) for all subsets of paths B ⊂ SN,
it is enough to consider the probability distributions of all finite paths

P

(

Xt0 = a0;Xt1 = a1; . . . ;Xtn = an
)

,

for all t0, . . . , tn ∈ T, n ∈ N and a0, a1, . . . , an ∈ S. In this section, we deal with discrete-
time Markov processes which jump at t = 0, 1, . . . Therefore, in Lemma 2.6 above, we can
read ti = i for all i ∈ N. But the lemma is also valid for continuous-time processes.

The indicator function of a set A is 1A :=

{

1 if A is true,
0 otherwise.

We denote X(x, ·) by (Xt(x))t∈N; Y(y, ·) = (Yt(y))t∈N and Z(z, ·) = (Zt(z))t∈N where
Z = (X̂, Ŷ), so Zt(z) = (X̂t, Ŷt)(z) = (X̂t(z), Ŷt(z)) for all z = (x, y) ∈ S1 × S2. Now, the
coupling theorem for discrete-time Markov processes can be proved.

Proof of Theorem 2.5. Fix an arbitrary n ∈ N and a finite path (at)t=0,...,n in S1: (a0, a1,

. . . , an) ∈ Sn+1
1 . Then, for all initial states b0 in S2 we have:

P

(

X0(x) = a0;X1(x) = a1; . . . ;Xn(x) = an

)

= 1{x=a0}
· P1(a0, a1) · P1(a1, a2) · . . . · P1(an−1, an)

= 1{x=a0}
· ∑
b1∈S2

{

P̂
(

(a0, b0), (a1, b1)
)

· ∑
b2∈S2

{

P̂
(

(a1, b1), (a2, b2)
)

· . . .

· ∑
bn−1∈S2

{

P̂
(

(an−2, bn−2), (an−1, bn−1)
)

· ∑
bn∈S2

{

P̂
(

(an−1, bn−1), (an, bn)
)}

}

. . .

}

}

= P

(

Z0((x, y)) ∈ {a0} × S2; Z1((x, y)) ∈ {a1} × S2; . . . ; Zn((x, y)) ∈ {an} × S2

)

= P

(

X̂0((x, y)) = a0; X̂1((x, y)) = a1; . . . ; X̂n((x, y)) = an
)

,

for all y ∈ S2.
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2.4. COUPLING OF CONTINUOUS-TIMEMARKOV PROCESSES

In the same way we can fix an arbitrary finite path (bt)t=0,...,n in S2 and show that for
this path also holds, for all initial states a0 ∈ S1:

P

(

Y0(y) = b0;Y1(y) = b1; . . . ;Yn(y) = bn
)

=

P

(

Ŷ0((x, y)) = b0; Ŷ1((x, y)) = b1; . . . ; Ŷn((x, y)) = bn
)

for all x ∈ S1.
This holds for all finite paths (at)t=0,...,n in S1 and (bt)t=0,...,n in S2, and for all initial

states x, y in S1 and S2. Using Lemma 2.6 we can generalize this to infinite paths. There-

fore, we conclude that process
(

Zt((x, y))
)

t∈N

=
(

(X̂t, Ŷt)((x, y))
)

t∈N

is a coupling of

the processes (Xt(x))t∈N and (Yt(y))t∈N when the transition probability matrix P̂ is a
coupling of P1 and P2.

2.4 Coupling of continuous-time Markov processes

In this section we will do the same for continuous-time Markov processes as we did in
Section 2.3 for the discrete-time situation. Probability matrices are replaced by transition
rate matrices. In Section 2.4.2 we present the uniformization method, which allows us to
express a continuous-time process in a discrete-time way. With Theorem 2.10 we prove
that a coupling of transition rate matrices yields a coupling of the associated processes.

2.4.1 Continuous-time Markov processes

Now, suppose we have a continuous-time Markov process with transition rate matrix Q
on state space S. During this section we will denote Markov processes in continuous-time
(where the time horizon T = R+) using bold face symbols like X and Y. For discrete-time
processes the time T = N, and these processes are denoted by normal-face symbols as X
and Y.

Suppose that a continuous-time process X on a space S has the transition rate matrix (or
probability kernel) Q where Q(x, x′) is the transition rate from state x to state x′ for x 6= x′.
In the continuous case we do not care about the transition rate from x to itself. Usually
the entry Q(x, x) is defined as Q(x, x) = −∑x′ 6=x Q(x, x′), so that the entries on each row
of the transition rate matrix sum up to zero, which is useful for some computations. In
this work we will not need it, we can even leave the Q(x, x)’s undefined. For simplicity
we adopt the convention that Q(x, x) = 0 for all x ∈ S.

2.4.2 Uniformization

Define for each state the outflow rate q(x) := ∑x′ 6=x Q(x, x′) of that state. The time that the
process remains in state x has an exponential distribution with mean 1/q(x). Assume that
the outflow rates are bounded: supx∈S q(x) < ∞. Then there exists a constant γ ∈ R+

such that q(x) ≤ γ for all x ∈ S. Fix this uniformization constant.

Definition 2.7. [Uniformization]

P(x, x′) :=

(

q(x)

γ

) (

Q(x, x′)

q(x)

)

1{x 6=x′} +

(

1−
q(x)

γ

)

1{x=x′}. (2.4)
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CHAPTER 2. COUPLING

We call P the uniformized matrix of the transition rate matrix Q, or more briefly: P
is the uniformized Q-matrix. Note that this matrix is uniquely determined for a fixed
uniformization constant γ.

The uniformization formula (2.4) transforms the collection of transition rates Q(x, x′)
into transition probabilities P(x, x′), where events occur according to a Poisson arrival

process with rate γ. Here
q(x)

γ is the fraction of the events which turn out to true jumps

(to another state) of the Markov process, while 1− q(x)
γ is the fraction of arrivals where

the process ‘jumps’ into the same state. The fraction
Q(x,x′)
q(x)

is exactly the probability that

a true jump in the continuous-time process out of state x goes to state x′, so it is the
transition probability of the jump process (also called the embedded Markov process).

Lemma 2.8. [Construction of continuous-time Markov processes]
Let X(x, ·) = (Xt(x))t∈R+ be a continuous-time Markov process with bounded transition rate
matrix Q, and let P be the uniformized Q-matrix with uniformization constant γ, as defined in
Definition 2.7. Given an initial state x ∈ S, let X(x, ·) = (Xt(x))t∈N be the discrete-time Markov
process with transition matrix P and let N = (Nt)t∈R+ be a Poisson process with rate γ. Assume
that the discrete-time process X(x, ·) and Poisson process N are independent. Then

(

XN(t)(x)
)

t∈R+

d
=

(

Xt(x)
)

t∈R+

is a continuous-time Markov process with transition rate matrix Q.

This lemma follows from Theorem 12.18 of Kallenberg [Kallenberg, 2002], and gives us
a way of constructing a continuous-time Markov process. The Poisson process (Nt)t∈R+

generates events which come independent of each other with inter-arrival times that have
exponential distribution with parameter γ. At an arrival instant, the state of the process
N(t) jumps from n to n + 1. Nt is thus a counting process giving for each time t the
total number of events which occurred in the time interval [0, t]. Any realization of the
process Nt corresponds to a random sequence in R+ of time moments (tn)n∈N, where
0 = t0 < t1 < . . ..

Intuitively, we can see the process (XN(t)(x))t∈R+ as a discrete process, but the jumps
do not happen at fixed time points 1, 2, . . . ∈N but at random moments in time t1, t2, . . . ∈
R+. At those random time moments, generated by Nt, an alarm clock rings when an event
occurs. Every time that this Poisson-bell is ringing, with certain probabilities the process
jumps to another state. These probabilities are given by the discretized (uniformized)
probability P(x, x′) for a jump from state x to state x′ (given in Equation (2.4)). We use
two different notations: (X(x,N(t)))t∈R+ = (XN(t)(x))t∈R+.

2.4.3 Coupling of transition rate matrices

Suppose that a process X on S1 has transition rate matrix Q1 and a process Y on S2 has
transition rate matrix Q2.

Definition 2.9. [Coupling of transition rate matrices]
Let Q̂ be a transition rate matrix on S1 × S2. Then Q̂ is called a coupling of Q1 and Q2 if
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2.4. COUPLING OF CONTINUOUS-TIMEMARKOV PROCESSES

for all x ∈ S1 and y ∈ S2:

Q1(x, x
′) = ∑

y′∈S2

Q̂((x, y), (x′, y′)) for all x′ ∈ S1, x
′ 6= x,

and

Q2(y, y
′) = ∑

x′∈S1

Q̂((x, y), (x′, y′)) for all y′ ∈ S2, y
′ 6= y.

This definition is in line with Definition 2.4, except the fact that the rates from a state to
itself Q1(x, x) and Q2(y, y) are not defined; they do not make any sense for a continuous-
time Markov process.

Theorem 2.10. [Coupling theorem for continuous-time Markov processes]
Let Q1 be a bounded transition rate matrix on S1 and let X(x, ·) = (Xt(x))t∈R+ be a continuous-
time Markov process on S1 with transition rate matrix Q1, and initial state x. Similarly, let Q2 be
a bounded transition rate matrix on S2, and Y(y, ·) = (Yt(y))t∈R+ be a continuous-time Markov

process on S2 with transition rate matrix Q2 and initial state y. Assume that the matrix Q̂ on
S1 × S2 is a coupling of Q1 and Q2. Let Z(z, ·) be a continuous-time Markov process on S1 × S2
with transition rate matrix Q̂ and initial state z = (x, y). Then the process Z(z, ·) is a coupling of
the processes X(x, ·) and Y(y, ·).

The proof of this theorem is given in Section 2.4.4. We write Z(z, ·) = (Zt(z))t∈R+ and

Z = (X̂, Ŷ), so Zt(z) = (X̂t(z), Ŷt(z)), for z = (x, y) ∈ S1 × S2.
Fix uniformization constant γ such that q1(x) ≤ γ and q2(y) ≤ γ for all x ∈ S1 and

for all y ∈ S2. Define the uniformized matrices P1, P2 and P̂ derived from the transition rate
matrices (Q1, Q2 and Q̂) of the processes X, Y and Z:



































P1(x, x
′) :=

q1(x)
γ

(

Q1(x,x
′)

q1(x)

)

1{x 6=x′} +
(

1−
q1(x)

γ

)

1{x=x′},

P2(y, y
′) :=

q2(y)
γ

(

Q2(y,y
′)

q2(y)

)

1{y 6=y′} +
(

1−
q2(y)

γ

)

1{y=y′},

P̂ (z, z′) := q̂(z)
γ

(

Q̂(z,z′)
q̂(z)

)

1{z 6=z′} +
(

1− q̂(z)
γ

)

1{z=z′},

(2.5)

for all x, x′ ∈ S1, all y, y
′ ∈ S2 and for all

z = (x, y), z′ = (x′, y′) ∈ S1 × S2.

Lemma 2.11. [Coupling of the uniformized matrices]
Let Q̂ be a coupling of Q1 and Q2 and define P̂, P1 and P2 as above. Then P̂ is a coupling of P1
and P2.
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Proof. We first look at the outflow rate q̂(z) for all z = (x, y) ∈ S1 × S2.

q̂(z) = ∑
z′∈S1×S2: z

′ 6=z

Q̂(z, z′)

= ∑
(x′,y′)∈S1×S2: (x′,y′) 6=(x,y)

Q̂((x, y), (x′, y′))

= ∑
y′∈S2

∑
x′∈S1: x

′ 6=x

Q̂((x, y), (x′, y′)) + ∑
y′∈S2 : y

′ 6=y

Q̂((x, y), (x, y′))

= q1(x) + ∑
y′∈S2: y

′ 6=y

Q̂((x, y), (x, y′)),

where in the last step we used that

∑
y′

∑
x′ 6=x

Q̂((x, y), (x′, y′)) = ∑
x′ 6=x

∑
y′

Q̂((x, y), (x′, y′)) = ∑
x′ 6=x

Q1(x, x
′) = q1(x).

From this, it follows that for all x = x′ we have:

∑
y′∈S2: y′ 6=y

Q̂((x, y), (x, y′)) = q̂((x, y))− q1(x). (2.6)

We want to prove that for all x ∈ S1 and for all y ∈ S2

∑
y′∈S2

P̂((x, y), (x′, y′)) = P1(x, x
′) for every x′ ∈ S1.

• In the case that we have x = x′:

∑
y′∈S2

P̂((x, y), (x′, y′)) =

by the definition of the uniformized matrix (Equation 2.5)

∑
y′∈S2

[

q̂((x, y))

γ

Q̂((x, y), (x′, y′))

q̂((x, y))
1{(x,y) 6=(x′,y′)} +

(

1−
q̂((x, y))

γ

)

1{(x,y)=(x′,y′)}

]

the summation on y′ disappears by the indicator function

= ∑
y′∈S2: y′ 6=y

[

q̂((x, y))

γ

Q̂((x, y), (x′, y′))

q̂((x, y))

]

+

(

1−
q̂((x, y))

γ

)

because of Equation (2.6)

= q̂((x,y))−q1(x)
γ +

(

1− q̂((x,y))
γ

)

= 1− q1(x)
γ = P1(x, x

′).
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• For the case that x 6= x′ :

∑
y′∈S2

P̂((x, y), (x′, y′)) =

Q̂ is a coupling of Q1 and Q2, so by the definition of the uniformized matrix

(Equation (2.5)): Q1(x, x
′) = ∑y′∈S2 Q̂((x, y), (x′, y′)) for all x 6= x′

∑
y′∈S2

[

q̂((x, y))

γ

Q̂((x, y), (x′, y′))

q̂((x, y))
1{(x,y) 6=(x′,y′)}

]

= ∑
y′∈S2

[

Q̂((x, y), (x′, y′))

γ

]

by the continuous-time definition of coupling (Definition 2.9)

= Q1(x,x
′)

γ

again from definition of the uniformized matrix (2.5)

= P1(x, x
′).

We conclude that we have for all x ∈ S1 and y ∈ S2

P1(x, x
′) = ∑

y′∈S2

P̂((x, y), (x′, y′)) for all x′ ∈ S1.

In exactly the same way we can prove that for all y ∈ S2 and x ∈ S1

P2(y, y
′) = ∑

x′∈S1

P̂((x, y), (x′, y′)) for all y′ ∈ S2.

These are exactly the conditions of Definition 2.4, so we conclude that P̂ is indeed a
coupling of P1 and P2.

2.4.4 Proof of the coupling theorem for continuous-time

Proof of Theorem 2.10. We use the uniformization method of Section 2.4.2 to write the
continuous-time processes as a (composed) discrete-time process. Let











































































X(x, ·) = (Xn(x))n∈N be the discrete-time Markov process on S1 with initial state x
and transition matrix P1 where P1 is the uniformized Q1-matrix with rate γ.
Let N1(·) = (N1(t))t≥0 be independent of X.

Y(y, ·) = (Yn(y))n∈N be the discrete-time Markov process on S2 with initial state y
and transition matrix P2 where P2 is the uniformized Q2-matrix with rate γ.
Let N2(·) = (N2(t))t≥0 be independent of Y.

Z((x, y), ·) =
(

Zn((x, y))
)

n∈N

=
(

(X̂n, Ŷn)((x, y))
)

n∈N

be the discrete-time Markov

process on S1 × S2 with initial state (x, y) and transition matrix P̂ where P̂ is the

uniformized Q̂-matrix. Let N(·) = (N(t))t≥0 be independent of Z = (X̂, Ŷ).
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For the processes N1, N2 and N here we want to use a Poisson process with arrival rate
γ. We let them coincide: (N1(t))t≥0 = (N2(t))t≥0 = (N(t))t≥0, and furthermore this N is
independent of the processes X,Y and Z. Then Lemma 2.8 gives:































































(

XN(t)(x)
)

t∈R+

d
=

(

Xt(x)
)

t∈R+

is a continuous-time Markov process with transition

rate matix Q1.

(

YN(t)(y)
)

t∈R+

d
=

(

Yt(y)
)

t∈R+

is a continuous-time Markov process with transition

rate matix Q2.

(

ZN(t)(x, y)
)

t∈R+

=
(

(X̂, Ŷ)N(t)((x, y))
)

t∈R+

d
=

(

Zt((x, y))
)

t∈R+

=
(

(X̂, Ŷ)t((x, y))
)

t∈R+

is a continuous-time Markov process with transition rate matrix Q̂.

We want to prove that (Zt)t≥0 is a coupling of (Xt)t≥0 and (Yt)t≥0. To do this, it is
enough to prove the equivalent statement that (ZN(t)(x, y))t≥0 is a coupling of (XN(t)(x))t≥0
and (YN(t)(y))t≥0. We do this by proving that for all finite paths, Z is a coupling of X and
Y, and using Lemma 2.6 we get the general result for the continuous-time.

Claim:
For all n ∈ N, and for all 0 ≤ t1 ≤ t2 ≤ · · · ≤ tn and for all finite paths (a0, a1, . . . , an),
where ai ∈ S1 for all i = 0, 1, . . .n, and for all initial states z = (x, y) = (a0, b0) ∈ S1 × S2
we have:

P
(

X̂t1(x) = a1; X̂t2(x) = a2; . . . ; X̂tn(x) = an
)

= P (Xt1(x) = a1;Xt2(x) = a2; . . . ;Xtn(x) = an) . (2.7)

Proof of Claim:

Initialization step
Equation (2.7) holds for n = 1:

P
(

X̂t1((x, y)) = a1
)

=
∞

∑
n=0

P(Nt1 = n) P
(

X̂n((x, y)) = a1
)

because of Lemma 2.11

=
∞

∑
n=0

P(Nt1 = n) P (Xn(x) = a1)

= P (Xt1(x) = a1) .

The first and last equality come from the fact that Z and X are both independent of N.

Induction step
Assume (2.7) holds for n ∈ N. Fix any 0 < t1 < t2 < · · · < tn+1 and any path
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(a1, a2, . . . , an+1) in S1.

P
(

X̂t1((x, y)) = a1; X̂t2((x, y)) = a2; . . . ; X̂tn+1((x, y)) = an+1

)

because of the memoryless property of Markov processes

= P
(

X̂t1(x) = a1; . . . ; X̂tn(x) = an
)

P
(

X̂tn+1−tn(an) = an+1

)

use the induction hypothesis

= P (Xt1(x) = a1; . . . ;Xtn(x) = an) P
(

X̂tn+1−tn(an) = an+1

)

use the initialization step

= P (Xt1(x) = a1; . . . ;Xtn(x) = an) P
(

Xtn+1−tn(an) = an+1

)

because of the memoryless property of Markov processes

= P
(

Xt1(x) = a1; Xt2(x) = a2; . . . ; Xtn+1(x) = an+1

)

.

By induction we proved that the claim holds for all n ∈ N.

In exactly the same way we can prove the claim for Ŷ:
For all n ∈ N, and for all 0 < t1 < t2 < · · · < tn and for all paths b0, b1, . . . , bn where
bi ∈ S2 for all i = 1, . . . n, and for all initial distributions x = (x, y) = (a0, b0) we have:

P
(

Ŷt1((x, y)) = b1; Ŷt2((x, y)) = b2; . . . ; Ŷtn(x) = bn
)

= P (Yt1(y) = b1; Yt2(y) = b2; . . . ; Ytn (y) = bn) . (2.8)

Lemma 2.6 gives us the generalization that Equations (2.7) and (2.8) hold for every (infi-
nite) path. And we finally conclude that Z((x, y), ·) is a coupling of X(x, ·) and Y(y, ·).
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Chapter 3

Stochastic comparison

The final goal is to compare two stochastic processes (or random elements). But to com-
pare the behaviour of two processes, they must somehow be comparable. This is basically
the purpose of this chapter. We will define the notion of stochastic comparison. In Section
3.1 we consider stochastic ordering of processes which are defined on one and the same
ordered state space, by a partial ordering on this space. The second section generalizes
the notion of a stochastic order. By defining relations it is possible to compare processes
defined on different probability spaces. In Section 3.3 Strassen’s theorem gives a nice com-
parison condition, and in Section 3.4 we look at the stochastic comparison of random
processes. Finally, in Section 3.5, we present theorems which give necessary and sufficient
conditions for the stochastic comparison of random processes which give us easier con-
ditions to check whether or not two Markov processes are stochastically related to each
other with respect to a given relation. As we proved the coupling equivalences between
discrete-time and continuous-time processes by uniformization in the previous section,
we will not anymore make a distinction in the notation of discrete-time or continuous-
time processes. For the rest of this thesis, all processes are assumed to be continuous-time
processes unless otherwise specified.

3.1 Stochastic orders

In this section we assume state space S to be equipped with a partial order �. A partial
order � on a set S is a binary relation for which the following three conditions hold:

x � x ∀ x ∈ S (reflexivity) (3.1)

x � y & y � z ⇒ x � z ∀ x, y, z ∈ S (transitivity) (3.2)

x � y & y � x ⇒ x = y ∀ x, y ∈ S (antisymmetry) (3.3)

An order which only satisfies (3.1) and (3.2) is called a pre-order. More on stochastic
orderings can be found in [Müller and Stoyan, 2002] or [Shaked and Shanthikumar, 2007].

3.1.1 Stochastic domination of probability measures

Definition 3.1. [Stochastically ordered measures]
Let PX and PY be two probability measures on (S,S) and let � be a partial order in S. We
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call the measures PX and PY stochastically ordered with respect to a partial order � if there
exist a coupling P of PX and PY such that

P({(x, y) : x � y}) = 1.

We use the term stochastic domination for stochastic comparison in partially ordered spaces.
We say that the measure PX is stochastically dominated by PY and write PX �st PY.

Usually, the concept of stochastic domination (or strong stochastic ordering) is defined
in terms of expectations of increasing functions. This better known definition can be found
in for example in Chapter 4 of [Lindvall, 1992].

A function f : S→ R is increasing with respect to the partial order � if

x � y =⇒ f (x) ≤ f (y) for all x, y ∈ S.

Definition 3.2. [Alternative definition of stochastic domination]
Two probability measures PX and PY on (S,S) are stochastically ordered with respect to a
partial order � on S if

∫

f dPX ≤
∫

f dPY

for all bounded increasing measurable functions f : S→ R.

The assumption that the function f is bounded assures us that the expectations
∫

f dPX

and
∫

f dPY exist. Definition 3.2 holds if and only if our (alternative) Definition 3.1 holds,
this is proved with Strassen’s Theorem on stochastic ordering [Strassen, 1965] and follows
also from Theorem 2.6.3 in [Müller and Stoyan, 2002].

3.1.2 Stochastic domination of random elements

Definition 3.3. [Stochastically ordered random elements]
Let X and Y be random elements on (S,S). A random element Y dominates X stochastically
with respect to a partial order � (notation X �st Y) if the distribution of X is stochastically
dominated by the distribution of Y, that is if PX−1 �st PY−1. Recall that Z = (X̂, Ŷ) is a
coupling of X and Y if the marginal distributions of Z coincide with the distributions of
X and Y. Therefore,

X �st Y

if and only if there exists a coupling Z = (X̂, Ŷ) of X and Y such that

P(X̂ � Ŷ) = 1.

3.1.3 Stochastic domination of random variables

For real-valued random elements the definitions for the stochastic ordering can be formu-
lated in an intuitively easier way. We denote the natural order on R by ≤, and we write
X ≤st Y to denote that X is stochastically smaller than Y with respect to this order.

Stochastically ordered measures on (R,B)
Let PX and PY be probability measures on state space (R,B). For real-valued probability
measures, Definition 3.1 becomes

PX ≤st PY if and only if PX([s,∞)) ≤ PY([s,∞)) for all s ∈ R.
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See Section 3.2 in [Thorisson, 2000] or [Kamae et al., 1977].

Stochastically ordered random variables
For random variables X and Y, X ≤st Y if there exists a coupling Z = (X̂, Ŷ) of X and Y
with P(X̂ ≥ s) ≤ P(Ŷ ≥ s) for all s ∈ R. And because (X̂, Ŷ) is a coupling of X and Y,
P(X̂ ≥ s) = P(X ≥ s) and P(Ŷ ≥ s) = P(Y ≥ s) for all s ∈ R. So for real-valued random
variables we have

X ≤st Y if and only if P(X ≥ s) ≤ P(Y ≥ s) for all s ∈ R.

Intuitively, X ≤st Y means that the probability that the random variable X is big is smaller
than the probability that Y is big, or in other words, X assumes small values with a higher
probability than Y does.

3.1.4 Strassen’s characterization of stochastic orders

A characterization for the existence of a coupling (X̂, Ŷ) for which X̂ � Ŷ is true with prob-
ability one, which thus implies X �st Y, is presented for example in [Kamae et al., 1977].
Kamae, Krengel and O’Brien came up with a characterization in terms of upper sets of the
state space S.

A ⊆ S is an upper set (sometimes also called increasing set) if x ∈ A implies {y : x �
y} ⊆ A. In [Massey, 1987] and [Whitt, 1986] necessary and sufficient conditions are given
for the stochastic ordering of continuous-time Markov processes using the notion of upper
sets. Note that A is an upper set if and only if 1A is an increasing function, and this is
how Definitions 3.1 and 3.2 in Section 3.1.1 are related.

Theorem 3.4. [Strassen’s characterization of stochastic orders]
Consider two random elements X and Y living on the same space S, where S is equipped with the
partial order �. PX �st PY if and only if

PX(A) ≤ PY(A) for all upper sets A ∈ S .

A proof is given, for example in [Müller and Stoyan, 2002], see Theorem 2.6.4. A gen-
eralization of Theorem 3.4 for stochastic comparison with respect to relations will be given
in Section 3.3, Theorem 3.8.

3.2 Stochastic relations

A relation R between state spaces S1 and S2 is a measurable subset of the product space
S1 × S2. We write x ∼ y if (x, y) ∈ R, and R = {(x, y) : x ∼ y}.

Stochastic domination with respect to a partial order is a special case of stochastic com-
parison with respect to a relation. Working with the more general definition of relations
instead of orderings gives us the possibility to compare processes on different state spaces,
and furthermore, we have the possibility to use relations which are not partial orders, as
we will do for example in Section 4.3.

3.2.1 Stochastically related probability measures

Definition 3.5. [Stochastically related measures]
We consider probability measures PX and PY on (S1,S1) and (S2,S2), respectively. The
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measures PX and PY are stochastically related (notation PX ∼st PY) if there exists a coupling
P of PX and PY such that P(R) = 1.

3.2.2 Stochastically related random elements

Definition 3.6. [Stochastically related random elements]
Let X and Y be two random elements in S1 and S2, and let R ⊂ S1 × S2 be some relation
between S1 and S2. Then X is stochastically related to Y with respect to the relation R if
there exists a coupling Z = (X̂, Ŷ) of X and Y such that

PZ−1(R) = 1.

PZ−1(R) = 1 means P((X̂, Ŷ) ∈ R) = 1 or in other words X̂ ∼ Ŷ with probability one.
We write X ∼st Y to denote that X is stochastically related to Y.

Recall that a coupling Z of X and Y couples the distributions of X and Y. This implies
that X ∼st Y) exactly if the distribution of X is stochastically related to the distribution of
Y:

PX−1 ∼st PY−1.

3.3 Strassen’s characterizations of stochastic relations

Random elements are stochastically related if there exist a coupling of them, for which the
relation holds with probability one. In this section we give necessary and sufficient con-
ditions for the stochastic comparison of random elements. We look at a characterization
in terms of relational conjugates (a kind of upper sets for relations) of the state spaces, and
we present necessary and sufficient conditions for the existence of a coupling of random
elements, for which the relation is invariant.

3.3.1 Relational conjugates

In Section 3.1.4, Theorem 3.4 gives us a nice characterization for stochastic domination in
terms of upper subsets of the underlying state space. Relational conjugates are an intuitive
analogue of upper sets for relations. An analogous characterization for the stochastic
comparison of processes X and Y (not living in one and the same state space) with respect
to a relation can be given, see [Leskelä, 2010]. Instead of upper sets Leskelä introduces
relational conjugates which are a generalization of upper sets for a relation R of between
countable subsets S1 and S2.

Definition 3.7. [Relational conjugates]
The right conjugate of a set B1 ⊆ S1 with respect to relation R is given by

B→1 :=
⋃

x∈B1

{y ∈ S2 : x ∼ y} ⊆ S2. (3.4)

The left conjugate of a set B2 ⊆ S2 with respect to relation R is given by

B←2 :=
⋃

y∈B2

{x ∈ S1 : x ∼ y} ⊆ S1. (3.5)
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3.3.2 Strassen’s theorem

Strassen’s theorem for stochastic orders (Theorem 3.4) can be extended from orders to
relations as defined in the previous section.

Theorem 3.8. [Strassen’s characterization of stochastic relations]
PX ∼st PY if and only if

PX(B1) ≤ PY(B→1 ) for all B1 ⊆ S1. (3.6)

Leskelä proved that it suffices if Equation (3.6) holds for all compact sets B1, or in our
case where the spaces S1 and S2 are countable, PX ∼st PY if and only if (3.6) holds for all
finite B1 ⊆ S1 [Strassen, 1965], [Leskelä, 2010].

3.4 Stochastically related stochastic processes

For stochastic processes, we have to take the time aspect into account. Our first task in
this section is to extend the relation somehow to the different values of the processes in
the time. In the end, we look at the stochastic comparison of stationary distributions and
we present a useful theorem which assures us the comparison of stationary distributions
(Theorem 3.15).

3.4.1 Stochastic relation on a finite path

Suppose X and Y are finite paths in S1 and S2. Relation R slightly changes to a relation
on finite paths in S1 × S2:

Rn := {(x, y) ∈ Sn1 × Sn2 : xi ∼ yi for all i = 1, . . . , n}. [Finite path relation]

So if X and Y are finite paths of length n in S1 and S2 (X ∈ Sn1 and Y ∈ Sn2 ) we say that
X is stochastically related to Y if (Xti)i=1,...,n ∼st (Yti)i=1,...,n with respect to the path-relation
Rn.

3.4.2 Stochastically related random processes

Each realization of a process X is a path x = (xt)t∈R+ . For a continuous-time process, each
realization of process X is an element in D1 = D1(R+, S1) = {functions from R+ into S1
which are right-continuous and have left limits}. Similarly, the continuous-time process
Y = (Yt)t∈R+ has its realizations in D2(R+, S2). The relation R ⊆ S1 × S2 generalized
to a relation between path spaces D1 and D2 is given by

RD := {(x, y) ∈ D1 × D2 : xt ∼ yt for all t ∈ R+}. [Path relation]

A stochastic process X is stochastically related to Y if (Xt)t∈R+ ∼st (Yt)t∈R+ with respect

to the path-relation RD. Completely in line with earlier definitions, we call two stochastic
processes X = (Xt)t∈R+ and Y = (Yt)t∈R+ living in S1 and S2 stochastically related if

there exists a coupling for which the relation RD is true with probability one:

Definition 3.9. [Stochastically related continuous-time processes]
A continuous-time process (Xt)t∈R+ is stochastically related to (Yt)t∈R+ if there exists a cou-

pling (Zt)t∈R+ = (X̂t, Ŷt)t∈R+ of (Xt)t∈R+ and (Yt)t∈R+ such that

P
(

Zt ∈ R for all t ∈ R+
)

= 1.
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Theorem 3.10. [Stochastically related random sequences]
Two stochastic processes X = (Xt)t∈R+ and Y = (Yt)t∈R+ are stochastically related with respect

to the path-relation RD if and only if

(Xt1 ,Xt2 , . . . ,Xtn) ∼st (Yt1 ,Yt2 , . . . ,Ytn) with respect to relation Rn for all t1, . . . , tn; n ∈N.

This theorem ensures us that it is sufficient to care about all finite paths of a process,
in the same way as Lemma 2.6 helped us in Chapter 2. The proof follows easily from
Lemma 2.6.

3.4.3 Relation-preserving Markov processes

We are interested in the steady-state behaviour of the processes under consideration.
Therefore we do not need to have that for the whole process the relation is true, as long
as for the tail the relation remains true once entered a state in the relation.

Definition 3.11. [Invariant set]
A set R ⊆ S1 × S2 is invariant (or absorbing) for a Markov process (Zt)t∈R+ in S1 × S2, if

P
(

Zt(z) ∈ R for all t ∈ R+
)

= 1,

for all initial states z ∈ R.

In terms of transitions rate matrices, a set R is invariant if the probability to get out of
R is zero.

Definition 3.12. [Invariance for transition rate matrices]
Let Q be the transition rate matrix of a process X on S. The set R ⊆ S is invariant for Q if
for all x ∈ R:

Q(x, y) = 0 for all y /∈ R.

Definition 3.13. [Relation-preserving Markov processes]
Markov processes (Xt)t∈R+ and (Yt)t∈R+ stochastically preserve a relation R if for all initial
states (x, y) ∈ R :

(Xt(x))t∈R+ ∼st (Yt(y))t∈R+ with respect to the path-relation RD.

Or, equivalently, if for all initial states (x, y) ∈ R :

Xt(x) ∼st Yt(y) with respect to relation R for all t ∈ R+.

The last equivalence in Definition 3.13 comes from the memoryless property of Markov
processes.

3.4.4 Stochastically related stationary distributions

A Markov process is ergodic when it is positive recurrent and aperiodic. A process X in S
is irreducible if each state is visited with positive probability starting from any other state;
and positive recurrent if, when starting in a state x, the process will eventually return in x
with probability one.
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Theorem 3.14. [Stationary distribution of Markov process]
For an irreducible ergodic Markov process X, the stationary distribution exists and is independent
of the initial state x ∈ S:

Xt(x)
d
−→ πX for all initial states x ∈ S.

[Ross, 2007], Theorem 4.1.

Where the notation Xt
d
−→ X is used to denote convergence in distribution. That is,

lim
t→∞

P(Xt(x) ∈ A)→ P(X ∈ A) for all initial states x and all subsets A of S.

For continuous-time Markov processes X and Y which are stochastically related and
for which the stationary distributions exist, the following theorem gives us that the sta-
tionary distributions satisfy the relation.

Theorem 3.15. [Stochastically related stationary distributions]
Let (Xt)t∈R+ and (Yt)t∈R+ be continuous-time Markov processes with stationary distributions

πX and πY; that is Xt
d
−→ πX and Yt

d
−→ πY.

If (Xt)t∈R+ ∼st (Yt)t∈R+ , then πX ∼st πY.

Proof. (Xt)t∈R+ ∼st (Yt)t∈R+ , so for all A1 ⊆ S1

P(Xt ∈ A1) ≤ P(Yt ∈ A→1 ).

Furthermore,

πX(A1) = lim
t→∞

P(Xt ∈ A1) ≤ lim
t→∞

P(Tt ∈ A→1 ) = lim
t→∞

P(Xt ∈ A1),

where the first and the last equality is given by the convergence in distribution of Xt and
Yt. So πX(A1) ≤ πY(A→1 ) for all A1 ⊆ S1, and Strassen’s Theorem 3.8 implies πX ∼st πY.

3.5 Comparison conditions for Markov processes

In the last section of this chapter, we consider discrete- and continuous-time Markov pro-
cesses and their probability (rate) matrices. We define when transition matrices and transi-
tion rate matrices are stochastically related with respect to a relation, and two comparison
theorems which give necessary and sufficient conditions for stochastic comparison of X
and Y are presented.

3.5.1 Comparison conditions for discrete-time Markov processes

From Theorem 2.5 we know that a coupling of probability matrices P1 and P2 gives a
coupling of the processes. This motivates the following definition:

Definition 3.16. [Stochastically related transition matrices]
Let P1 and P2 be the transition matrices of a discrete-timeMarkov processes X and Y living
on S1 and S2, respectively. The transition matrices are stochastically related with respect to a
relation R if there exists a coupling P of P1 and P2 such that relation R is invariant for P.
We denote this by P1 ∼st P2.
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Theorem 3.17. [Stochastic relation conditions for discrete-time Markov processes]
Let X and Y be two discrete-time Markov processes with probability matrices respectively P1 and
P2 living in state spaces S1 and S2. For a given relation R, the following conditions are equivalent:

(i) X and Y stochastically preserve the relation R.

(ii) There exists a Markovian coupling of X and Y for which the set R is invariant.

(iii) Probability matrix P1 is stochastically related to P2 with respect to the relation R:

P1 ∼st P2.

(iv) For all x ∈ S1 and y ∈ S2 with x ∼ y:

P1(x, B) ≤ P2(y, B
→
1 ) for all finite B1 ⊆ S1.

3.5.2 Comparison conditions for continuous-time Markov processes

When we consider Markov processes in continuous-time, Theorem 2.10 motivates the
following definition:

Definition 3.18. [Stochastically related transition rate matrices]
Let Q1 and Q2 be bounded transition rate matrices of continuous-time Markov processes
X and Y living in S1 and S2, respectively. The transition rate matrices are stochastically related
if there exists a coupling Q of Q1 and Q2 such that relation R is invariant for Q. We denote
this by Q1 ∼st Q2.

From Section 2.4 we have that the transition rate matrices Q1 and Q2 are stochastically
related with respect to the relation R exactly if the uniformized Q-matrices P1 and P2 are
stochastically related with respect to R.

Theorem 3.19. [Stochastic relation conditions for continuous-time Markov processes]
Let X and Y be two continuous-time Markov processes with bounded transition rate matrices
respectively Q1 and Q2 living in state spaces S1 and S2. Furthermore, let P1 and P2 be the
uniformized Q-matrices of Q1 and Q2 according to Definition 2.7. For a given relation R, the
following conditions are equivalent:

(i) X and Y stochastically preserve the relation R.

(ii) There exists a Markovian coupling of X and Y for which the set R is invariant.

(iii) The uniformized Q-matrices P1 and P2 are stochastically related:

P1 ∼st P2.

(iv) For all x ∼ y:

Q1(x, B1) ≤ Q2(y, B
→
1 ) for x /∈ B1 and y /∈ B→1 , (3.7)

Q2(y, B2) ≤ Q1(x, B
←
2 ) for x /∈ B←2 and y /∈ B2. (3.8)

For the proofs of Theorems 3.17 and 3.19 we refer to [Leskelä, 2010]. Theorem 3.19
gives us simply verifiable conditions to test whether or not processes X and Y are stochas-
tically related to each other.

The conditions in (iv) are intuitively interpretable in the following way: For each pair
(x, y) in the relation R, we want to construct a coupling so that the rate from (x, y) to
(x′, y′) is zero whenever (x′, y′) /∈ R. So for each positive rate from x to x′, this rate
should be smaller than the total rate from y to any y′ for which the relation is preserved.
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Chapter 4

Stochastic queueing networks

Queueing networks are networks of multiple interconnected service stations. Customers
arrive at a station in the system, where they are served (eventually after a queueing pe-
riod), and can jump from one station to another after being served. We call such a network
a queueing network. We describe a general model of Markov queueing networks in terms
of continuous-time Markov processes in Section 4.1. In Section 4.2, we derive step-by-step
necessary and sufficient conditions for the stochastic comparison of two Markov queueing
networks considering the stochastic coordinate-wise order. In Section 4.3 we consider the
stochastic comparison of those networks under the summation relation.

4.1 Stochastic queueing networks

In this section, we describe a class of stochastic queueing networks as continuous-time
Markov processes. This class is a generalization of the so-called Jackson networks.

4.1.1 Markov queueing network

Consider a stochastic network with M service stations (servers or machines), where cus-
tomers receive services at the stations they pass. We write this as a Markov process X =
(Xt)t∈R+ over continuous time. The state of the system is denoted by x = (x1, . . . , xM) ∈ S,

where xi represents the number of customers at the i-th station, and S is a subset of N
M.

Arrivals and services
Customers (or jobs) arrive at station i according to a time-inhomogeneous Poisson process
at rate βi(Xt). The service requirements are exponentially distributed and can differ per
station. The service rate at station i is denoted by δi(Xt). The arrival rate and the service
rates can both depend on the state of the whole system. If there are no customers at sta-
tion i the service rate is zero: δi(x) = 0 if xi = 0.

Jumping to another queue
After the service at station i, the customer jumps to another station j with routing proba-
bility pij. We assume 0 ≤ pij ≤ 1 and 0 ≤ ∑j 6=i pij ≤ 1. With probability pi = 1−∑j 6=i pij
the customer leaves the system from station i.
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Bounded state space
Furthermore, we assume the state space to be bounded. This means that the total number
of customers in the system can not be larger than N. If there are more than N jobs in the
system upon an arrival instant, this arrival will be rejected (and lost).

All the service requirements, inter arrival times and jump probabilities are assumed to
be independent of each other. To summarize, the system can be described by the following
three equations, where ei stands for the i-th unit vector in N

M:

q(x, x+ ei) = βi(x)1{|x|<N} for all i = 1, 2, . . . ,M (4.1)

q(x, x− ei + ej) = δi(x)pij for all i, j = 1, 2, . . . ,M and i 6= j (4.2)

q(x, x− ei) = δi(x)pi for all i = 1, 2, . . . ,M. (4.3)

4.1.2 Two service stations

In the rest of this chapter we derive conditions for the stochastic domination of two M-
station Markov queueing processes X and Y. For simplicity we start with M = 2. The
arrival rates, service rates and jump probabilities of X are denoted by β, δ and p respec-
tively, and we write β′, δ′ and p′ for the same parameters of process Y. A graphical
representation of the model is presented in Figure 4.1.

x1

x2

δ1(x)p12 δ2(x)p21

β1(x)

β2(x)

δ1(x)p1

δ2(x)p2

Figure 4.1: A two-station queueing network.

The first process X takes values in state space S1 ⊆ N ×N. For each element x =
(x1, x2) in S1, 0 ≤ x1 + x2 ≤ N. The following formula expresses the total transition rate
from state x to the subset B1 ⊆ S1, for all x ∈ S1 and for any subset B1 of S1:

Q1(x, B1) = β1(x) · 1{x+e1∈B1}
+ β2(x) · 1{x+e2∈B1}

+

δ1(x)p12 · 1{x−e1+e2∈B1}
+ δ2(x)p21 · 1{x+e1−e2∈B1}

+ δ1(x)p1 · 1{x−e1∈B1} + δ2(x)p2 · 1{x−e2∈B1}.

(4.4)

The second process Y is also a Markov queueing network, and lives in state space
S2 ⊆ N×N. State y = (y1, y2) ∈ S2 if and only if 0 ≤ y1 + y2 ≤ N′. The state spaces can
be the same, in this case when N = N′, but this is not needed in general. In practice this
can be useful, for example if N 6= N′ or if N′ = ∞, S2 is not the same as S1. In this thesis,
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N = N′ is assumed to keep notations more simple, but this assumption does not effect
the presented results.

The arrival rates of process Y are denoted by β′1(y) and β′2(y); service rates δ′1(y) and
δ′2(y); jump probabilities p′12, p

′
21 and departure probabilities p′1 and p′2. For all y ∈ S2 and

for all B2 ⊆ S2 we have:

Q2(y, B2) = β′1(y) · 1{y+e1∈B2}
+ β′2(y) · 1{y+e2∈B2}

+

δ′1(y)p′12 · 1{y−e1+e2∈B2}
+ δ′2(y)p′21 · 1{y+e1−e2)∈B2}

+ δ′1(y)p
′
1 · 1{y−e1∈B2} + δ′2(y)p′2 · 1{y−e2∈B2}.

(4.5)

4.1.3 Jackson and Whittle

The queueing network described in this section, is a generalization of the Jackson network.
In Jackson networks, the arrival rates βi are positive constants and the service rates at a
node depend only on the number of customers at this node: δi(xi). Jackson networks ful-
fill the so-called balance equations and have relatively simple, product-form steady-state
solutions. The general network that we present in this section are sometimes called Whit-
tle networks [Whittle, 1986] if all states satisfy the load balance equations. For a thorough
background on the generality and applications of stochastic networks we refer the reader
to [Serfozo, 1999]. In the next section we derive necessary and sufficient conditions for the
stochastic comparison of these queueing networks under the coordinate-wise order.

4.2 Coordinate-wise coupling of Markov queueing networks

Recall that Theorem 3.19 gives necessary and sufficient conditions for the stochastic com-
parison of Markov processes. In this section we work out this theorem for the coordinate-
wise order. We first derive sufficient conditions for the coordinate-wise comparison of
2-station Markov queueing networks. We obtain rate conditions which are sufficient to
ensure the existence of an order-preserving coupling, but not necessary. Subsequently,
we present if and only if -conditions for the M-station case, which are stated in Theorem
4.4. This theorem gives a new characterization of stochastic comparability with respect to
the coordinate-wise order. Finally, we show similarity to an alternative characterization
presented in [Delgado et al., 2004].

Two vectors x and y in R
M are coordinate-wise ordered if xi ≤ yi for all i = 1, . . . ,M. That

is, the coordinates xi and yi are ordered with respect to the usual order in R for every i.

Definition 4.1. [coordinate-wise order relation]

Rcoord = {(x, y) : xi ≤ yi for all i = 1, . . . ,M}. (4.6)

Recall Definition 3.13. If we have two Markov queueing networks X and Y, these
processes X and Y are comparable with respect to relation Rcoord if at every station, the
number of customers at time t in X is less than or equal to the number of customers in Y.
Processes X and Y stochastically preserve the relation Rcoord if there exist a coupling of X and
Y for which the relation Rcoord is invariant.
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4.2.1 Sufficient two-station comparison conditions

[Right-conjugate conditions]
Recall condition (3.7): For all x ∈ S1, B1 ⊆ S1 and y ∈ S2

Q1(x, B1) ≤ Q2(y, B
→
1 ), with x ∼ y, x /∈ B1, y /∈ B→1 . (4.7)

Let B1 ⊆ S1 be arbitrary. Recall that the right conjugate of a set B1 ⊆ S1 is the subset in
the second state space for which a jump from x to B1 in S1 can be compensated such that
relation Rcoord remains valid. The right conjugate is given by B→1 ⊆ S2, where

B→1 =
⋃

x∈B1

{y : x ∼ y} =
⋃

x∈B1

{y : x1 ≤ y1 & x2 ≤ y2}. (4.8)

0 1 2 3 4 5 6
0

1

2

3

4

{(2, 1)}→ = {y ∈ S2 :

y1 ≥ 2 & y2 ≥ 1}

(2, 1)

S2

Figure 4.2: The right conjugate of x = (2, 1) is given by the shadowed area.

For all x ∈ S1 \ B1, the following formula gives the value of Q1(x, B1):

Q1(x, B1) = β1(x) · 1{x+e1∈B1}
+ β2(x) · 1{x+e2∈B1}

+ δ1(x)p12 · 1{x−e1+e2∈B1}
+ δ2(x)p21 · 1{x+e1−e2∈B1}

+ δ1(x)p1 · 1{x+e1∈B1}
+ δ2(x)p2 · 1{x+e2∈B1}

.

We see that the value of Q1(x, B1) depends on whether or not the following elements are
in B1:

x− e1; x− e2; x− e1 + e2; x+ e1 − e2; x+ e1; and x+ e2.

By adding any other element x̃which is not equal to one of those six elements listed above,
to B1 would not increase Q1(x, B1). However, it would increase the size of B→1 and thus
could it increase the rate Q2(y, B

→
1 ).

We are looking for the minimal conditions such that Equation (4.7) holds; and to break
this inequality, we want to choose B1 such that Q1(x, B1) is as big as possible while for
this same B1, Q2(y, B

→
1 ) is as small as possible. Therefore, without loss of generality, we

have to look only at sets for which

B1 ⊆ {x− e1; x− e2; x− e1 + e2; x+ e1 − e2; x+ e1; x+ e2}.

• Suppose x− e1 ∈ B1. Then {x − e1}
→ = {y : x1 − 1 ≤ y1 and x2 ≤ y2} ⊆ B→1 .

Condition (4.7) must hold for all y for which x ∼ y & y /∈ B→1 . But {y : x ∼ y}
⊆ {x− e1}

→, therefore there exists no such y.
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• In the same way, suppose x− e2 ∈ B1. Then {y : x ∼ y} ⊆ {x− e2}
→ = {y : x1 ≤

y1 and x2 − 1 ≤ y2} ⊆ B→1 . Hence, there exist no y such that x ∼ y and y /∈ B→1 .

We conclude that it suffices to consider the B1 ⊆ S1 for which x− e1, x− e2 /∈ B1:

B1 ⊆ {x− e1 + e2; x+ e1 − e2; x+ e1; x+ e2}.

• Let x− e1 + e2 ∈ B1, so that Q1(x, B1) ≥ δ1(x)p12. The right conjugate {x − e1 +
e2}
→ = {y : x1 − 1 ≤ y1 & x2 + 1 ≤ y2} ⊆ B→1 . For y ∈ S2 \ B

→
1 such that x ∼ y,

we must have x2 = y2. If x1 ≤ y1 and x2 = y2 and there is an 12-jump in S1, the
only way to maintain the relation Rcoord is when the second coordinate y2 is also
increased by one:

Q2(y, {x− e1 + e2}
→) = β′2(y) + δ′1(y)p′12.

Note that {x + e2}
→ = {y : x1 ≤ y1 and x2 + 1 ≤ y2} ⊆ {y : x1 − 1 ≤ y1 and

x2 + 1 ≤ y2} = {x − e1 + e2}
→. Hence, by adding the state x + e2 to B1 we can

increase Q1(x, B1) while Q2(y, B
→
1 ) remains unchanged:

Q2(y, {x+ e2}
→) = β′2(y) + δ′1(y)1{x1<y1}

p′12,

because
{x+ e2}

→ ∪ {x− e1 + e2}
→ = {x− e1 + e2}

→.

We want Q1(x, B1) ≤ Q2(y, B
→
1 ), and in the worst case for x− e1 + e2 ∈ B1 we also have

x+ e2 ∈ B1. This gives the following condition:

β2(x) + δ1(x)p12 ≤ β′2(y) + δ′1(y)p′12 for all x1 ≤ y1 & x2 = y2. (4.9)

• Suppose x+ e1 − e2 ∈ B1. With a similar argument as above we have {x + e1}
→ ⊆

{x + e1 − e2}
→, and the worst case situation is that whenever x + e1 − e2 ∈ B1 we

also have x+ e1 ∈ B1 (because this increases Q1 while it does not increase Q2) and
the condition becomes:

β1(x) + δ2(x)p21 ≤ β′1(y) + δ′2(y)p′21 for all x1 = y1 & x2 ≤ y2. (4.10)

• Suppose now both x− e1 + e2 and x + e1 − e2 ∈ B1. Then, the worst case is when
all these four elements are in B1 and we get the combination of the two conditions
above:

β1(x) + β2(x) + δ1(x)p12 + δ2(x)p21 ≤ β′1(y) + β′2(y) + δ′1(y)p′12 + δ′2(y)p′21

for all x = y. We omit this condition, because it is less strict than the conditions (4.9)
and (4.10) together.

• Now, suppose we have x + e1 ∈ B1 and x + e1 − e2 /∈ B1. Then {y : x1 + 1 ≤
y1 & x2 ≤ y2} ⊆ B→1 , and x ∼ y combined with y /∈ B→1 implies x1 = y1 and

x2 ≤ y2. Relation Rcoord remains true only if the arrival rate of type-1 customers in
S1 is compensated by a type-1 arrival in S2. The maximal type-1 arrival rate out of
state y is

Q2(y, B
→
1 ) = β′1(y) + δ′2(y)p′21 · 1{x2<y2}

.

The worst case happens if x2 = y2, which gives the condition

β1(x) ≤ β′1(y) for x = y. (4.11)
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• Similarly, suppose x+ e2 ∈ B1 and x− e1 + e2 /∈ B1. The worst-case condition leads
to

β2(x) ≤ β′2(y) for x = y. (4.12)

• Again, conditions (4.11) and (4.12) cover also the case in which states x + e2 and
x+ e1 ∈ B1, but the states x− e1 + e2 and x+ e1 − e2 /∈ B1.

[Left-conjugate conditions]
Now, we work out the left-conjugate conditions for the stochastic comparison of two
Markov queueing networks with respect to the coordinate-wise order. Recall condition
(3.8): For all x ∈ S1, y ∈ S2 and B2 ⊆ S2

Q2(y, B2) ≤ Q1(x, B
←
2 ), for all x ∼ y with x /∈ B←2 , y /∈ B2. (4.13)

Let (x, y) be an element in the product space such that x ∼ y, and let B2 be an arbitrary
subset of S2 with y /∈ B2. The left conjugate B←2 ⊆ S1 is the maximal subset of states in S1
such that for each state x′ ∈ B←2 there exists an y′ ∈ B2 such that x′ ∼ y′. That is

B←2 =
⋃

y∈B2

{x : x ∼ y} =
⋃

y∈B2

{x : x1 ≤ y1 & x2 ≤ y2}. (4.14)

An example of the left conjugate of a singleton in S2 with respect to the coordinate-wise
order is given in Figure 4.3.

0 1 2 3 4 5 6
0

1

2

3

4

{(5, 3)}← =

{x ∈ S1 : x1 ≤ 5 & x2 ≤ 3}

(5, 3) S1

Figure 4.3: The left conjugate of y = (5, 3) is given by the shadowed area.

The outgoing rate from y to any subset B2 in S2 is given by

Q2(y, B2) = β′1(y) · 1{y+e1∈B2}
+ β′2(y) · 1{y+e2∈B2}

+ δ′1(y)p′12 · 1{y−e1+e2∈B2} + δ′2(y)p
′
21 · 1{y+e1−e2∈B2}

+ δ′1(y)p′1 · 1{y−e1∈B2} + δ′2(y)p′2 · 1{y−e2∈B2}.

Note that Q2(y, B2) depends on whether or not the following elements are part of B2:

{y + e1, y+ e2, y− e1 + e2, y + e1 − e2, y− e1, y− e2}.

The assumption that x /∈ B←2 implies that there is no y′ ∈ B2 such that x1 ≤ y′1 and x2 ≤ y′2.
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• Suppose y + e1 ∈ B2. Then x ∈ B←2 because {y}← ⊆ {y + e1}
←. This contradicts

with x /∈ B←2 , thus, we can assume y+ e1 /∈ B2.

• With the same argument we have that {y}← ⊆ {y + e2}
←, therefore, if y + e2 ∈ B2

then there would not exist such an x we are looking for outside B←2 .

We conclude that

B2 ⊆ {y− e1 + e2, y + e1 − e2, y− e1, y− e2}.

• Suppose now y + e1 − e2 ∈ B2. x /∈ B←2 & x ∼ y if and only if x1 ≤ y1 & x2 = y2.
The transition rates from y to {y+ e1 − e2} and from x to {y + e1 − e2}

← are given
by: Q1(x, {y + e1 − e2}

←) = δ2(x)(p2 + p21) and Q2(y, {y + e1 − e2}) = δ′2(y)p′21.
Thus, for any B2 ∋ y + e1 − e2; x1 ≤ y1 & x2 = y2 we have Q2(y, B2) = δ′2(y)p

′
21 +

δ′2(y)p′2 · 1{y−e2∈B2}. In the worst case y− e2 is also in B2 and we get the condition

δ′2(y)(p′2 + p′21) ≤ δ2(x)(p2 + p21) for x1 ≤ y1 & x2 = y2.

• If y − e1 + e2 ∈ B2, in the worst-case situation we also have y − e1 ∈ B2. The
condition becomes now

δ′1(y)(p′1 + p′12) ≤ δ1(x)(p1 + p12) for x1 = y1 & x2 ≤ y2,

and, because we have p1 + p12 = p2 + p21 = p′1 + p′12 = p′2 + p′21 = 1, these conditions
become together

δ′2(y) ≤ δ2(x) for x1 ≤ y1 & x2 = y2, (4.15)

and

δ′1(y) ≤ δ1(x) for x1 = y1 & x2 ≤ y2. (4.16)

• Remark that if both y− e1 + e2 ∈ B2 and y+ e1 − e2 ∈ B2 are in B2, conditions (4.15)
and (4.16) together are stricter than the condition

δ′1(y) + δ′2(y) ≤ δ1(x) + δ2(x) for x = y.

Finally we look at the departure rates from y.

• Suppose y− e1 ∈ B2, but y− e1 + e2 /∈ B2. Both x /∈ B←2 and x ∼ y are true if and
only if x1 = y1 & x2 ≤ y2. Thus, Q1(x, {y− e1}

←) = δ1(x)p1.

• We can hold a similar argument for y− e2 ∈ B2, but y + e1 − e2 /∈ B2. Then x /∈
B←2 & x ∼ y if and only if x1 ≤ y1 & x2 = y2. It gives us the following conditions:

δ′1(y)p′1 ≤ δ1(x)p1 for x1 = y1 & x2 ≤ y2, (4.17)

δ′2(y)p′2 ≤ δ2(x)p2 for x1 ≤ y1 & x2 = y2. (4.18)

All together, the conditions are summarized in the following theorem:
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Theorem 4.2. Let X and Y be two 2-station Markov queueing networks with parameters (β, δ, p)
and (β′, δ′, p′). If for all x and y with x ∼ y the following conditions hold:

if x1 = y1:

β1(x) ≤ β′1(y),

β1(x) + δ2(x)p21 ≤ β′1(y) + δ′2(y)p′21,

δ′1(y)p′1 ≤ δ1(x)p1,

δ′1(y)(p′1 + p′12) ≤ δ1(x)(p1 + p12),

and if x2 = y2:

β2(x) ≤ β′2(y),

β2(x) + δ1(x)p12 ≤ β′2(y) + δ′1(y)p′12,

δ′2(y)p′2 ≤ δ2(x)p2,

δ′2(y)(p′2 + p′21) ≤ δ2(x)(p2 + p21),

then there exists a coupling of the processes X and Y for which the coordinate-wise relation is
invariant. That means precisely that X is stochastically related to process Y in the steady-state.

4.2.2 Sufficient comparison conditions for M-station queueing networks

We can generalize Theorem 4.2 to Markov queueing networks with an arbitrary number
of stations. This theorem is stated below, and is a natural extension of Theorem 4.2. The
proof is omitted because in Section 4.2.3 a stronger result is proved. Theorem 4.3 below
is basically equivalent with the results derived in [Economou, 2003], and it can give the
reader more insight in Theorem 4.4.

Theorem 4.3. Let X and Y be two M-station Markov queueing networks with parameters (β, δ, p)
and (β′, δ′, p′). Suppose for all x and y for which x ∼ y conditions

βi(x) + ∑
j∈J

δj(x)pji ≤ β′i(y) + ∑
j∈J

δ′j(y)p′ji, (4.19)

and

δ′i(y)

[

p′i + ∑
j∈J

p′ij

]

≤ δi(x)

[

pi + ∑
j∈J

pij

]

, (4.20)

hold, for each i ∈ {1, ...,M} for which xi = yi, and for all J ⊆ {1, . . . ,M} \ {i}. Then there
exists a coupling of the processes X and Y for which the coordinate-wise relation is invariant.

4.2.3 Sharp comparison conditions for M-station queueing networks

Finally, we give necessary and sufficient conditions for the general case where the Markov
queueing networks have an arbitrary (but finite) number inter-connected service stations.
In [Economou, 2003], necessary conditions and sufficient conditions are separately de-
rived. However, these conditions were not sharp. Theorem 4.4 gives sharp conditions
for the stochastic comparison of two M-station queueing networks with respect to the
coordinate-wise relation.

Utrecht University 40 Aalto University



CHAPTER 4. STOCHASTIC QUEUEING NETWORKS

Theorem 4.4. Let X and Y be two M-station Markov queueing networks with parameters (β, δ, p)
and (β′, δ′, p′), respectively. There exist a coupling of the processes X and Y for which the
coordinate-wise relation is invariant if and only if for all x, y with x ∼ y:

βi(x) + ∑
j∈J

δj(x)pji ≤ β′i(y) + ∑
j∈J

δ′j(y)p
′
ji + ∑

j/∈J

1{y j>x j}
δ′j(y)p

′
ji, (4.21)

and

δ′i(y)

[

p′i + ∑
j∈J

p′ij

]

≤ δi(x)

[

pi + ∑
j∈J

pij + ∑
j/∈J

1{x j<y j}
pij

]

, (4.22)

for all i such that xi = yi, and for all J ⊆ {1, . . . ,M} \ {i}.

Proof. Part 1
Let x ∼ y be arbitrary and suppose that condition (4.21) holds for all i such that xi = yi,
for all J ⊆ {1, . . . ,M} \ {i}. We want to prove that also condition (3.7) is fulfilled.

Let B1 ⊆ S1 be arbitrary, x /∈ B1 and y /∈ B→1 . We want to prove Q1(x, B1) ≤ Q2(y, B
→
1 ).

Remark that Q1(x, B1) depends only on the elements where x can jump to in just one step.
That is all elements in Nx, the neighbor set of x, where

Nx = {x+ ei, x+ ei − ej, x− ei; for i, j = 1, . . . ,M and j 6= i}.

Thus, Q1(x, B1) does not increase by adding any elements from S1 \ Nx to B1, while when-
ever B1 ⊆ B̃1 we have B→1 ⊆ B̃→1 and Q2(y, B

→
1 ) ≤ Q2(y, B̃

→
1 ). In other words, we have for

all B1:
Q1(x, B1) = Q1(x, (B1 ∩ Nx)), and

Q2(y, (B1 ∩ Nx)
→) ≤ Q2(y, B

→
1 ).

For this reason we can consider without loss of generality only those sets B1 such that
B1 ⊆ Nx.

Now suppose that x− ei ∈ B1 for a certain i. Then the right conjugate of B1 contains
the set {x− e1}

→ = {ỹ : x− ei ∼ ỹ} = {ỹ : xi − 1 ≤ ỹi and xj ≤ ỹj for all j 6= i}. But
this set contains y, which contradicts the assumption that y /∈ B→1 . We conclude that
x− ei /∈ B1 for all i, and hence, it is sufficient to study the sets

B1 ⊆ {x+ ei, x+ ei − ej ; i, j = 1, . . . ,M and j 6= i}.

For all i and for every x, define the subset of neighbors of x for which the i-th coordinate
is increased by one:

A(i)(x) := {x̃ : x̃i = xi + 1}.

Define also the intersection
B

(i)
1 (x) := B1 ∩ A(i)(x).

Hence, only the elements x + ei and x + ei − ej (for all j 6= i) are possible elements of

B
(i)
1 (x):

B
(i)
1 (x) = {x′ ∈ B1 : x

′ = x+ ei or x
′ = x− ej + ei for some j}.

Given B1 and x, define furthermore the index set

I1 := {i : B
(i)
1 6= ∅},
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and, for each i ∈ I1, define the subsets J (i) ⊆ {1, . . . ,M} \ {i} by

J (i) := {j : x+ ei − ej ∈ B1}.

We can write B1 in terms of the B
(i)
1 ’s: B1 =

⋃

i∈I1

B
(i)
1 .

Observe that

Q1(x, B1) = ∑
i

1{x+ei∈B1}
βi(x) + ∑

i, j

1{x+ei−ej∈B1}
δj(x)pji

which can be written in terms of i ∈ I1

= ∑
i∈I1



1{x+ei∈B1}
βi(x) + ∑

j∈J (i)

δj(x)pji





≤ ∑
i∈I1



βi(x) + ∑
j∈J (i)

δj(x)pji





for all i ∈ I1, the set B
(i)
1 is non-empty. This implies that x+ ei ∈ B→1 and

because conditions x ∼ y and y /∈ B→1 , the equality xi = yi must be true. Hence,

Equation (4.21) holds for all i ∈ I1.

≤ ∑
i∈I1









β′i(y) + ∑
j∈J (i)

δ′j(y)p
′
ji + ∑

k/∈J (i),
k 6=i

1{xk<yk}
δ′k(y)p′ki









= Q2(y, B
→
1 ).

On the other hand, suppose Q1(x, B1) ≤ Q2(y, B
→
1 ) holds for all x ∼ y such that x /∈ B1

and y /∈ B→1 . Let x ∼ y be arbitrary and suppose xi = yi. Let J ⊆ {1, . . . ,M} \ {i} be
arbitrary. Let

B1 = {x+ ei} ∪
⋃

j∈J

{x+ ei − ej}.

Then B1 ⊆ S1 is such that x /∈ B1 and y /∈ B→1 , and therefore we have Q1(x, B1) ≤
Q2(y, B

→
1 ). Hence,

Q1(x, B1) = βi(x) + ∑
j∈J

δj(x)pji, and

Q2(y, B
→
1 ) = β′i(y) + ∑

j∈J

δ′j(y)p
′
ji + ∑

j/∈J

1{y j>x j}
δ′j(y)p

′
ji,

which gives the first condition of Theorem 4.4 because the set J was arbitrary.

Part 2
In this second part we will prove (3.8)⇔ (4.22).

Let x ∼ y be arbitrary and suppose that condition (4.22) is true for all i such that
xi = yi, for all J ⊆ {1, . . . ,M} \ {i}. Let B2 ⊆ S2 be arbitrary such that y /∈ B2 and
x /∈ B←2 . We want to prove (4.22), that is

Q2(y, B2) ≤ Q1(x, B
←
2 ).
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As formula (4.5) shows, Q2(y, B2) depends only on the elements from B2 which are also
in the neighbor set of y Ny of y, where

Ny = {y− ei, y− ei + ej, y+ ei; for i, j = 1, . . . ,M and j 6= i}.

Without loss of generality, we can assume that B2 ⊆ Ny, because

Q2(y, B2) = Q2(y, (B2 ∩ Ny))

holds, while
Q1(x, (B2 ∩ Ny)

←) ≤ Q2(x, B
←
2 ),

(where in the last inequality we use that B2 ∩ Ny ⊆ B2).
Suppose y + ei ∈ B2 for some i. Then the left conjugate contains {y + ei}

←, but then
also y ∈ B←2 , and x ∼ y implies x ∈ B←2 , which is in contradiction with the assumption
that x /∈ B←2 . We conclude that we can restrict us to the sets B2 for which y + ei /∈ B2.

B2 ⊆ {x− ei, x− ei + ej ; i, j = 1, . . . ,M and j 6= i}.

For all y and for all i, define the subset of neighbors of y for which the i-th coordinate
is decreased by one.

A
(i)
2 (y) := {ỹ : ỹi = yi − 1}.

Define also
B

(i)
2 (y) := B1 ∩ A

(i)
2 (y),

hence,

B
(i)
2 (y) ⊆ {y′ ∈ B2 : y

′ = y− ei or y
′ = y− ei + ej for some j}.

Define furthermore index sets
I2 := {i : B

(i)
2 6= ∅},

and for all i ∈ I
J (i) := {j : y− ei + ej ∈ B1} ⊆ {1, . . . ,M} \ {i}.

We can write B2 in terms of the B
(i)
2 ’s: B2 =

⋃

i∈I2

B
(i)
2 .
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Now,

Q2(y, B2) = ∑
i

1{y−ei∈B2}
δ′i(y)p′i + ∑

i, j
j 6=i

1{y−ei+ej∈B2}
δ′i(y)p′ij

which we can write in terms of i ∈ I2

= ∑
i∈I2



1{y−ei∈B2}
δ′i(y)p′i + ∑

j∈J (i)

δ′i(y)p′ij





≤ ∑
i∈I2



δ′i(y)p′i + ∑
j∈J (i)

δ′i(y)p′ij





for all i ∈ I2, B
(i)
2 6= ∅. This implies that y− ei ∈ B←2 , and because

conditions x ∼ y and x /∈ B←2 , we must have yi = xi. Hence, (4.22) is true for

all i.

≤ ∑
i∈I2









δi(x)pi + ∑
j∈J (i)

δi(x)pij + ∑
k/∈J (i),
k 6=i

1{xk<yk}
δi(x)pik









= Q1(x, B
←
2 ).

We conclude that indeed condition (4.22) implies condition (3.8).
Now we will prove (3.8)⇒ (4.22). Suppose Q2(y, B2) ≤ Q1(x.B

←
2 ) is true for all x ∼ y

where y /∈ B2 and x /∈ B←2 . Let x ∼ y be arbitrary with xi = yi, for some i = 1, . . . ,M and
let J be an arbitrary subset of {1, . . . ,M} \ {i}. Define

B2 = {x− ei} ∪
⋃

j∈J

{x− ei + ej}.

Then B2 ⊆ S2 is such that y /∈ B2 and x /∈ B←2 . Hence we have Q2(y, B2) ≤ Q1(x, B
←
2 ). The

transition rates are given by

Q2(y, B2) = δ′i(y)

[

p′i + ∑
j∈J

p′ij

]

, and

Q1(x, B
→
2 ) = δi(x)

[

pi + ∑
j∈J

pij + ∑
j/∈J

1{x j<y j}
pij

]

,

which imply exactly condition (4.22) of Theorem 4.4 since i and J were arbitrary. This
concludes the proof.

4.2.4 Alternative sharp comparison conditions

In 2004; Delgado, López and Sanz also derived if and only if conditions for the stochastic
comparison of M-station queueing networks. The models that the authors use are based
on interacting particle systems. In their proof they construct the order-preserving coupling
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explicitly. The formulation of the theorem in [Delgado et al., 2004] looks more complex,
but after some study we can proof in fact their equivalence.

Delgado, López and Sanz use the following notation:

Λ[+]x,y =

{

Λ if x 6= y
Λ+ := max(Λ, 0) if x = y

(4.23)

Theorem 4.5. Consider two M-station Markov queueing networks X and Y with rates (β, δ, p)
and (β′, δ′, p′). There exist a coupling of the processes X and Y for which the coordinate-wise
relation is invariant if and only if for all x, y with x ∼ y:

β′i(y)− βi(x) ≥ ∑
j∈Ni

[

δj(x)pji− δ′j(y)p′ji

][+]x j,y j
(4.24)

and

δi(x)

[

1− ∑
j∈Ni

pij

]

− δ′i(y)

[

1− ∑
j∈Ni

p′ij

]

≥ ∑
j∈Ni

[

δ′i(y)p′ij − δi(x)pij

][+]x j,y j
(4.25)

hold for all i such that xi = yi.

In Theorem 4.5, the transition rates βi and δi can also depend on the whole state x,
hence, the models are the same as described in Section 4.1. Although formula’s (4.24) and
(4.25) look more complicated and less intuitive than the conditions of Theorem 4.4, the
advantage of Theorem 4.5 is that for a specific example we have to check only two for-
mulas. In Theorem 4.4 we need to check (4.21) and (4.21) for all subsets of service stations
J ⊆ {1, . . . ,M}. Typically in queueing theory the number of stations we work with is
not very high. Using then the conditions of Theorem 4.4 can help our intuition. But, for
applications such as interacting particle systems where we have to deal with a large number
of stations, we might prefer Theorem 4.5 because of the computational complexity. Thus,
we prefer Theorem 4.4 when checking conditions in an analytic way while Theorem 4.5
gives advantages when we want to check a certain example numerically.

Proof. The proof is divided into four parts, which together prove (4.24)⇔ (4.21) and (4.25)
⇔ (4.22).

Condition (4.24)⇒ condition (4.21):
Let x, y be arbitrary elements from the product space with x ∼ y and suppose xi =
yi; so that (4.24) holds. Let J ⊆ {1, . . . ,M} \ {i} be arbitrary. We want to prove that
Equation (4.21) is true.

By rewriting and working out the function Λ[+]x j,y j in (4.24) we have the following
equivalence:

β′i(y)− βi(x) ≥ ∑
j∈Ni

[

δj(x)pji− δ′j(y)p′ji

][+]x j,y j

if and only if

βi(x) + ∑
j: x j<y j

δj(x)pji + ∑
j: x j=y j &

δj(x)p ji≥δ′j(y)p
′
ji

δj(x)pji

≤ β′i(y) + ∑
j: x j<y j

δ′j(y)p′ji + ∑
j: x j=y j &

δj(x)p ji≥δ′j(y)p
′
ji

δ′j(y)p′ji.
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This inequality remains valid if we add δj(x)pji on the left and δ′j(y)p
′
ji on the right when-

ever δj(x)pji < δ′j(y)p
′
ji. We apply this to all j : j ∈ J and xj = yj to conclude that (4.24)

implies

βi(x) + ∑
j:x j<y j

δj(x)pji + ∑
j: x j=y j &

δj(x)p ji≥δ′j(y)p
′
ji

δj(x)pji + ∑
j: x j=y j &

δj(x)p ji<δ′j(y)p
′
ji

& j∈J

δj(x)pji

≤ β′i(y) + ∑
j: x j<y j

δ′j(y)p′ji + ∑
j: x j=y j &

δj(x)p ji≥δ′j(y)p′ji

δ′j(y)p′ji + ∑
j: x j=y j &

δj(x)p ji<δ′j(y)p
′
ji

& j∈J

δ′j(y)p′ji.

If δj(x)pji ≥ δ′j(y)p′ji, the inequality remains valid when we subtract δj(x)pji on the left

and δ′j(y)p
′
ji on the right. We apply it to all j : j /∈ J & xj = yj and get that (4.24) implies

βi(x) + ∑
j:x j<y j

δj(x)pji + ∑
j: x j=y j &

δj(x)p ji≥δ′j(y)p
′
ji

& j∈J

δj(x)pji + ∑
j: x j=y j &

δj(x)p ji<δ′j(y)p
′
ji

& j∈J

δj(x)pji

≤ β′i(y) + ∑
j: x j<y j

δ′j(y)p′ji + ∑
j: x j=y j &

δj(x)p ji≥δ′j(y)p′ji
& j∈J

δ′j(y)p′ji + ∑
j: x j=y j &

δj(x)p ji<δ′j(y)p
′
ji

& j∈J

δ′j(y)p′ji.

The index set {j : xj = yj & j ∈ J } ⊆ {j : xj = yj} and all rates are positive, thus

∑
j: x j<y j
& j∈J

δj(x)pji ≤ ∑
j: x j<y j

δj(x)pji. We subtract ∑
j: x j<y j
& j/∈J

δj(x)pji only on the left-hand side. We

get

βi(x) + ∑
j: x j<y j
& j∈J

δj(x)pji + ∑
j: x j=y j &

δj(x)p ji≥δ′j(y)p
′
ji

& j∈J

δj(x)pji + ∑
j: x j=y j &

δj(x)p ji<δ′j(y)p
′
ji

& j∈J

δj(x)pji

≤ β′i(y) + ∑
j: x j<y j

δ′j(y)p′ji + ∑
j: x j=y j &

δj(x)p ji≥δ′j(y)p′ji
& j∈J

δ′j(y)p′ji + ∑
j: x j=y j &

δj(x)p ji<δ′j(y)p
′
ji

& j∈J

δ′j(y)p′ji,

which is equivalent to

βi(x) + ∑
j: x j<y j &

j∈J

δj(x)pji + ∑
j: x j=y j &

j∈J

δj(x)pji

≤ β′i(y) + ∑
j: x j<y j

δ′j(y)p
′
ji + ∑

j: x j=y j
& j∈J

δ′j(y)p′ji.

Rewriting the equation above gives

βi(x) + ∑
j: j∈J

δj(x)pji ≤ β′i(y) + ∑
j: j∈J

δ′j(y)p′ji + ∑
j: x j<y j
& j/∈J

δ′j(y)p′ji,
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which is exactly condition (4.21).

Condition (4.21)⇒ condition (4.24):
Let x, y be arbitrary elements from the product space with x ∼ y and suppose xi = yi.
Suppose we have

βi(x) + ∑
j: j∈J

δj(x)pji ≤ β′i(y) + ∑
j: j∈J

δ′j(y)p′ji + ∑
j: x j<y j
& j/∈J

δ′j(y)p
′
ji

for all J ⊆ {1, . . . ,M} \ {i}. Choose J ⊆ {1, . . . ,M} \ {i} such that











j ∈ J for all j : xj < yj,
j ∈ J for all j : xj = yj & δj(x)pji ≥ δ′j(y)p′ji and

j /∈ J for all j : xj = yj & δj(x)pji < δ′j(y)p′ji.

This implies that the subset {j : xj < yj & j /∈ J } is empty, as well as {j : xj = yj &

δj(x)pji ≥ δ′j(y)p′ji & j /∈ J } = ∅ and {j : xj = yj & δj(x)pji < δ′j(y)p′ji & j ∈ J } = ∅.

Hence, for this specific J , condition (4.21) tells us

βi(x) + ∑
j: x j<y j

δj(x)pji + ∑
j: x j=y j &

δj(x)p ji≥δ′j(y)p
′
ji

δj(x)pji = βi(x) + ∑
j: j∈J

δj(x)pji

≤ β′i(y) + ∑
j: j∈J

δ′j(y)p′ji + ∑
j: x j<y j
& j/∈J

δ′j(y)p′ji

= β′i(y) + ∑
j: x j<y j

δ′j(y)p′ji + ∑
j: x j=y j &

δj(x)p ji≥δ′j(y)p
′
ji

δ′j(y)p′ji.

Condition (4.25)⇒ condition (4.22):
Let x, y be arbitrary elements from the product space S1× S2, for which x ∼ y and suppose
xi = yi and suppose (4.25) holds.

δi(x)

[

1− ∑
j∈Ni

pij

]

− δ′i(y)

[

1− ∑
j∈Ni

p′ij

]

≥ ∑
j∈Ni

[

δ′i(y)p′ij − δi(x)pij
][+]x j,y j

if and only if

δi(x)pi + ∑
j: x j<y j

δi(x)pij + ∑
j: x j=y j &

δ′i(y)p′ij≥δi(x)pij

δi(x)pij

≥ δ′i(y)p′i + ∑
j: x j<y j

δ′i(y)p′ij + ∑
j: x j=y j &

δ′i(y)p
′
ij≥δi(x)pij

δ′i(y)p′ij.

Where we use pi = (1−∑j∈Ni
pij) and we use Delgado’s definition (4.23).

This inequality remains valid if we add δj(x)pji on the left and δ′j(y)p′ji on the right

when δ′i(y)p′ij < δi(x)pij. We apply this on all j for which xj = yj and j ∈ J , therefore
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(4.25) implies

δi(x)pi + ∑
j: x j<y j

δi(x)pij + ∑
j: x j=y j &

δ′i(y)p′ij≥δi(x)pij

δi(x)pij + ∑
j: x j=y j &

δ′i(y)p′ij<δi(x)pij
& j∈J

δi(x)pij

≥ δ′i(y)p′i + ∑
j: x j<y j

δ′i(y)p
′
ij + ∑

j: x j=y j &

δ′i (y)p
′
ij≥δi(x)pij

δ′i(y)p′ij + ∑
j: x j=y j &

δ′i(y)p
′
ij<δi(x)pij

& j∈J

δ′i(y)p′ij.

The inequality remains also valid when we subtract δj(x)pji on the left and δ′j(y)p′ji on

the right if δ′i(y)p
′
ij ≥ δi(x)pij. We apply this on all j : j /∈ J and xj = yj. Remark that

{j : xj = yj & δ′i(y)p′ij ≥ δi(x)pij & j ∈ J } is exactly equal to {j : xj = yj & δ′i(y)p′ij ≥

δi(x)pij} \ {j : xj = yj & δ′i(y)p′ij ≥ δi(x)pij & j /∈ J }. Hence, (4.24) implies also

δi(x)pi + ∑
j: x j<y j

δi(x)pij + ∑
j: x j=y j &

δ′i(y)p′ij≥δi(x)pij
& j∈J

δi(x)pij + ∑
j: x j=y j &

δ′i(y)p′ij<δi(x)pij
& j∈J

δi(x)pij

≥ δ′i(y)p′i + ∑
j: x j<y j

δ′i(y)p
′
ij + ∑

j: x j=y j &

δ′i (y)p
′
ij≥δi(x)pij

& j∈J

δ′i(y)p′ij + ∑
j: x j=y j &

δ′i(y)p
′
ij<δi(x)pij

& j∈J

δ′i(y)p′ij.

The set {j : xj = yj & j ∈ J } is a subset of {j : xj = yj} and all rates are positive,

therefore ∑
j: x j<y j
& j∈J

δ′i(y)p′ij ≤ ∑
j: x j<y j

δ′i(y)p
′
ij. We subtract ∑

j: x j<y j
& j/∈J

δ′i(y)p′ij on the right-hand

side of our equation and get

δi(x)pi + ∑
j: x j<y j

δi(x)pij + ∑
j: x j=y j &

δ′i(y)p′ij≥δi(x)pij
& j∈J

δi(x)pij + ∑
j: x j=y j &

δ′i(y)p′ij<δi(x)pij
& j∈J

δi(x)pij

≥ δ′i(y)p′i + ∑
j: x j<y j
& j∈J

δ′i(y)p
′
ij + ∑

j: x j=y j &

δ′i (y)p
′
ij≥δi(x)pij

& j∈J

δ′i(y)p′ij + ∑
j: x j=y j &

δ′i(y)p
′
ij<δi(x)pij

& j∈J

δ′i(y)p′ij;

which is again equal to

δi(x)pi + ∑
j: x j<y j

δi(x)pij + ∑
j: x j=y j
& j∈J

δi(x)pij

≥ δ′i(y)p′i + ∑
j: x j<y j
& j∈J

δ′i(y)p
′
ij + ∑

j: x j=y j
& j∈J

δ′i(y)p′ij.

This holds if and only if

δi(x)pi + ∑
j: j∈J

δi(x)pij + ∑
j: x j<y j
& j/∈J

δi(x)pij ≥ δ′i(y)p′i + ∑
j: j∈J

δ′i(y)p′ij,
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which is exactly condition (4.22).

Condition (4.22)⇒ condition (4.25):
Let x, y be arbitrary elements from the product space with x ∼ y and suppose xi = yi.
Suppose we have, for all J ⊆ {1, . . . ,M} \ {i}

δi(x)pi + ∑
j: j∈J

δi(x)pij + ∑
j: x j<y j
& j/∈J

δi(x)pij ≥ δ′i(y)p′i + ∑
j: j∈J

δ′i(y)p′ij.

Let J ⊆ {1, . . . ,M} \ {i} be such that










j ∈ J for all j : xj < yj
j ∈ J for all j : xj = yj & δ′i(y)p′ij ≥ δi(x)pij
j /∈ J for all j : xj = yj & δ′i(y)p′ij < δi(x)pij.

This implies that {j : xj < yj & j /∈ J } = ∅, {j : xj = yj & δ′i(y)p′ij ≥ δi(x)pij &

j /∈ J } = ∅ and {j : xj = yj & δ′i(y)p′ij < δi(x)pij & j ∈ J } = ∅. Hence, for this specific

J

δi(x)pi + ∑
j: x j<y j

δi(x)pij + ∑
j: x j=y j &

δ′i(y)p′ij≥δi(x)pij

δi(x)pij =

δi(x)pi + ∑
j: j∈J

δi(x)pij + ∑
j: x j<y j
& j/∈J

δi(x)pij ≥ δ′i(y)p′i + ∑
j: j∈J

δ′i(y)p′ij

= δ′i(y)p′i + ∑
j: x j<y j

δ′i(y)p′ij + ∑
j: x j=y j &

δ′i(y)p
′
ij≥δi(x)pij

δ′i(y)p′ij,

which gives us exactly condition (4.25).

4.3 Summation coupling of Markov queueing networks

In the previous section we considered the coordinate-wise ordering of Markov queueing
networks X and Y. In this section we consider an alternative relation, which is not an
order. In many situations, it makes sense to consider the total number of customers in the
system. We call this relation the summation relation. The total number of customers in the
system is important, for example, if there are certain costs per customer in the system —
no matter at which service point this customer is situated in the system.

We start again to consider the 2-station Markov queueing network. We now look at
a different relation, which keeps track on the total number of jobs (or customers) in the
system. We denote x1 + x2 = |x| and y1 + y2 = |y|.

Definition 4.6. [Summation relation]

Rsum = {(x, y) : |x| ≤ |y|}. (4.26)

Note that this relation is an example of a relation which is not a partial order, because
it does not satisfy the anti-symmetry condition.
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4.3.1 Summation-order comparison of two-server queueing networks

Conditions for Q1(x, B1) ≤ Q2(y, B
→
1 )

Recall Condition (3.7):

Q1(x, B1) ≤ Q2(y, B
→
1 ), for all B1 ⊆ S1 with x /∈ B1, y /∈ B→1 .

The right conjugate B→1 of B1 ⊆ S1 is in this case given by B→1 ⊆ S2, where

B→1 =
⋃

x∈B1

{y : |y| ≥ |x|} = {y ∈ S2 : |y| ≥ inf
x∈B1
|x|}. (4.27)

0 1 2 3 4 5 6
0

1

2

3

4

{(4, 0)}→ =

{y ∈ S2 : |y| ≥ 4}

{y : |y| = |(4, 0)| = 4}

(4, 0)

S2

Figure 4.4: The right conjugate of x = (4, 0) is given by the shadowed area.

Let x ∼ y be an element from S1× S2 and let B1 be an arbitrary non-empty subset of S1
with x /∈ B1. Because B1 6= ∅, infx∈B1 |x| is well-defined. Then either one of the following
three possibilities holds:

• Suppose infx′∈B1 |x
′| ≤ |x|. Then {y : |y| ≥ |x|} ⊆ B→1 , thus we always have y ∈ B→1

while the condition of the theorem only holds for y /∈ B→1 . Thus, this case does not
give us any conditions on the different transition rates.

• Suppose infx′∈B1 |x
′| = |x| + 1. This means the only point to which x can jump

into B1 with positive rate is when a new arrival occurs, provided of course that the
specific state is an element of B1:

Q1(x, B1) = β1(x) · 1{x+e1∈B1}
+ β2(x) · 1{x+e2∈B1}

.

On the other hand, B→1 = {y : |y| ≥ |x|+ 1}. We have y /∈ B→1 and thus |y| < |x|+ 1,
while |x| ≤ |y| due to x ∼ y. This implies |x| = |y|. Hence, Q2(y, B

→
1 ) contains only

arrival rates from y:

Q2(y, B
→
1 ) = β′1(y) + β′2(y).

To break the condition Q1(x, B1) ≤ Q2(y, B
→
1 ), Q1(x, B1) has to be as large as possible

while Q2(y, B
→
1 ) is as small as possible. Therefore, the worst case scenario happens

if x+ e1 and x+ e2 ∈ B1. And this worst case gives us the condition

β1(x) + β2(x) ≤ β′1(y) + β′2(y) ∀ x, y with |x| = |y|. (4.28)
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• Suppose infx′∈B1 |x
′| > |x|+ 1. In this case there are no possibilities for x to jump to

any other state with positive probability:

Q1(x, B1) = 0.

In this case we always have Q1(x, B1) ≤ Q2(y, B
→
1 ) and we do not get any extra

conditions on the rates.

Conditions for Q2(y, B
←
2 ) ≤ Q2(y, B2)

The second condition of Theorem (3.19) is

Q2(y, B2) ≤ Q2(y, B
←
2 ) for all x ∼ y, y /∈ B2 and x /∈ B←2 .

Let (x, y) ∈ Rsum, B2 ⊆ S2 (non-empty) be arbitrary and y /∈ B2.

0 1 2 3 4 5 6
0

1

2

3

4

{(2, 3)}← =

{x ∈ S1 : |x| ≤ 5}

{x : |x| = |(2, 3)| = 5}

(2, 3) S1

Figure 4.5: The left conjugate of y = (2, 3) is given by the shadowed area.

The left conjugate B←2 ⊆ S1 with respect to relation Rsum is equal to

B←2 = ∪y∈B2{x ∈ S1 : |x| ≤ |y|} = {x ∈ B1 : |x| ≤ sup
y∈S2

|y|}. (4.29)

Again, there are three possibilities:

• Suppose supy′∈B2
|y′| < |y| − 1. Then Q2(y, B2) = 0, therefore we have always

Q2(y, B
←
2 ) ≤ Q2(y, B2) for y /∈ B2 and x /∈ B←2 .

• Suppose supy′∈B2
|y′| = |y| − 1. This implies B←2 = {x : |x| ≤ |y| − 1}. The con-

ditions x /∈ B←2 and |x| ≤ |y| imply |x| = |y|. For Q2(y, B2) it means that only a
departure can cause any positive outgoing rate. This happens only if y− e1 ∈ B2

and/or y− e2 ∈ B2:

Q2(y, B2) = δ′1(y)p′1 · 1{y−e1∈B2} + δ′2(y)p′2 · 1{y−e2∈B2}.

On the other hand, x can jump to each state x′ for which |x′| ≤ |y| − 1 = |x| − 1.
Thus, also in this case all rates outgoing from x are caused by departures

Q1(x, B
←
2 ) = δ1(x)p1 + δ2(x)p2.
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We conclude that in this case the following condition is equivalent with inequality
(3.8):

δ′1(y)p′1 + δ′2(y)p′2 ≤ δ1(x)p1 + δ2(x)p2 for all x, y with |x| = |y|. (4.30)

• Suppose supy′∈B2
|y′| ≥ |y|. Now B←2 = {x : |x| ≤ |y|}, and there is no x such that

x ∼ y but x /∈ B←2 . Hence, we do not get any conditions.

The derivations above lead to the following theorem.

Theorem 4.7. [Coupling of two 2-server Markov queueing networks]
Let X and Y be two Markov queueing networks with parameters (β, δ, p) and (β′, δ′, p′) on S1
and S2. Then there exists a coupling of X and Y for which the relation Rsum is invariant if and
only if for all (x, y) ∈ S1 × S2 with |x| ≤ |y|:

β1(x) + β2(x) ≤ β′1(y) + β′2(y), (4.31)

and,

δ1(x)p1 + δ2(x)p2 ≥ δ′1(y)p′1 + δ′2(y)p
′
2. (4.32)

An idea of the proof is already given, for the formal proof we refer to the proof of
Theorem 4.8.

4.3.2 Summation relation comparison of M-station queueing networks

Theorem 4.8. [Coupling of two M-station queueing networks]
Let X and Y be two M-station Markov queueing networks with parameters (β, δ, p) and (β′, δ′, p′)
on S1 and S2. Then there exists a coupling of X and Y for which the relation Rsum is invariant if
and only if for all (x, y) ∈ S1 × S2 such that |x| ≤ |y|:

M

∑
i=1

βi(x) ≤
M

∑
i=1

β′i(y) (4.33)

and

M

∑
i=1

δi(x)pi ≥
M

∑
i=1

δ′i(y)p′i. (4.34)

In words, this theorem states that whenever there is an equal number of customers in
both systems, the total arrival rate into the system in process X must be smaller than or
equal to the total arrival rate of Y, and the total departure rate of X must be bigger than
or equal to the total departure rate of Y. This makes sense intuitively.

Proof. It suffices to prove that conditions (4.33) and (4.34) hold if and only if the conditions
(3.7) and (3.8) hold for the summation relation. In Part 1 we prove that (4.33)⇔ (3.7); and
in Part 2 (4.34)⇔ (3.8).
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Part 1

Suppose that for all x, y such that |x| = |y| we have
M

∑
i=1

βi(x) ≤
M

∑
i=1

β′i(y). Let B1 ⊆ S1 be

arbitrary with x /∈ B1 and y /∈ B→1 . Recall condition (3.7) of Theorem (3.19) is

Q1(x, B1) ≤ Q2(y, B
→
1 ) for all x ∼ y, x /∈ B1 and y /∈ B→1 (4.35)

If B1 = ∅ we have Q1(x, B1) = 0, which is always less or equal than Q2. Therefore,
assume B1 6= ∅. Then infx′∈B1 |x

′| is well defined and infx′∈B1 |x
′| ∈ N. The right conjugate

is given by (4.27):

B→1 =
⋃

x∈B1

{y : |y| ≥ |x|} = {y ∈ S2 : |y| ≥ inf
x∈B1
|x|}.

There are three possibilities:

• Suppose infx′∈B1 |x
′| < |x|+ 1. Then {y : |y| ≥ |x|} ⊆ B→1 , hence we always have

y ∈ B→1 while Condition (4.35) of Theorem 3.19 is only required for y /∈ B→1 . Thus,
this case does not satisfy Condition (4.35).

• Suppose infx′∈B1 |x
′| = |x|+ 1. This means that the only station to which x can jump

into B1 with positive rate is when a new arrival occurs, provided of course that the
specific state is an element of B1. Hence, x can jump to x+ ei for each i = 1, . . . ,M.
This occurs with rate βi(x):

Q1(x, B1) =
M

∑
i=1

1{x+ei∈B1}
βi(x).

On the other hand, B→1 = {y : |y| ≥ |x| + 1}. We assumed y /∈ B→1 , hence |y| <

|x|+ 1, while |x| ≤ |y| due to x ∼ y. This implies |x| = |y|. Hence,

Q2(y, B
→
1 ) =

M

∑
i=1

β′i(y).

Thanks to Condition (4.33) Q1(x, B1) ≤ Q2(y, B
→
1 ) is always true.

• Suppose infx′∈B1 |x
′| > |x|+ 1. In this case there are no possibilities for x to jump

to any other state with positive probability, because the probability that two arrivals
occur exactly at the same moment in time is zero:

Q1(x, B1) = 0.

Therefore, in this case we always have Q1(x, B1) ≤ Q2(y, B
→
1 ).

We conclude that Condition (4.35) always holds.
To prove the converse, suppose that Q1(x, B1) ≤ Q2(y, B

→
1 ) is true for all x ∼ y such

that x /∈ B1 and y /∈ B→1 . Let x, y ∈ S1 × S2 and suppose that |x| = |y|. Let B1 =
⋃

i=1,...,M

{x+ ei}. Then B1 ⊆ S1; x /∈ B1 and y /∈ B→1 , thus we can apply Condition (3.7). As

a consequence,

Q1(x, B1) =
M

∑
i=1

βi(x)
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and

Q2(y, B
→
1 ) =

M

∑
i=1

β′i(y),

hence, Equation (4.33) holds.

Part 2
Suppose that Equation (4.34) holds for all x, y for which |x| = |y|. Let B2 ⊆ S2 be arbitrary
such that y /∈ B2 and x /∈ B←2 . We can assume that B2 ⊆ Ny, because

Q2(y, B2) = Q2(y, B2 ∩ Ny)

and
Q1(x, B

←
2 ) ≥ Q1(x, (B2 ∩ Ny)

←).

The second condition of Theorem (3.19) is

Q2(y, B2) ≤ Q1(x, B
←
2 ) for all x ∼ y, y /∈ B2 and x /∈ B←2 (4.36)

Hence, it is sufficient if for all B2 ⊆ Ny Condition (4.36) holds.
The left conjugate B←2 ⊆ S1 with respect to the summation relation Rsum is equal to:

B←2 =
⋃

y′∈B2

{x ∈ S1 : |x| ≤ |y′|} = {x ∈ B1 : |x| ≤ sup
y′∈S2

|y′|}. (4.37)

Furthermore we can assume that B2 6= ∅, so that sup
y′∈B2

|y| is well defined. (Remark that if

B2 = ∅, we have Q2(y, B2) = 0, such that then (4.36) is automatically true.) Again, there
are three possibilities:

• Suppose supy′∈B2
|y′| < |y| − 1. Then Q2(y, B2) = 0 and we have always Q2(y, B

←
2 ) ≤

Q2(y, B2) for y /∈ B2 and x /∈ B←2 .

• Suppose supy′∈B2
|y′| = |y| − 1. This implies B←2 = {x : |x| ≤ |y| − 1}. The con-

ditions x /∈ B←2 and |x| ≤ |y| imply |x| = |y|. For Q2(y, B2) it means that only a
departure can cause any positive outgoing rate. This happens only if y− ei ∈ B2:

Q2(y, B2) =
M

∑
i=1

δ′i(y)p′i · 1{y−ei∈B2}.

On the other hand, x can jump to each state x′ for which |x′| ≤ |y| − 1 = |x| − 1.
Therefore, also in this case all rates outgoing from x are caused by departures:

Q1(x, B
←
2 ) =

M

∑
i=1

δi(x)pi.

And because we have
M

∑
i=1

δi(x)pi ≥
M

∑
i=1

δ′i(y)p
′
i we conclude that (4.36) is true.

• Suppose supy′∈B2
|y′| ≥ |y|. Now, B←2 = {x : |x| ≤ |y|}, and there is no x such that

x ∼ y but x /∈ B←2 , and the condition Q2(y, B2) ≤ Q1(x, B
←
2 ) is not violated.
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Finally, suppose that the conditions of Theorem 3.19 are true for all B2 ⊆ S2 with

y /∈ B2 and x /∈ B←2 . We want to prove that
M

∑
i=1

δi(x)pi ≥
M

∑
i=1

δ′i(y)p′i for all x, y such that

|x| = |y|.
Let x, y be arbitrary such that |x| = |y|. Define

B2 :=
⋃

i=1,...,M

{x− ei}.

Then B2 ⊆ S2; y /∈ B2 and x /∈ B→2 therefore we can apply Condition (4.36).

Q2(y, B2) =
M

∑
i=1

δ′i(y)p
′
i

and

Q1(x, B
←
2 ) =

M

∑
i=1

βi(x),

and because we also have Q2(y, B2) ≤ Q1(x, B
←
2 ) hence Condition (4.34) holds.

We give a last remark on single-server Markov queueing systems. If M = 1, the
coordinate-wise order and the summation relation are the same

Rcoord = Rsummation = {(x, y) : x ≤ y}.

In our notation, since we only have one service station, we ommit the ‘subscript-i’. The
conditions of Theorems 4.4 and 4.8 are equal, and to ensure the existence of an order
preserving coupling we must have

β(x) ≤ β′(y)

and
δ′(y) · p′ ≤ δ(x) · p

for all x = y. That is, if both systems happen to be in the same state (on the boundary of
the relation), the arrival rate in X should not exceed the arrival rate in Y and the departure
rate in Y should not exceed the departure rate in X. As we have seen, these conditions
hold for the example given in Section 2.1.
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Chapter 5

A loss network with breakdowns

In this chapter we study a Jackson network with breakdowns. Having breakdowns in
the network complicates the stochastic comparison. We construct an explicit coupling
and obtain a stochastic comparison result with respect to the coordinate-wise ordering.
The chapter is outlined as follows. In Section 5.1 we introduce the Jackson network with
breakdowns. We study the single-server case and present a coupling for this simple case
in Section 5.2. In Section 5.3 we derive a coupling for the general multi-server network
and give the stochastic comparison result.

5.1 Jackson network with breakdowns

Jackson network
Consider a Markov queueing network X with M service stations and Poisson arrivals with
parameter λ. The service requirements are exponential and all service requirements and
inter-arrival times are assumed to be independent of each other. At station i, the service
rate is µi(xi) if xi jobs are present at station i, where we assume µi(xi) to be increasing in
xi for every i. This is a simplification of the queueing networks described in Section 4.1,
and is also known as a Jackson network. After service, the job (or customer) jumps from
station i to station j with routing probability pij, and the probability of leaving the system

from station i is pi = 1−∑
M
j=1 pij. Furthermore, the total number of jobs at service station

i is bounded by Ni. If there are more than Ni jobs upon an arrival instant at a server i, this
arrival will be rejected.

Breakdowns
In addition, each workstation i has a departure channel which is subject to breakdowns.
When the departure channel is down, a job attempting to leave station i (either to jump
to another station or to leave the system) remains at that station. We denote the state of
departure channel of server i by θi, where θi = 0 if the departure channel is down and
θi = 1 if the channel is working.

The state space is S ⊆ N
M × {0, 1}M, where (x, θ) ∈ S if and only if 0 ≤ xi ≤ Ni

and θi ∈ {0, 1}. We denote a specific state in the system by (x; θ) ∈ S, where x ∈ N
M

represents the number of customers at each station and the vector θ ∈ {0, 1}M represents
if the stations are up or down.
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In the system X′, which we want to compare to, only the arrival rates are different. The
customers join the queue at station i only if the departure channel of that station is up,
thus arrivals are rejected if θ′i = 0. By this modification, the so-called balance equations
hold in every state of the system. The balance equations state that for each subset of states
in the system, the total inflow rate must equal the outflow rate in steady-state. Then, a
product-form solution of the steady state distribution exist. In this sense, the modified
system would give us an relatively easier bound for the behaviour of the original system.
See also [van Dijk, 1998] and [Kelly, 1979].

As in Section 4.1, the systems can be described as continuous-time Markov processes
with the transition rates given in Table 5.1.

Table 5.1: Transition rates of the Jackson network with breakdowns

Original system X Modified system X′

(x; θ) 7−→ ... (x′; θ
′) 7−→ ...

arrival: arrival:
(x+ 1{xi<Ni}

ei; θ) at rate λi (x′ + θ′i1{x′i<Ni}
ei; θ

′) at rate λi

departure: departure:
(x− θi1{0<xi}

ei; θ) at rate piµi(xi) (x′ − θ′i1{0<x′i}
ei; θ

′) at rate piµi(x
′
i)

i-j jump: i-j jump:
(x− θi1{0<x j<Nj}

ei + θi1{0<x j<Nj}
ej; θ) (x′ − θ′i1{0<x′j<Nj}

ei + θ′i1{0<x′j<Nj}
ej; θ

′)

at rate pijµi(xi) at rate pijµi(x
′
i)

breakdown: breakdown:
(x; θ− θiei) at rate δi (x′; θ

′ − θ′iei) at rate δi

repair: repair:
(x; θ + (1− θi)ei) at rate βi (x′; θ

′ + (1− θ′i)ei) at rate βi

for all i, j ∈ {1, ...,M}, j 6= i for all i, j ∈ {1, ...,M}, j 6= i

Each station has a capacity constraint Ni on the total number of jobs at each service
station i, thus upon an arrival instant the number of customers xi at station i determines
if the arriving job is accepted to join the queue or not. The indicator 1{xi<Ni}

= 1 if there
is place for a new arrival and 1{xi<Ni}

= 0 if the arrival is rejected. The differences of the

processes X and X′ occur only in the first line of Table 5.1. In the original system the i-th
unit vector is added to the number of customers at station i if xi < Ni. When we consider
the modified system we also need to have that station i is working (that is if θi = 1) for
an arrival to enter the system. Departures and i-j jumps only occur from station i if that
station is working. Breakdowns occur at rate δi only if station i is working (that is exactly
as θi = 1). Repairs take place at rate β, only if the system is down, that is when θi = 1 or,
equivalently if (1− θi) = 0.
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The goal is to compare the original system X with the (easier) second system X′ which
is a modification of the original system. Common sense says that the modified system
gives a lower bound on the number of customers in the system, simply because less
customers are accepted to the network. Or, in process X′ the loss rate is higher.

In the next section we consider the model described above for the single-server case
and show that by choosing the right state space description we can use coupling argu-
ments to compare the two processes. In Section 5.1.3 we generalize this coupling to the
case with an arbitrary number of servers.

5.2 Single-server queue

To get more intuition on what is happening in both systems, and how to construct a
coupling, we consider both Jackson networks with just one service station (M = 1). For
simplicity we assume the service rate to be constant whenever there are customers at the
server; µ(n) = µ for 1 ≤ n ≤ N. A graphical representation of processes X and X′ is given
in Figures 5.1 and 5.2, where the maximum number of customers in the system is N = 4.

Network

X

θ = 0

(down)

(0, 0) (1, 0) (2, 0) (3, 0) (4, 0)

θ = 1

(up)

(0, 1) (1, 1) (2, 1) (3, 1) (4, 1)

δβ δβ δβ δβ δβ

µµµµ

λ λ λ λ

λ λ λ λ

Figure 5.1: Original Jackson network for M = 1 and N = 4.

(down)

(up) Network

X’

θ = 0 (0, 0) (1, 0) (2, 0) (3, 0) (4, 0)

θ = 1 (0, 1) (1, 1) (2, 1) (3, 1) (4, 1)

δβ δβ δβ δβ δβ

µµµµ

λ λ λ λ

Figure 5.2: Modified Jackson network for M = 1 and N = 4.

Studying these figures gives us the idea that coupling techniques might work to prove
not only that the adapted model gives a lower bound for the steady-state mean loss rate
(as is done in [van Dijk, 1998]), but we can even get a stronger result, namely that in steady
state the number of customers in X stochastically dominates the number of customers in
system X′:

P(X ≤ n) ≤ P(X′ ≤ n) for all n = 0, 1, . . . ,M.

Explicit rates for a coupling of X and X′ are given in Table 5.2. Considering the Tables 5.1
and 5.2, it is not difficult to check that this is indeed a coupling of X and X′.

Utrecht University 59 Aalto University



5.2. SINGLE-SERVER QUEUE

Table 5.2: A coupling of the single-server Jackson networks

Coupling (X̂, X̂′)

arrival:
((x, θ), (x′, θ′)) 7−→ ((x + 1{x<N}, θ), (x′ + θ′1{x′<N}, θ′)) at rate λ

departure:
((x, θ), (x′, θ′)) 7−→ ((x− θ1{0<x}, θ), (x′ − θ′1{0<x′}, θ′)) at rate µ

breakdown:
((x, θ), (x′, θ′)) 7−→ ((x, 0), (x′, 0)) at rate δ

repair:
((x, θ), (x′, θ′)) 7−→ ((x, 1), (x′, 1)) at rate β

What we want to achieve is that in steady-state the number of customers in system X
is bigger than the number of customers in the modified system X′, hence, at start we are
interested in the relation

Rcoord = {((x, θ), (x′, θ′)) : x ≥ x′}. (5.1)

The coupling given in Table 5.2 however does not preserve this relation. This can easily be
shown by considering again the Figures 5.1 and 5.2. Namely, let X be in state (3, 1) and
X′ in state (3, 0) at some point in time. Then ((3, 1), (3, 0)) ∈ Rcoord, but with a positive
rate of µ > 0 the process X goes to state (2, 1) while process X′ remains in state (3, 0). But
((2, 1), (3, 0)) /∈ Rcoord, and this shows that Rcoord is not invariant for the coupling .

For this reason, the state space was chosen such that also θ is included and the coupling
in Table 5.2 preserves actually relation Rbreakdowns, which is a subrelation of Rcoord. The
subrelation Rbreakdowns is invariant for the coupling in Table 5.2, where

Rbreakdowns = {((x, θ), (x′, θ′)) : x ≥ x′ and θ = θ′}. (5.2)

Or in other words, in steady-state, the processes X and X′ are stochastically related with
respect to the relation Rbreakdowns. We have to remark here that for the elements (x, θ) and
(x′, θ′) to be related, the equality of the breakdown-indicator (θ = θ′) is crucial.

Again, this is not difficult to check. By looking at Table 5.2 we see that there is no
positive rate for which an element in Rbreakdown can jump to an element not in Rbreakdown.

Theorem 5.1. Let X and X′ be single-server Jackson networks which are subject to breakdowns,
as described in the beginning of this section. Then, in steady-state:

P(X ≤ n) ≤ P(X′ ≤ n) for all n = 0, 1, . . . ,M.

Proof. In Table 5.2, a coupling (X̂, X̂′) of X and X′ is given for which Rbreakdown is invariant.
Hence,

P((X̂, X̂′) ∈ Rbreakdown) = 1,
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and because Rbreakdowns ⊆ Rcoord,

P((X̂, X̂′) ∈ Rcoord) = 1.

Hence, P(X̂ has less customers than X̂′ at every station) = 1. With this coupling, we
showed that the steady-state distributions of X and X′ are stochastically related with
respect to Rcoord, and because the coupling couples the distributions of X and X′, we
conclude that indeed

P(X ≤ n) ≤ P(X′ ≤ n) for all n = 0, 1, . . . ,M.

A consequence of Theorem 5.1 is that the mean loss rate in the original model is
less than or equal to the mean loss rate in the modified system, which is also shown in
[van Dijk, 1998].

5.3 Coupling of the Jackson network example

We extend the coupling of the single-server networks of the previous section to the case
where X and X′ have a general number of M servers. The coupling is a Markov process
living in the product space S × S ⊆ (N

M×{0, 1}M) × (N
M×{0, 1}M). We denote an

element of the product set by ((x, θ), (x′, θ′)). First, we show that the coupling given in
Table 5.3 coupled indeed the processes X and X′. Second, we show that this coupling
preserves a subrelation of the coordinate-wise relation. This gives us the result which
states that the steady-state distributions of X and X′ are stochastically related with respect
to the coordinate-wise relation.

Lemma 5.2. The process (X̂, X̂′) in Table 5.3 couples the processes X and X′.

Proof. To show that (X̂, X̂′) is indeed a coupling of X and X′, we have to verify that the
marginal transition rates of (X̂, X̂′) match with the transition rates of X and X′. This is
easily verifiable. Furthermore all the transition rates are non-negative. The transitions
map S× S into S× S. Theorem 2.10 implies that (X̂, X̂′) is a coupling of X and X′.

Note that in this coupling the initial states of θ can be different. But if at some moment
in time θi = θ′i , then from that moment on they will remain equal. This holds for each
i = 1, ...,M. For each i the set {((x, θ), (x′, θ′)) : θi = θ′i} is invariant for the coupling of
Table 5.3.

Define the following relation on S× S:

Rbreakdowns := {((x, θ), (x′, θ
′)) : xi ≥ x′i and θi = θ′i for all i = 1, . . . ,M.} (5.3)

For all (x, θ) and (x′, θ′) with (x, θ) ∼ (x′, θ′), the coupling preserves relation Rbreakdowns.

Lemma 5.3. Relation Rbreakdowns is invariant for the coupling of Table 5.3.
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Table 5.3: A coupling of the multiple-server Jackson networks.

Coupling (X̂, X̂′) of X and X′
(

(x, θ), (x′, θ′)
)

7−→ . . .

arrival:
(

(x+ 1{xi<Ni}
ei, θ) , (x′ + θ′i1{x′i<Ni}

ei, θ
′)

)

at rate λi

departure:
(

(x− θi1{0<x1}
ei, θ) , (x′ − θ′i1{0<x′1}

ei, θ
′)

)

at rate pi ·min{µi(xi), µi(x
′
i)}

(

(x− θi1{0<x1}
ei, θ) , (x′, θ′)

)

at rate pi · (µi(xi)− µi(x
′
i))

+

(

(x, θ) , (n′ − θ′i1{0<x′1}
ei, θ

′)
)

at rate pi · (µi(x
′
i)− µi(xi))

+

i-j jump:
(

(x− θi1{0<x j<Nj}
ei + θi1{0<x j<Nj}

ej; θ) , (x′ − θ′i1{0<x′j<Nj}
ei + θ′i1{0<x′j<Nj}

ej; θ
′)

)

at rate pij ·min{µi(xi), µi(x
′
i)}

(

(x− θi1{0<x j<Nj}
ei + θi1{0<x j<Nj}

ej; θ) , (x′, θ′)
)

at rate pij · (µi(xi)− µi(x
′
i))

+

(

(x, θ) , (x′ − θ′i1{0<x′j<Nj}
ei + θ′i1{0<x′j<Nj}

ej; θ
′) at rate pij · (µi(x

′
i)− µi(xi))

+

breakdown:
(

(x, θ− θiei) , (x′, θ′ − θ′iei)
)

at rate δi

repair:
(

(x, θ + (1− θi)ei) , (x′, θ′ + (1− θ′i)ei)
)

at rate βi

for all i, j ∈ {1, ...,M}, j 6= i

Where we use the notation (µ)+ := max{µ, 0} for µ ∈ R to describe the departure and jump
rates.

Proof. When ((x, θ), (x′, θ
′)) ∈ Rbreakdowns we write

(x, θ) ∼ (x′, θ′)⇔

{

xi ≥ x′i for all i
θi = θ′i for all i.

(5.4)

Suppose that Rbreakdowns is not invariant for the coupling. Then there must exist two
states A and B in the product space such that A is in the relation but B is not, and
there is a positive rate to jump from state A to B. Write A = ((xA, θA), (x′A, θ

′
A)) and

B = ((xB, θB), (x′B, θ
′
B)). State A ∈ Rbreakdowns, hence xAi ≥ x′Ai and θAi = θ′Ai for all

i = 1, . . . ,M. But, for state B there is an i such that (1) θBi 6= θ′Bi or (2) xBi < x′Bi.

((xA, θA), (x′A, θ
′
A)) 7−→ ((xB, θB), (x′B, θ

′
B)).

(1). Suppose there is an i such that θBi 6= θ′Bi. Then the jump out of the relation must
be caused either by a breakdown or by a repair of station i. When a breakdown of station
i occurs and the stations were down (θAi = θ′Ai = 0), in both systems nothing happens.
When θAi = θ′Ai = 1, both systems go down at rate δi. Thus then θBi = θ′Bi = 0. Similarly,
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if a repair occurs when the servers were down in both systems this will cause a repair,
and if they were already up nothing happens. Therefore, θBi remains always equal to θ′Bi
with probability one, and θi := θAi = θ′Ai = θBi = θ′Bi is true.

(2). Suppose xBi < x′Bi for a certain i. If xAi ≥ x′Ai and in one jump we go to a
state where xBi < x′Bi, we must have xAi = x′Ai. There are two possibilities. Either (i) a
station-i-departure occurs in X but not in X′,

xAi 7−→ xBi = xAi − 1 and x′Ai 7−→ x′Bi = x′Ai,

or (ii) a station-i-arrival occurs in X′ but not in X

xAi 7−→ xBi = xAi and x′Ai 7−→ x′Bi = x′Ai + 1.

(i) The event xAi 7−→ xBi = xAi − 1 and x′Ai 7−→ x′Bi = x′Ai can happen by a departure
or by a jump of a customer from a server j to i.

Departure
Observe that θAi = θ′Ai = θi, therefore, a departure can only cause this jump if
pi · (µi(xAi)− µi(x

′
Ai))

+ is positive. But xAi = x′Ai, thus this rate is zero.

i-j jump
A jump from i to j occurs only if θAi = θ′Ai = θi = 1 and if xAi = x′Ai < Ni. An i-j
jump happens in X and not in X′ only if pij · (µi(xAi)− µi(x

′
Ai))

+ is positive. This

is not the case because µi(xAi) = µi(x
′
Ai). We conclude that this possibility can not

happen.

(ii) Suppose xAi 7−→ xBi = xAi and x′Ai 7−→ x′Bi = x′Ai + 1. This jump is possible when
an arrival occurs (at rate λi) or by a jump from a station j to i.

Arrival
We know that xAi = x′Ai so 1{xAi<Ni}

= 1{x′Ai<Ni}
. For an arrival this means that an

arrival in X′ always goes together with an arrival in X.

j-i jump
For an j-i jump, θAj = θ′Aj = 1 (otherwise the customer can never leave station j).

Such a jump from j to i in X′ and not in X can only happen if the rate pji · (µj(xAj)−

µj(x
′
Aj))

+ is positive. We know that xAj ≥ x′Aj, hence, if µj(xj) is non-decreasing in

xj for every j this rate is zero.

We conclude that a jump out of the relation can never happen and thus that the relation
is absorbing in the coupling of Table 5.3.

Combining Lemma’s 5.2 and 5.3, we can state the following theorem.

Theorem 5.4. Let X and X′ be two M-station Jackson networks where the departure channels are
subject to breakdowns, as described in Section 5.1. In the steady-state, process X is coordinate-wise
stochastically bigger than X′:

P(Xi ≥ si, for all i) ≥ P(Xi ≥ si, for all i) for all s ∈ R
M.

Proof. By Lemma’s 5.2 and 5.3, there exists a coupling (X̂, X̂′) of X and X′ such that, the
relation Rbreakdowns is invariant for this coupling. Theorem 3.19 ensures that X ∼st X

′ with
respect to Rcoord. In steady state

P((X̂, X̂′) ∈ Rbreakdowns) = 1.
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5.3. COUPLING OF THE JACKSON NETWORK EXAMPLE

Since Rbreakdowns is a subrelation if Rcoord,

P((X̂, X̂′) ∈ Rcoord) = 1.

Hence, in the steady-state the processes X and X′ are stochastically related with respect
to the relation Rcoord:

P(Xi ≥ si, for all i) ≥ P(Xi ≥ si, for all i) for all s ∈ R
M.
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Chapter 6

Conclusion

Stochastic comparison is a strong comparison method which does not only compare
means and expectations of random elements, but compares the distributions of the stochas-
tic elements under consideration. The recently introduced stochastic comparison with re-
spect to relations is more generally applicable than stochastic ordering. It allows us to
compare processes on different state spaces for non-trivial relations on the product space.
With the help of coupling arguments, strong results on the comparison of processes can
be obtained.

In this thesis, we have studied the stochastic comparison of Markov queueing net-
works. An introduction on couplings of random elements and stochastic processes was
given in Chapter 2. Definitions of the coupling of transition (rate) matrices are presented
and we proved that a coupling of transition (rate) matrices of Markov processes is equal to
the transition (rate) matrix of a coupling of the processes, in both discrete and continuous-
time. Chapter 3 gave an introduction on stochastic comparability. We have shown that
comparability of processes in ordered spaces is naturally extended to stochastic compara-
bility with respect to relations. In Chapter 4 we studied a basic Markov queueing network
and presented a new necessary and sufficient conditions for the stochastic comparison of
two of those Markovian queueing networks, for the coordinate wise order relation and
the summation relation. Theorems 4.4 and 4.8 summarize these results, and we have
proved that the conditions of 4.8 are indeed equivalent to an alternative characterization
presented in [Delgado et al., 2004]. Although the theorem in [Delgado et al., 2004] would
be more useful for numerical computation, Theorem 4.4 gives analytically simpler con-
ditions. In Chapter 5, we have studied an example of two Jackson networks, where the
servers are subject to breakdowns, and we have illustrated how strong comparison results
follow from a coupling which preserves some subrelation.

Altogether, we have presented a thorough overview of the theory of stochastic compar-
ison with respect to relations. We have shown how to derive conditions, on the transition
rates of Markov queueing networks, which ensure that these networks are stochastically
comparable with respect to a certain relation. Furthermore, we have shown how construc-
tions of explicit couplings can be used to prove strong comparison results in an intuitive
way.
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Discussion and further research

I studied several examples which are not discussed in this thesis. These are examples
where it is not (yet) known whether or not stochastic comparison can be proved. In
[van Dijk, 1998], queueing networks are presented for which mean value analysis can
be used to derive bounds on certain system quantities, and it is claimed that stochastic
comparison using order-relations can not be proved in these examples. However, no proof
is given and thus, this remains an open question. It may be possible that there exists a
choice of state space and subrelation for which the coupling method works. Although
I tried to construct these, I did not manage to find such couplings. There is not yet a
characterization of where the coupling method fails. Further investigation can be made to
explore the boundaries of stochastic comparison.

There are two important directions for extending the theory of stochastic comparison.
First, it would be useful to study more complex queueing networks. Secondly, stochastic
comparison using relations gives the possibility of comparing networks that are highly
different of each other. It is interesting to further explore this.

There are many extensions of queueing networks that could be considered. For ex-
ample, we can add batch arrivals, priority classes of customers or server-sharing mod-
els. We can also think of adding more dependencies in the network models, such as
state-dependent transition probabilities. In this work, we assumed that the service re-
quirements and inter-arrival times are independent and exponentially distributed. We
can think of relaxed constraints or simply other distributions. All of these extensions are
useful for modeling real networks in various applications.

When working with relations, instead of orders, we are not restricted to have equal
state spaces in both models. This invites us to think in a much broader way of compara-
ble models to provide bounds on the original network. This seems especially promising
for high-dimensional networks. A bounding model with simplified state space can be
constructed, for example, by grouping sets of servers. Furthermore, infinite-dimensional
networks can be bounded by finite-dimensional models. It is, however, not directly ob-
vious which merging and bounding operations can be used while ensuring stochastic
comparability.
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[Delgado et al., 2004] Delgado, R., López, F. J., and Sanz, G. (2004). Local conditions for
the stochastic comparison of particle systems. Adv. Appl. Probab., 36:1252–1277.

[van Dijk, 1998] van Dijk, N. M. (1998). Bounds and error bounds for queueing networks.
Ann. Oper. Res., 79:295–319.

[Economou, 2003] Economou, A. (2003). Necessary and sufficient conditions for the
stochastic comparison of Jackson networks. Probab. Eng. Inform. Sci., 17:143–151.
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