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Abstract

In this research futures on bonds are studied and since this future has several bonds as its un-
derlyings, the party with the short position may decide which bond it delivers at maturity of the
future. It obviously wants to give the bond that is the Cheapest-To-Deliver (CTD). The purpose
of this project is to develop a method to determine, which bond is the CTD at expiration of
the future. To be able to compare the underlying bonds, with different maturities and coupon
rates, conversion factors are used.

We would like to model the effects that changes in the term structure have on which bond is
cheapest-to-deliver, because when interest rates change, another bond could become the CTD.
We assume that the term structure of the interest rates is stochastic and look at the Ho-Lee
model, that uses binomial lattices for the short rates. The volatility of the model is supposed
to be constant between today and delivery, and between delivery and maturity of the bonds.

The following questions will be analysed:

• Is the Ho-Lee model a good model to price bonds and futures, i.e. how well does the model
fit their prices?

• How many steps are needed in the binomial tree to get good results?

• At what difference in the term structure is there a change in which bond is the cheapest?

• Is it possible to predict beforehand which bond will be the CTD?

• How sensitive is the futures price for changes in the zero curve?

• How stable are the volatilities of the model and how sensitive is the futures price for
changes in these parameters?

To answer these questions, the German Euro-Bunds are studied, which are the underlying bonds
of the Euro-Bund Future.
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1 Introduction

1.1 Saen Options

Since the change from the floor-based open out cry trading to screen trading in 2000, a lot has
changed for market makers, such as Saen Options. Technology has become one of the most
important facets of the trading. The software used by Saen Options, has to be faster than the
software of its competitors, so when previously a second would count to do a trade, nowadays,
every nanosecond counts.

To be able to be the fastest on every market, software is needed, that incorporates the latest
changes in the field. Only half of the people that work at Saen Options are traders, and a big
number of people works at either the IT, Development or Research department. At Research
new products are investigated, problems that traders encounter in the markets are solved, and
investigations are conducted to find the optimal trading. At the Development department new
software and programs are designed, according to what is needed in the market.

It is a great opportunity to be able to write my thesis at Saen Options and to know that
my research is useful for them. As described above, the whole business is driven by being the
fastest, the smartest and the best on the trading markets, and it is a great experience to be part
of such a challenging business.

1.2 Financial introduction

In this section the most important financial terms are explained.

A futures contract is a contract between two parties to buy or sell a commodity, at a
certain future time at a delivery price, that is determined beforehand. The delivery date, or
final settlement date, is also fixed in the agreement. Futures are standardized contracts that
are traded on an exchange and can refer to many different types of commodities, like gold, silver,
aluminium, wool, sugar or wheat, but also financial instruments, like stock indices, currencies
or bonds, can be the underlying of the contract. The quoted price of a certain contract is the
price at which traders can buy or sell the commodity and it is determined by the laws of supply
and demand. The settlement price is the official price of the contract at the end of a trading
day.

Forward contracts are similar contracts, but unlike the futures contracts, they are traded
over-the counter instead of on an exchange, i.e., they are traded between two financial institu-
tions. This makes it a much less secure contract, because if one of the companies does not obey
the rules, e.g., if the buyer goes bankrupt and wants to back out of the deal, the other company
has a problem.

To make sure that this does not happen when trading the futures contract on the exchange, a
broker intervenes. This is a party that mediates between the buyer and the seller. An investor
that wants to buy a futures contract, tells his broker to buy the contract on the exchange, which
is the seller of the future, and the broker requires the investor to deposit funds in a margin
account. The money that must be paid at the entering of the contract is the initial margin.
When, at a later time point, the investor’s losses are more than what the maintenance margin
allows, the investor receives a margin call from the broker, that he should top up the margin
account to the initial margin level before the next day. The broker checks if all of this happens
and makes sure that in case the investor does not answer his margin calls, that he can end the
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contract on time and is able to pay for the debts.

The party with the short position in the futures contract agrees to sell the underlying
commodity for the price and date fixed in the contract. The party with the long position
agrees to buy the commodity for that price on that date.

A bond is an interest rate derivative, which certifies a contract between the borrower (bond
issuer) and the lender (bond holder). The issuer, usually a government, credit institution or
company, is obliged to pay the bond’s principal, also known as notional, to the bond holder on
a fixed date, the maturity date. Such debt securities are very important, because in almost
every financial transaction, one is exposed to interest rate risk and it is possible to control this
risk using bonds. A discount bond or zero-coupon bond only provides the notional at ma-
turity, while a coupon bond also pays a monthly, semiannually or annually coupon.

The spot rate, zero-coupon interest rate or simply zero rate z(t, T ), is defined as the
interest rate at time t, that would be earned on a bond with maturity T , that provides no
coupons. A term structure model describes the relationship between these interest rates and
their maturities. It is usually illustrated in a zero-coupon curve or zero curve at some time
point t, which is a plot of the function T → z(t, T ), for T > t.

The discount rate is the rate with which you discount the future value of the bond. Since
we assume that the bond is worth 1 at maturity T , the discount rate is actually the value of
the zero-coupon bond at time t for the maturity T , P (t, T ). By denoting the annually
compounded zero rate from time t until time T by z̃(t, T ), the discount rate is

P (t, T ) =
1

(1 + z̃(t, T ))(T−t)
,

but we will use continuously compounded zero rates z(t, T ) instead to compute the discount
rate:

P (t, T ) = e−(T−t)z(t,T ). (1)

The zero rate z(t, T ) applies to the period [t, T ]. In most of the thesis, the zero rate z(T ),
which is an abbreviation for z(0, T ), is used.

We first take a look at the discrete time and next we look at the continuous time.
The forward rate is the interest rate for money to be borrowed between two dates in the future
(T1, T2), where T1 < T2, but under terms agreed upon at an earlier time point t. It is denoted
by f(t, T1, T2) at time t for the dates T1, T2, and defined as

Pf (t, T1, T2) = e−(T2−T1)f(t,T1,T2), (2)

where Pf (t, T1, T2) is defined as the forward zero-coupon bond price at time t for maturity T2

as seen from expiry T1 and it equals

Pf (t, T1, T2) =
P (t, T2)
P (t, T1)

. (3)

Borrowing an amount of money at time t until time T1 at the known interest rate z(t, T1), and
combining it from time T1 to T2 at the rate f(t, T1, T2), known at time t, should give the same
discount rates as when borrowing the amount of money at time t until T2 against the interest
rate z(t, T2):

P (t, T1) · Pf (t, T1, T2) = P (t, T2) (4)
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or
e−(T1−t)z(t,T1) · e−(T2−T1)f(t,T1,T2) = e−(T2−t)z(t,T2). (5)

From Equation (5) one finds that:

f(t, T1, T2) =
(T2 − t)z(t, T2)− (T1 − t)z(t, T1)

T2 − T1
. (6)

When looking at discrete time models, the discrete short rate is defined to be the one-
period interest rate r̂(t) for the next period [t, t + 1]. It is actually the forward rate spanning a
single time period,

r̂(t) = f(0, t, t + 1).

We now take a look at the continuous time.
The instantaneous forward rate is the forward interest rate for an infinitesimally short period
of time, and is defined as

f(t, T ) := lim
ε↓0

f(t, T, T + ε), for all t < T,

which equals

f(t, T )
(2)
= − lim

ε↓0

lnPf (t, T, T + ε)
ε

= − lim
ε↓0

lnPf (t, T, T + ε)− lnPf (t, T, T )
ε

= − ∂

∂T2
lnPf (t, T, T2)|T2=T

(3)
= − ∂

∂T2
lnP (t, T2)|T2=T = − ∂

∂T
lnP (t, T ), (7)

which follows from the equations that are mentioned on top of the equal signs.

The instanteneous short rate r(t) is defined as the interest rate, for an infinitesimally
short period of time after time t:

r(t) := lim
ε↓0

z(t, t + ε).

In Chapter 2 both the continuous time and the discrete time short rate models are studied.
When the term ‘short rate’ is mentioned, the instanteneous short rate is meant, unless stated
otherwise.

To indicate the difference between a zero-coupon bond and a coupon-bearing bond, we
define J(~c, ~tc, t) as the price of a bond at time t with coupons ~c = [ct1 , ct2 , . . . , ctN

], at the
coupon dates ~tc = [t1, t2, . . . , tN ] for t ≤ t1 < t2 < . . . < tN , where the last coupon date is the
maturity of the bond.
When the zero rates at time t until time ti are z(t, ti), for i = 1, . . . , N , then at time t, the price
of a coupon-bearing bond with the above coupons at the above dates, is:

J(~c, ~tc, t) =
N∑

i=1

cti
P (t, ti) + P (t, tN ). (8)

P (t, ti) is the price of a bond at time t that pays one at time ti, so when a coupon of cti
is

paid at time ti, we have to discount with P (t, ti) to find the value of the coupon at time t. The
total price of the coupon-bearing bond is the sum of the discounted coupon payments plus the
discounted notional. We can rewrite this as:

J(~c, ~tc, t) =
N∑

i=1

cti
e−(ti−t)z(t,ti) + e−(tN−t)z(t,tN ). (9)
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A bond’s yield y is defined as the interest rate at which the present value of the stream of
cash flows, consisting of the coupon payments and the notional of one, is exactly equal to the
current price of the bond, i.e.,

J(~c, ~tc, t) =
N∑

i=1

ctie
−(ti−t)y + e−(tN−t)y, (10)

As one can see, every cash flow is discounted by the same yield.

A future on a bond is a contract that obliges the holder to buy or sell a bond at maturity.
Often, this future consists of a basket of bonds. In this thesis, the Euro-Bund future or
FGBL contract, will be studied. The market data for this future and its underlying bonds
can be extracted from Bloomberg, which is a computer system that financial professionals use
to view financial market data movements. It provides news, price quotes, and other information
of the financial products.

Since the party with the short position may decide which bond to deliver, he chooses the
Cheapest-to-Deliver bond (CTD). The basket of bonds to choose from, consists of several
bonds with different maturities and coupon payments. To be able to compare them, conversion
factors are used. They represent the set of prices that would prevail in the cash market if all the
bonds were trading at a yield equivalent to the contract’s notional coupon. They are calculated
by the exchanges according to their specific rules. The FGBL contract, that we look at, has a
notional coupon of six percent, see Chapter 3. It is assumed that:

• the cash flows from the bonds are discounted at six percent,

• the notional of the bond to be delivered equals 1.

In Equation (10) the bond price for a given yield y can be seen. Since the contract’s notional
is six percent, the conversion factor of this contract can be found by filling in y = 0.06 in
Equation (10):

Conversion factor =
N∑

i=1

cti
e−(ti−t)0.06 + e−(tN−t)0.06.

When bonds have a yield of six percent, the conversion factors are equal to one. If the bonds
have a yield larger than six percent, then the conversion factors are larger than one, but the
shorter the maturity, the closer the factor comes to one. Similarly, when the yields are smaller
than six percent, the conversion factors are smaller than one, but the longer the maturity, the
closer the conversion factor comes to one, see [9].

When pricing a bond, it is necessary to look at what moments the coupons are paid. The
bond is worth less on the days that the coupons are provided, because there will be one less
future cash flow at that point. For the same reason, when approaching the next coupon payment
date, the bond will be worth more. To give the bond holder a share of the next coupon payment
that he has the right to, accrued interest should be added to the price of the bond. This new
price is called the cash price or dirty price. The quoted price without the accrued interest
is referred to as the clean price. The accrued interest can be calculated by multiplying the
interest earned in the reference period by

the number of days between today and the last coupon date
the number of days in the reference period

.

The reference period is the time period over which you receive the coupon. There are different
ways to count the number of days of such a period, the most common are:
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• actual/actual day count takes the exact number of days between the two dates and assumes
the reference period is the exact number of days of the year (either 365 or 366 days in a
year),

• 30/360 day count assumes there are 30 days in a month and 360 days in a year,

• actual/360 day count takes the exact number of days in a year, but assumes the reference
period has 360 days.

We use the actual/actual day count, because this is the type of day-count used for the Euro-
Bund future.

To determine which bond is the CTD, one needs to look at what cash flows there are. By
selling the futures contract, the party with the short position receives:

(Settlement price× Conversion factor) + Accrued interest.

By buying the bond, that he should deliver to the party with the long position, he pays:

Quoted bond price + Accrued interest.

The CTD is therefore the bond with the least value of

Quoted bond price− (Settlement price× Conversion factor).

The corresponding price of the future fixed at time 0 with maturity T is:

F (0, T ) = (C0 − I0)ez(T )T , (11)

where C0 is the cash price of the bond at time 0, I0 is the present value of the coupon payments
during the life of the futures contract, T is the time until the maturity of the futures contract,
and z(T ) is the risk-free zero rate from today to time T . Before showing why Equation (11)
must hold, we introduce a new term: arbitrage. This is the possibility for investors to make
money without taking a risk. Such an investor is called an arbitrageur. We want the economy
to be arbitrage-free, because we do not want these self-financing strategies to lead to sure profit.
If F (0, T ) > (C0 − I0)ez(T )T , an arbitrageur can make a profit by

• buying the bond; it costs him C0 today, but he will receive coupon payments worth I0

today. At maturity T his costs for buying the bond have become (C0 − I0)ez(T )T .

• shorting a future contract on the bond, for which he receives F (0, T ) at maturity, which
is more than what he paid for the bond.

If F (0, T ) < (C0 − I0)ez(T )T , an arbitrageur would be able to take advantage of the situation,
by

• shorting the bond, for which he receives C0, but he has to pay the coupon payments, which
are worth I0 today. His gains from this are (C0 − I0)ez(T )T at maturity T .

• taking a long position in a future contract on the bond, for which he only pays F (0, T ),
which is less than the profit that he has made from shorting the bond.

In both ways, the arbitrageur has made a riskless profit. Since we want the price of a future to
be arbitrage-free, it cannot be larger than (C0 − I0)ez(T )T , neither can it be smaller than this,
so the futures price should be exactly as in Equation (11).
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A call option is an agreement between two parties, which gives the holder the right, but
not the obligation, to buy the underlying asset for a certain price at a certain time. This price
is called the strike and the future time point is called the maturity. Regular types of assets
are stocks, bonds or futures (on bonds). In Figure 1a one can see that a call only has a strictly
positive payoff when the price of the underlying, AT , rises above the strike level S, at maturity
T :

Payoff of a call option = max(AT − S, 0).

Figure 1:
a. The payoff of a call option with strike K = 100,
b. The payoff of a put option with strike K = 100

A put option is an agreement between two parties, which gives the holder the right, but
not the obligation, to sell the underlying asset for a certain price at a certain time. In Figure 1b
one can see that it provides a strictly positive payoff only if the underlying, AT , is worth less
than the strike price S, at maturity T :

Payoff of a put option = max(S −AT , 0).

A swap is an agreement between two companies to exchange one cash flow stream for an-
other in the future. One interest rate is received, while at the same time the other one is paid.
The swaps are netted, which means that only the difference in payments is made by the company
that owes this difference. A notional principal is fixed at the entering of the contract. It is used
to set the payments, but it will never be paid out.
The most common type of swap is a plain vanilla interest rate swap, for which a fixed rate
cash flow is exchanged for a variable rate cash flow or vice versa. The fixed rate is chosen in
such a way that the payoff of the swap would be zero. Because of this, and since the principal
is never paid out, swaps have a very low credit risk. Potential losses from defaults on a swap
are much less than the potential losses from defaults on a loan with the same principal, because
for a loan, the lender has the risk that the borrower cannot pay the whole notional back, while
for a swap it is only the difference in rates, taken over this principal, that one of the parties of
the swap cannot gather.

An interest rate cap is an option that gives a payoff at the end of each period, when the
interest rate is above a certain level, which we call the cap rate or strike Sn at time n. The
interest rate is a floating rate that is reset periodically and it is taken over a principal amount.
The caps that we will look at, have the Euribor rate as the floating rate. Euribor is short for
Euro Interbank Offered Rate and the rates they offer are the average interest rates at which
more than fifty European banks borrow funds from one another. The time between resets is
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called the tenor and is usually three or six months.
Interest rate caps are invented to provide insurance against the floating rate. If the tenor is
three months and today’s Euribor rate is higher than today’s cap rate, then in three months the
cap will provide a payoff of the difference in rates times the notional amount. Vice versa, when
today’s Euribor rate is lower than today’s cap rate, the payoff in three months will be zero.
A cap can be analyzed as a series of European call options or so-called caplets, which each have
a payoff at time tn+1:

max(f(t, tn, tn+1)− Sn, 0),

where tn is the reset date, tn+1 is the payoff date, f(t, tn, tn+1) is the forward rate, at time t,
between times tn and tn+1, and Sn is the strike at time n. The total payoff of a cap with N
caplets, at time t is:

N∑
n=1

(tn+1 − tn)P (t, tn+1) max(f(t, tn, tn+1)− Sn, 0), (12)

where tn+1 − tn is the tenor and P (t, tn+1) is the discount factor from t to tn+1.

1.3 Mathematical introduction

Although most of the mathematical background that will be used, is explained in this section,
the reader is assumed to have some knowledge in probability theory. More information on the
subjects can be found in [10, 11, 13, 14].

Let (Ω,F , P) be a probability space, (E, E) be a measurable space and [0, T ] be a set. A
stochastic process is defined as a collection X = (Xt)t∈[0,T ] of measurable maps Xt from the
probability space (Ω,F , P) to (E, E). The probability space (Ω,F , P) needs to satisfy a few
properties. The collection of subsets F , of the set Ω, should be a σ-algebra:

• ∅ ∈ F ,

• if A ∈ F , then Ac ∈ F , and

• for any countable collection of Ai ∈ F , we have
⋃

i Ai ∈ F .

This means that {∅,Ω} ∈ F , and F is closed under complements and countable unions. It
should also hold that P, the probability measure, is a function from F to [0, 1], such that

• P(Ω) = 1, and

• for any disjoint countable collection {Ai} of elements of F , one has P(
⋃

i Ai) =
∑

i P(Ai).

If the previous holds, then (Ω,F , P) is indeed a probability space.

We say that a random variable X (from Ω to R) is measurable with respect to F if for all
x ∈ R, {ω : X(ω) ≤ x} ∈ F .
For a random variable X ∈ L1(Ω,F , P), we define the expectation E(X) of X by

E(X) :=
∫

Ω

XdP =
∫

Ω

X(ω)P(dω).

Let (Ω,F , P) be a probability space and X a random variable with E(|X|) < ∞. Let G be
a sub-σ-algebra of F . Then there exists a random variable Y such that Y is G-measurable,
E(|Y |) < ∞ and for every set G ∈ G, we have∫

G

Y dP =
∫

G

XdP.
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Y is called a version of the conditional expectation E(X|G) of X given G, and we write
Y = E(X|G), a.s.

If a collection (Ft)0≤t<∞ of sub-σ-algebras has the property that s ≤ t implies Fs ⊂ Ft,
then the collection is called a filtration. Ft is the natural filtration (Ft)t≥0 and it contains
all the information up to time t.

A real-valued stochastic process X, indexed by t ∈ [0, T ], is called a martingale w.r.t. the
filtration Ft, if the following conditions hold:

(i) Xt is adapted for all t ∈ [0, T ], i.e., Xt is Ft-measurable for all t ∈ [0, T ],

(ii) Xt is integrable, E|Xt| < ∞ for all t ∈ [0, T ],

(iii) for discrete time: E(Xs+1|Fs) = Xs a.s. for all s ∈ [0, T ],
for continuous time: E(Xt|Fs) = Xs a.s. for all s ≤ t and s, t ∈ [0, T ].

By the third property we know that, given all information up to time s, the conditional ex-
pectation of observation Xs+1 (resp. Xt), is equal to the observation at the earlier time s. In
particular, EXt = EX0 for all t ∈ [0, T ].

A Brownian motion or Wiener process W = (Wt)t≥0 is a continuous-time stochastic
process that satisfies:

• Wt is adapted to Ft,

• W0 = 0 a.s.,

• W has independent increments, i.e., Wt − Ws is independent of (Wu : u ≤ s) for all
s ≤ t,

• W has stationary increments, i.e., Wt −Ws has a N (0, t− s)-distribution for all s ≤ t,

• the sample paths of W are almost surely continuous.

An Itô process is defined to be an adapted stochastic process which can be expressed as

X(t) = X(0) +
∫ t

0

µ(s,X(s))ds +
∫ t

0

σ(s,X(s))dWs. (13)

It is usually written in differential form as

dX(t) = µ(t,X(t))dt + σ(t, X(t))dWt. (14)

X(t) consists of a drift term µ(t,X(t))dt and a noise term σ(t, X(t))dWt.

If γ ∈ C1,2(R+ × R) and X(t) is a process that satisfies Equation (13), then the process
Y (t) = γ(t, X(t)) can be written as:

Y (t) = Y (0) +
∫ t

0

∂γ

∂x
(s,X(s))dX(s) +

∫ t

0

∂γ

∂t
(s,X(s))ds +

1
2

∫ t

0

∂2γ

∂x2
(s,X(s))σ2(s,X(s))ds,

(15)
where ∂

∂x is the partial derivative with respect to the second variable Ws. This is called Itô’s
formula and it equals:

dY (t) =
∂γ

∂t
(t, X(t))dt +

∂γ

∂x
(t, X(t))dX(t) +

1
2

∂2γ

∂x2
(t, X(t))σ2(t,X(t))dt. (16)
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The class H2 = H2[0, T ] consists of all measurable adapted functions φ that satisfy the
integrability constraint:

E
(∫ t

0

φ2(ω, s)ds

)
< ∞,

which is a closed linear subspace of L(dP × dt) (see [10]). If φ ∈ H2, then for all t ∈ [0, T ]:

E
(∫ t

0

φ(ω, s)dWs

)2

= E
(∫ t

0

φ2(ω, s)ds

)
, (17)

which is called the Itô isometry.

The risk neutral measure or martingale measure, denoted by Q, is a probability measure
that results, when all tradeables have the same expected rate of return, regardless of the ‘risk-
iness’, i.e., the variability in the price, of the tradeable. This expected rate of return is called
the risk-free rate, so under Q, µ(s,X(s)) ≡ r(s) for all tradeables’ price processes X.

In the physical or real-world measure P this is the opposite case, more risky assets or as-
sets with a higher price volatility, have a greater expected rate of return, than less risky assets.
In [1] it can be seen how one can switch from the real-world measure to the risk-neutral measure
by applying Girsanov’s theorem. The measure that will be used from now on is the risk-neutral
measure.
The fundamental theorem of arbitrage-free pricing roughly states that there is no arbi-
trage if and only if there exists a unique risk neutral measure Q, that is equivalent to the original
probability measure P.

For fixed T , the process t → P (t, T )0≤t≤T is a nonnegative, càdlàg (continue à droite, limite á
gauche) semimartingale defined on the probability space (Ω,F , {Ft}0≤t≤T , P), with P (T, T ) = 1,
because the bond is worth 1 at maturity. At time t > T , the bond is worthless, therefore P (t, T )
is only defined when t ∈ [0, T ]. The adaptedness property must hold, because at time t the price
of the bond must be known.

When the instanteneous short rate rt is a stochastic process, the expectation under the risk-
neutral measure Q of the value of a bond equals the current arbitrage-free price once discounted
by the short rate. The discounted value of a bond at time t, paying 1 at maturity T , is:
e−

∫ T
t

r(s)ds. The short rate being random, applying the conditional expectation operator under
the risk-neutral measure Q gives:

P (t, T ) = EQ

(
e−

∫ T
t

r(s)ds|Ft

)
, (18)

for all t < T . The term e−
∫ T

t
r(s)ds can be interpreted as a random discount factor applied to

the notional of 1. Equation (18) is called the bond pricing equation. If the short rate is
deterministic, then for all t < T :

P (t, T ) = e−
∫ T

t
r(s)ds.

1.4 Outline of Thesis

In the introduction of Chapter 2 we give an overview of the short rate models that are most
common and in Section 2.2 it is explained how the Ho-Lee model can be used to find the short
rate in continuous and discrete time. The two methods are compared in Section 2.2.3 and in
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the succeeding section a numerical test of the approximations of this comparison is made. In
Section 2.3 it can be seen how spot rates can be computed from a series of coupon-bearing
bonds, and how they can be interpolated. A number of interpolation methods is listed with
their properties and it is explained why raw interpolation is used in this project. To conclude
this chapter, an example is given of how to bootstrap and interpolate with real maket data.

Chapter 3 starts with an introduction about the Euro-Bunds and the Euro-Bund futures. In
the next section it is looked at how to determine the Cheapest-to-Deliver bond and the futures
and bonds are priced. An example is given of how to calculate today’s bond and futures prices
and how to find the CTD, when the zero curve, the volatility and the bond prices at delivery
are given. In Section 3.3 it is explained how to find all the variables necessary to calculate these
prices.

In Chapter 4 real market data is used to fit the model. In Section 4.1 it is investigated how
many steps are needed to get a good fit and what happens to the futures and bond prices when
there is only one volatility used in the model. In Section 4.2 we take a look at what values
the volatilities should have to get a nice fit and it can be seen which futures and bond prices
are obtained with these optimized volatilities. In Section 4.3 it can be found which bond is the
Cheapest-to-Deliver and what change in the short rate makes the CTD change from a certain
bond to another. The influence of the bonds and the volatilities on the futures price is studied
in Section 4.4 and in the last section of this chapter we look at the possibility to get a nice
prediction of the futures price, when fixing the volatilities on a certain date.

The conclusion can be found in Chapter 5 and in the appendix, starting on page 63, all
Matlab commands, used in the project, are listed.
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2 Short rate models

Over the last decades people have invented and improved many short rate models. In this
section the most popular models are discussed and it is explained how one of these models, the
Ho-Lee model can be solved in continuous and discrete time.
All models that are studied are one-factor models, depending on a single Wiener process.

2.1 Introduction

Since bond prices can be characterized by Equation (18), we know that whenever we can char-
acterize the distribution of e−

∫ T
t

r(s)ds in terms of a chosen model for r, conditional on the
information available at time t, we are able to compute the bond prices. From the bond prices
the zero rates are computable, so by knowing the characterization of the short rate, the whole
zero curve can be constructed.

The short rate process r is assumed to satisfy the stochastic differential equation (14) under
the risk-neutral measure Q. By defining the short rate as an Itô stochastic differential equation,
we are able to use continuous time instead of discrete time. The short rate that we look at in
this section is the instantaneous short rate, because the rate applies to an infinitisimally short
period of time. For more information on the short rate models, see [1].

When choosing a model, it is important to consider the following questions:

• What distribution does the future short rate have?

• Does the model imply positive rates, i.e., is r(t) > 0 a.s. for all t?

• Are the bond prices, and therefore the zero rates and forward rates, explicitly computable
from the model?

• Is the model suited for building recombining trees? These are binomial trees for which
the branches come back together, as can be seen in Figure 2a. The opposite of recombining
trees are bushy trees, of which an example is given in Figure 2b, but we will not use this
type of tree, because the computation is be too cumbersome.

• Does the model imply mean reversion? This is a phenomenon, where the expected
values of interest rates are pulled back to some long-run average level over time. This
means that when the interest rate is low, mean reversion tends to give a positive drift and
when the interest rate is high, mean reversion tends to give a negative drift.

Figure 2: a. Recombining tree, b. Bushy tree

In this section these questions will be answered for each considered short rate model and in
Table 1 on page 27 the most important properties are summarized.
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The first short-rate models that were proposed were time-homogeneous, which means that
the functions µ and σ in the stochastic differential equation for the short rates r do not depend
on time:

dr(t) = µ(r(t))dt + σ(r(t))dWt.

The advantage of such models is that bond prices can be calculated analytically, but the term
structure is endogenous, which means that the term structure of interest rates is an output
rather than an input of the model, so the rates do not necessarily match the market data.

One of the first to model the short rate, was Vasicek [12] in 1977, who proposed that the
short rate can be modeled as

dr(t) = a(θ − r(t))dt + σdWt,

where θ, a and σ are positive constants. The short rate r(u) conditional on Ft is normally
distributed with mean respectively variance:

E(r(u)|Ft) = r(t)e−a(u−t) + θ(1− e−a(u−t)),

Var(r(u)|Ft) =
σ2

2a
(1− e−2a(u−t)).

The derivation can be found in the appendix, on page 63. For more information about the
characteristics of this short-rate model, see [1]. A disadvantage is that for each time u, the short
rate r(u) can be negative with positive probability. The model has the following advantages:
the distribution of the short rates is Gaussian, and the bond prices can be solved explicitly by
computing the expectation (18). It does incorporate mean reversion, because the short rate
tends to be pulled to level θ at rate a.

In 1978, Dothan [3] introduced the following short rate model:

dr(t) = ar(t)dt + σr(t)dWt,

where a is a real constant and σ is a positive constant. By integrating, one finds for t ≤ u:

r(u) = r(t)e(a− 1
2 σ2)(u−t)+σ(Wu−Wt).

Therefore r(u), conditional on Ft is lognormally distributed with mean respectively variance:

E(r(u)|Ft) = r(t)ea(u−t),

Var(r(u)|Ft) = r2(t)e2a(u−t)(eσ2(u−t) − 1).

The short rate r(u) is always positive for each u, because of its lognormal distribution. The bond
prices can be computed analytically, but the formulae are quite complex. For more informa-
tion about the characteristics of this short-rate model and for the details of the derivation, see [1].

The Cox-Ingersoll-Ross model [2], developed in 1985, looks as follows:

dr(t) = a(θ − r(t))dt + σ
√

r(t)dWt,

and takes into account mean reversion. It also adds another quality, namely multiplying the
stochastic term by

√
r, implying that the variance of the process increases as the rate r itself

increases. For the positive parameters θ, a, and σ ranging in a reasonable region (2aθ > σ2),
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the model implies positive interest rates and the instanteneous rate is charactererized by a
noncentral chi-squared distribution, with mean respectively variance:

E(r(u)|Ft) = r(t)e−a(u−t) + θ(1− e−a(u−t)),

Var(r(u)|Ft) = r(t)
σ2

a

(
e−a(u−t) − e−2a(u−t)

)
+ θ

σ2

2a

(
1− e−a(u−t)

)2

.

For more information of the characteristics of this short-rate model and for the details of the
derivation, see [1]. The model has been used often, because of its analytical tractability and the
fact that the short rate is positive.

As already mentioned briefly, the time-homogeneous models have an important disadvan-
tage, which is that today’s term structure is not automatically fitted. It is possible to choose
the parameters of the model in such a way that the model gives an approximation of the term
structure, but it will not be a perfect fit. Therefore Ho and Lee [5] came up with an exogenous
term structure model in 1986. The term structure is an input of the model, hence it perfectly
fits the term structure. For these models, the drift does depend on t.

The Ho-Lee model is defined as

dr(t) = θ(t)dt + σdWt, (19)

where θ(t) should be chosen such that the resulting forward rate curve matches the current term
structure. It is the average direction that the short rate moves at time t. We will now determine
how θ(t) should be chosen.
By integrating (19) we obtain:∫ u

t

dr(s) =
∫ u

t

θ(s)ds + σ

∫ u

t

dWs

r(u) = r(t) +
∫ u

t

θ(s)ds + σ(Wu −Wt).

The short rate r(u), conditional on Ft, is normally distributed with mean respectively variance:

E(r(u)|Ft) = r(t) +
∫ u

t

θ(s)ds,

Var(r(u)|Ft) = E(σ2(Wu −Wt)2|Ft)

= σ2(u− t).

The bond price at time t with maturity T equals:

P (t, T ) = EQ

(
e−

∫ T
t

r(u)du|Ft

)
= EQ

(
e−

∫ T
t

[r(t)+
∫ u

t
θ(s)ds+σ(Wu−Wt)]du|Ft

)
.
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The integral Z = −σ
∫ T

t
(Wu −Wt)du is normally distributed with mean zero and variance:

Var

(
−σ

∫ T

t

(Wu −Wt)du|Ft

)
= σ2 Var

(∫ T−t

0

Wudu

)

= σ2 Var

(
(T − t)WT−t −

∫ T−t

0

u dWu

)

= σ2 E

(∫ T−t

0

(T − t− u)dWu

)2

(17)
= σ2

∫ T−t

0

(T − t− u)2du

=
1
3
σ2(T − t)3.

The second equality follows from Itô’s formula (16):

d(uWu) = udWu + Wudu ⇒
∫

Wudu = uWu −
∫

udWu.

We have proved that the Ft-conditional variance of the variable Z, which has a normal distri-
bution on Ft, equals 1

3σ2(T − t)3, therefore EQ(eZ |Ft) = e
1
6 σ2(T−t)3 , hence

P (t, T ) = e−(T−t)r(t)−
∫ T

t

∫ u
t

θ(s)dsdu+ 1
6 σ2(T−t)3 . (20)

We want the bond prices to satisfy (7):

f(0, T ) = − ∂

∂T
lnP (0, T ),

for a given function f(0, T ), therefore

f(0, T ) = − ∂

∂T

(
−Tr(0)−

∫ T

0

∫ u

0

θ(s)dsdu + 1
6σ2T 3

)

= r(0) +
∫ T

0

θ(s)ds− 1
2σ2T 2,

from which we conclude that
θ(t) =

∂

∂t
f(0, t) + σ2t.

The model has many advantages, namely the bond prices are explicitly computable from
the model, it is very well suited for building recombining lattices (see Section 2.2.2) and it is
an exogenous model. A disadvantage of the model is that r(t) becomes negative with positive
probability and that it does not incorporate mean reversion.

The well-known Hull-White model [7] is very similar to the Ho-Lee model except that a
mean reversion term is added:

dr(t) = (θ(t)− ar(t))dt + σdWt, (21)

where a and σ are positive constants. It is often called the extended Vasicek model, because θ
is no longer a constant, but a function of time, which is chosen to ensure that the model fits the
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term structure. By integrating (21) we obtain:∫ u

t

dr(s) =
∫ u

t

(θ(s)− ar(s)) ds + σ

∫ u

t

dWs

r(u) = r(t)e−a(u−t) +
∫ u

t

e−a(u−s)θ(s)ds + σ

∫ u

t

e−a(u−s)dWs,

which is done in a similar way as for the Vasicek model, see appendix. The short rate r(u),
conditional on Ft, is normally distributed with mean respectively variance:

E(r(u)|Ft) = r(t)e−a(u−t) +
∫ u

t

e−a(u−s)θ(s)ds,

Var(r(u)|Ft) =
σ2

2a

(
1− e−2a(u−t)

)
.

The bond price at time t with maturity T equals:

P (t, T ) = EQ

(
e−

∫ T
t

r(u)du|Ft

)
= EQ

(
e−

∫ T
t

[r(t)e−a(u−t)+
∫ u

t
e−a(u−s)θ(s)ds+

∫ u
t

σe−a(u−s)dWs]du|Ft

)
= e−

∫ T
t

r(t)e−a(u−t)du−
∫ T

t

∫ u
t

e−a(u−s)θ(s)dsdu+
∫ T

t
σ2
2a (1−e−2au)du.

We want the bond prices to satisfy (7):

f(0, T ) = − ∂

∂T
lnP (0, T ),

therefore

f(0, T ) = − ∂

∂T

(
−
∫ T

0

r(0)e−audu−
∫ T

0

∫ u

0

e−a(u−s)θ(s)dsdu +
∫ T

0

σ2

2a
(1− e−2au)du

)

= r(0)e−aT + e−aT

∫ T

0

easθ(s)ds− σ2

2a
(1− e−2aT ),

from which we conclude that∫ T

0

easθ(s)ds = eaT f(0, T ) + eaT · σ2

2a
(1− e−2aT )− r(0),

hence

eaT θ(T ) =
∂

∂T

(
eaT f(0, T ) +

σ2

2a
(eaT − e−aT )− r(0)

)
= eaT · ∂

∂T
f(0, T ) + aeaT f(0, T ) +

σ2

2a
(eaT − e−aT ),

thus

θ(t) =
∂

∂t
f(0, t) + af(0, t) +

σ2

2a
(1− e−2at).

In Table 1 the properties of the short rate models are summarized. (log)N stands for (log)normally
distributed, NCχ2 for noncentral χ2 distributed and AB for analytical bond price.

It is made clear of all the models what their advantages and disadvantages are. In this
research we will work with the Ho-Lee model, because it is an exogenous term structure model,
that can compute the bond prices, zero rates, and forward rates analytically and it is very
suitable for building recombining trees, which can be seen in Section 2.2.2.
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Table 1: Properties of the short-rate models

Model Dynamics r > 0 r ∼ AB

Vasicek dr(t) = a(θ − r(t))dt + σdWt NO N YES

Dothan dr(t) = ar(t)dt + σr(t)dWt YES logN YES

Cox-Ingersoll-Ross dr(t) = a(θ − r(t))dt + σ
√

r(t)dWt YES NCχ2 YES

Ho-Lee dr(t) = θ(t)dt + σdWt NO N YES

Hull-White dr(t) = (θ(t)− ar(t))dt + σdWt NO N YES

2.2 Solving the short-rate models

In this section we show how the Ho-Lee model can be solved for continuous and discrete time,
the two methods are compared, and an approximation of the comparison is given.

2.2.1 Continuous time Ho-Lee model

We have already seen in Equation (20) that the bond price at time t for maturity T is:

P (t, T ) = e−(T−t)r(t)−
∫ T

t

∫ u
t

θ(s)dsdu+ 1
6 σ2(T−t)3 .

If the interest rates are constant, then θ(t) = 0 and σ = 0, hence

P (t, T ) = e−(T−t)r(t). (22)

When θ(t) equals some constant α, we find

P (t, T ) = e−(T−t)r(t)−
∫ T

t

∫ u
t

αdsdu+ 1
6 σ2(T−t)3

= e−(T−t)r(t)− 1
2 α(T−t)2+ 1

6 σ2(T−t)3 . (23)

If θ(t) is a polynomial function βtn for some constant β, we find

P (t, T ) = e−(T−t)r(t)−
∫ T

t

∫ u
t

βsndsdu+ 1
6 σ2(T−t)3

= e−(T−t)r(t)− β
n+1

∫ T
t

un+1−tn+1)du+ 1
6 σ2(T−t)3

= e−(T−t)r(t)− β
n+1 [ un+2

n+2 −tn+1u]Tt + 1
6 σ2(T−t)3

= e−(T−t)r(t)− β
n+1 ( T n+2

n+2 −tn+1T+ n+1
n+2 tn+2)+ 1

6 σ2(T−t)3 . (24)

It can be seen that θ(t) is not necessary to calculate the bond price. By filling in
θ(s) = ∂

∂sf(0, s) + σ2s in the integral
∫ T

t

∫ u

t
θ(s)dsdu, one finds:∫ T

t

∫ u

t

θ(s)dsdu =
∫ T

t

∫ u

t

(
∂

∂s
f(0, s) + σ2s

)
dsdu

=
∫ T

t

(
f(0, u)− f(0, t) + 1

2σ2(u2 − t2)
)
du

= −(T − t)f(0, t)− 1
2σ2(T − t)t2 +

∫ T

t

(
− ∂

∂u
(lnP (0, u)) + 1

2σ2u2

)
du

= −(T − t)f(0, t)− 1
2σ2(T − t)t2 − lnP (0, T ) + lnP (0, t) + 1

6σ2(T 3 − t3).
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The bond pricing formula (20) becomes:

P (t, T ) = e−(T−t)r(t)−
∫ T

t

∫ u
t

θ(s)dsdu+ 1
6 σ2(T−t)3

= e−(T−t)r(t)+(T−t)f(0,t)+ 1
2 σ2(T−t)t2+ln P (0,T )−ln P (0,t)− 1

6 σ2(T 3−t3)+ 1
6 σ2(T−t)3

=
P (0, T )
P (0, t)

e−(T−t)(r(t)−f(0,t))− 1
2 σ2t(T−t)2 , (25)

because

1
2σ2(T − t)t2 − 1

6σ2(T 3 − t3) + 1
6σ2(T − t)3 = 1

2σ2(T − t)t2 − 1
6σ2(T 3 − t3)

+ 1
6σ2(T 3 − 3tT 2 + 3t2T − t3)

= − 1
2σ2

(
tT 2 − 2t2T + t3

)
= − 1

2σ2t(T − t)2.

2.2.2 Discrete time Ho-Lee model

In this section we show how the continuous-time Ho-Lee model can be discretized, see [8]. This
will be done by using a binomial lattice. We show that the discrete time version converges to
the continuous time case for very small time intervals, in Section 2.2.3. In this section, the term
‘short rate’ is used to indicate the discrete short rate.

We set up a lattice with a time span between the nodes equal to the time period we want to
use to represent the term structure. At each node, we assign a short rate, which is the one-period
interest rate for the next period. We then assign probabilities to the various node transitions
to create a fully probabilistic process for the short rate, where the probabilities are risk-neutral
node transition probabilities of 1

2 .

The nodes in the lattice are indexed by (k, s), where k is the time variable, k = 0, . . . , T , for
maturity T , and s represents the state, s = 0, . . . , k, at time k, as can be seen in Figure 3. We
assume that there are M steps in the tree, which means the time intervals have length ∆t = T

M .
The short rate at node (k, s) is given by r̂(k, s) ≥ 0.

Figure 3: The nodes are indexed as (k, s), where k refers to the time and s refers to the state
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From the short rates, one can calculate the one-period discount rates at the nodes by:

d(k, s) = e−∆t r̂(k,s).

We use a different notation for these discount rates than for the original discount rates, to dis-
tinguish between the one-period case and the usual case.

This lattice forms the basis for pricing bonds by using risk-neutral pricing. In [8] it is showed
that it is much more computationally extensive to determine the term structure by working back-
words through the lattice, than by applying a forward recursion, as we will do in this section.
This is based on calculating at each node the elementary price P0(k, s), which is the price at
time zero of a contract paying one unit at time k and state s only.

If we look at the node (k + 1, s), for s 6= 0 and s 6= k + 1, we see that at the previous time
k, there are two nodes leading to this state, namely nodes (k, s − 1) and (k, s), as can be seen
in Figure 4.

Figure 4: From nodes (k, s) and (k, s− 1) to (k + 1, s)

When a bond pays 1 unit at node (k+1, s) and nothing elsewhere, then by going backwards,
one finds that the bond would have value 1

2d(k, s − 1) at node (k, s − 1) and value 1
2d(k, s) at

node (k, s).
By definition of the elementary prices, at time zero, these represent values

1
2d(k, s− 1)P0(k, s− 1)

at time zero and
1
2d(k, s)P0(k, s)

at time zero. Since P0(k + 1, s) is the expectation of the contract at time zero under the
risk-neutral measure, we find

P0(k + 1, s) = 1
2d(k, s− 1)P0(k, s− 1) + 1

2d(k, s)P0(k, s). (26)

These are the elementary prices in the middle of the lattice (0 < s < k +1). In this way, we can
compute the elementary prices at every node, but at the top or bottom of the lattice the node
only has one predecessor and therefore only depends on that node.
For the nodes at the bottom (s = 0) the elementary prices are:

P0(k + 1, 0) = 1
2d(k, 0)P0(k, 0),

for the nodes at the top of the lattice (s = k + 1):

P0(k + 1, k + 1) = 1
2d(k, k)P0(k, k).
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By definition of the elementary prices, we know that the price of a bond that pays one unit
at time k = 0 and state s = 0 is one, so the first elementary price P0(0, 0) equals one. It is
possible to determine all the prices at later time points by the forward recursion. These prices
are strictly positive, because by moving step-by-step through the lattice, they are multiplied by
1
2 and by the strictly positive discount factors and they are summed up eventually.

If the elementary prices would not be strictly positive, it would mean that at some node
(k, s) the payout would be one unit, by definition of the elementary prices, although the price of
this contract would be zero or negative, which is an arbitrage opportunity. Since this is not the
case, we know that there is no arbitrage, hence the probabilities of 1

2 are indeed risk-neutral.
We could also have chosen to use for example probabilities 3

4 and 1
4 , which would lead to no-

arbitrage as well, but we decided to use the probabilities of 1
2 , because we want the short rate

to have the same probability to go up as to go down.

Summing all the elementary prices at time k, which are the elements in column k of the
lattice, gives the price of a zero-coupon bond with maturity k,

P (0, k) =
k∑

s=0

P0(k, s). (27)

From these bond prices, the zero rates can easily be computed.

In the Ho-Lee model, the short rate at node (k, s) is represented as:

r̂(k, s) = a(k) + b(k) · s, (28)

where a(k) is a measure of aggregate drift from 0 to k and b(k) is the volatility parameter. In
Figure 5 it can be seen how the short rate tree is set up.

Figure 5: Ho-Lee short rate tree

From node (k, s) at time k, the short rate goes to node (k + 1, s) with the risk-neutral
probability 1

2 and to node (k + 1, s + 1) with probability 1
2 , as can be seen in Figure 6, with

corresponding values
r̂(k + 1, s) = a(k + 1) + b(k + 1) · s,

respectively
r̂(k + 1, s + 1) = a(k + 1) + b(k + 1) · (s + 1).
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Figure 6: Short rate tree from node (k, s) to nodes (k + 1, s) and (k + 1, s + 1)

By matching the zero rates implied by the tree method, with the known zero rates from
the market data, one can adjust the parameters a(k) is such a way that the term structure is
perfectly fit. To ensure that this is a good approximation to the continuous case, we compare
the parameters a(k), b(k) with the parameters θ(t), σ in the continuous case in the following
section.

2.2.3 Comparing the continuous and discrete time Ho-Lee models

Obviously we want the discrete time model for very small ∆t to give results close to the contin-
uous time model. To check this, the expectations and variances are compared in this section.

If we define by R̂ the discrete time short rate process on the tree, then, given the short rate
r̂(k, s) as in Equation (28), this satisfies:

R̂(k + 1)− R̂(k) = a(k + 1)− a(k) + (b(k + 1)− b(k))s,

with probability 1
2 , and

R̂(k + 1)− R̂(k) = a(k + 1)− a(k) + (b(k + 1)− b(k))s + b(k + 1),

with probability 1
2 . The conditional expectation and variation equal:

E
(
R̂(k + 1)− R̂(k) | R̂(k) = r̂(k, s)

)
= a(k + 1)− a(k) + (b(k + 1)− b(k))s +

b(k + 1)
2

, (29)

Var
(
R̂(k + 1)− R̂(k) | R̂(k) = r̂(k, s)

)
=

b(k + 1)2

4
. (30)

In the continuous time Ho-Lee model, one easily finds the conditional expectation and variance:

E(r(t + ∆t)− r(t)|Ft) = θ(t)∆t + o(∆t), (31)

Var(r(t + ∆t)− r(t)|Ft) = σ2∆t + o(∆t). (32)

The time steps of the tree in the discrete time Ho-Lee model, are chosen to represent the term
structure, which means that ∆t is the same time interval as the difference between times k and
k + 1. This makes the conditional expectations and variances of the discrete and continuous
time versions comparable. When the first and second moment of the discrete time version
equal the first and second moment of the continuous time version, we know that the discrete
model converges to the continuous model. This holds true when the conditional expectations of
Equations (29) and (31) are equal:

a(k + 1)− a(k) + (b(k + 1)− b(k))s +
b(k + 1)

2
= θ(t)∆t, (33)
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and the standard deviations, the square roots of Equations (30) and (32), are equal:

b(k + 1)
2

= σ
√

∆t. (34)

Since the Ho-Lee model assumes that the volatility per unit of time σ is constant, b(k+1)
2 is

independent of k and equal to σ
√

∆t. Therefore b(k + 1) − b(k) = 0, hence Equation (33)
becomes

a(k + 1)− a(k) = θ(t)∆t− σ
√

∆t. (35)

In case the tree satisfies Equation (35) for ∆t → 0, we know that the discrete-time version
converges to the continuous-time Ho-Lee model. For this to happen, the parameters a(k) should
increase every time step by θ(t)∆t−σ

√
∆t. A numerical test of this approximation can be found

in the next section.

2.2.4 Numerical test of the approximations

For constant interest rates, θ(t) and σ equal zero, and the increase of a is zero, hence all a’s
are equal.

When θ(t) equals some constant α, then a(k + 1)− a(k) = α∆t− σ
√

∆t, so the a’s grow
with a constant value, because ∆t and σ are constant. This means that a is a linear function.
This is confirmed in Figure 7a, where the time t is on the horizontal axis and a is on the vertical
axis.

For θ(t) linear, θ(t) = αt and a(k+1)−a(k) = αt∆t−σ
√

∆t, where ∆t and σ are constant.
Since a increases with αt per time step, we know a should be a quadratic function, as can be
seen in Figure 7b, where the time t is on the horizontal axis and a on the vertical axis.

In all cases, when equating the bond prices from the discrete model (27) with the bond prices
from the continuous model, either (22), (23), or (24), we indeed find that Equation (35) holds
for ∆t very small (in Figure 7a and b, ∆t = T

M = 1
100 ). Therefore we can say that this discrete

time model gives a good approximation of the continuous time Ho-Lee model.

Figure 7:
a. Graph of a, with r = 0.05, σ = 0.0001, T = 1, M = 100, and θ(t) = 0.5
b. Graph of a, with r = 0.05, σ = 0.0001, T = 1, M = 100, and θ(t) = 0.5t
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2.3 Bootstrap and interpolation of the zero rates

Bootstrapping is a method to calculate the zero curve from a series of coupon-bearing bonds.
We have seen in Equation (9), that when the zero rates at time t for the maturities ti are z(t, ti),
for i = 1, . . . , N , then at time t, the price of a coupon-bearing bond with coupons ~c at times ~tc,
is:

J(~c, ~tc, t) =
N∑

i=1

cti
e−(ti−t)z(t,ti) + e−(tN−t)z(t,tN ). (36)

The total price of the coupon-bearing bond is the sum of the discounted coupon payments plus
the discounted notional. To give a reliable rate, the bonds, that are used to bootstrap, must be
liquid, which means that they are traded often. If not, it is better to exclude them from the
bootstraping.

Rewriting Equation (36) gives:

z(t, tN ) =
−1

tN − t
ln

(
J(~c, ~tc, t)−

∑N−1
i=1 ctie

−(ti−t)z(t,ti)

1 + ctN

)
. (37)

By knowing a bond price J(~c, ~tc, t) and the zero-rates z(t, ti), for i = 1, . . . , N − 1, it is possible
to find the next zero-rate z(t, tN ). For example, if the zero-rates up to time tN−1 are known
and the zero-rate from time t until time tN is required, this is easily done, by discounting all
earlier cash flows with z(t, t1), z(t, t2), . . . , z(t, tN−1), then the only unknown in Equation (36)
is z(t, tN ). This can be done for every maturity tN .

In general, the earlier rates are not known exactly, because it is unlikely that there are al-
ways bonds available that expire exactly at the times ti, for i = 1, . . . , N − 1, as can be seen in
Example 1. The information that is lacking can be completed by using a method called inter-
polation, see [4]. This is a technique that calculates the intermediate zero rates when the zero
rates are only known for a few time points. Since the zero curve cannot be determined uniquely
by the bootstrap, an interpolation scheme is necessary. Therefore the interpolation method is
closely related to the bootstrap.

It could be the case that the rates are not even known after interpolation; for the smallest
ti, the rates might be available (eventually after interpolation), but the later ones might not be
available. However, since Equation (37) is an iterative solution algorithm, it is possible to guess
z(t, TN ).
To see why this holds true, we give an example. Assume we have determined the zero curve at
time t, up to ten years. If there is only a 15-years bond available for the succeeding years, we
can do the following:
In Equation (37) it can be seen that, to calculate z(t, 15), we also need the zero rates for 11, 12,
13 and 14 years. But bonds with these maturities are not available. Therefore we guess z(t, 15),
interpolate between ten and fifteen years to find z(t, 11), z(t, 12), z(t, 13) and z(t, 14) and check
if the bond price, that follows from implementing these rates in Equation (36), is right. If not,
then we try a bigger (or smaller) zero rate z(t, 15), interpolate and check, if the bond price is
fitted well. We do this iteratively, until the bond is fitted perfectly and reach the zero curve in
this manner.

There are different ways to interpolate, but when choosing an interpolation method we should
pay attention to the following:

• Are the forward rates positive? This is necessary to avoid arbitrage.
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• Are the forward rates continuous? This is required, because pricing of interest sensitive
instruments is sensitive to the stability of forward rates.

• How local is the interpolation method? When a change is made in the input, does it only
have an effect locally or also for the rest of the rates?

• Are the forwards stable, i.e., if an input is changed with one basis point up or down, what
is the change in the forward rate?

In Table 2, these questions are answered for a few interpolations methods. More on this can
be found in [4].

Table 2: Properties of the interpolation methods

Interpolation type Forwards Forward Method Forwards

positive? smoothness local? stable?

Linear on zero rates no not continuous excellent excellent

Linear on the log of zero rates no not continuous excellent excellent

Linear on discount factors no not continuous excellent excellent

Linear on the log of discount rates yes not continuous excellent excellent

Piecewise linear forward no continuous poor very poor

Quadratic no continuous poor very poor

Natural cubic no smooth poor good

Quartic no smooth poor very poor

Monotone convex yes continuous good good

As already stated before, the forward rates have to be positive to avoid arbitrage. The most
ideal situation would be that forwards are also continuous, but these two properties are only
fulfilled by the monotone convex interpolation, which is a method that is quite complex in use.
Therefore we will use raw interpolation or linear interpolation on the log of discount
factors, because despite the fact that the forward rates are not continuous, it is really easy to
work with and it gives positive forward rates. The method corresponds to piecewise constant
forward rates, which can be seen as follows.
For ti ≤ t ≤ ti+1, the continuously compounded risk-free rate for maturity t is:

z(t) =
t− ti

ti+1 − ti

ti+1

t
z(ti+1) +

ti+1 − t

ti+1 − ti

ti
t
z(ti). (38)

Taking the exponential gives

ez(t) = e
t−ti

ti+1−ti

ti+1
t z(ti+1) · e

ti+1−t

ti+1−ti

ti
t z(ti).
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By taking the t-th power one finds:(
e−z(t)

)t

=
(

e
− t−ti

ti+1−ti

ti+1
t z(ti+1)

)t

·
(

e
− ti+1−t

ti+1−ti

ti
t z(ti)

)t

⇔ e−tz(t) = e
− t−ti

ti+1−ti
ti+1z(ti+1) · e−

ti+1−t

ti+1−ti
tiz(ti)

=
(
e−ti+1z(ti+1)

) t−ti
ti+1−ti ·

(
e−tiz(ti)

) ti+1−t

ti+1−ti
.

Since the zero rates are continuously compounded, we can substitute P (0, t) = e−tz(t) and
perceive:

P (0, t) = P (0, ti+1)
t−ti

ti+1−ti P (0, ti)
ti+1−t

ti+1−ti , (39)

which is equivalent to linear interpolation of the logarithm of the discount factors. Hence
by linearly interpolating log(P ), and then reverting it to P by taking the exponential, we
can find all the intermediate discount factors. We then find the corresponding spot rates by
z(t) = − 1

t lnP (0, t). Since the instantaneous forward rates equal f(0, t) = − ∂
∂t lnP (0, t) and we

are interpolating linearly on the log of the discount rates, we find that the forward curves are
piecewise constant, because the derivative is constant.

We give a general explanation of how to interpolate. Suppose that from the bond prices that
are known, we have computed the zero rates (either at the given maturities or at other time
points). The spot rates are given by

z(1), z(2), . . . , z(T ),

where T is the maturity.
We want the new tree to have M steps, so the time steps in the interpolated tree are ∆t = T

M .
The new interpolated spot rates are

z(∆t), z(2∆t), . . . , z((M − 1)∆t), z(M∆t).

By choice of ∆t, the latter equals z(T ). For the case that M
T is not an integer, we introduce

the ceiling function, which also works if it is indeed an integer. For t = dM
T e∆t until t = T

we will interpolate using raw interpolation (39), as it is explained above. For t = ∆t until
t = (dM

T e − 1)∆t we will extrapolate using

P (0, t) = P (0, 1)t∆t. (40)

In this case we find that P (0,∆t), P (∆t, 2∆t), . . . are equal. This is exactly what we want. By
extrapolating like this, we find that the spot rates between 0 and t = (dM

T e − 1)∆t are equal to
the original z(1).

In Bloomberg, one can find the prices of coupon-bearing bonds, that can be used to boot-
strap and interpolate. In Example 1, the zero curve is computed from three months, six months,
one, two, and three year bonds.

Example 1: Finding the zero curve using bootstrapping and interpolation
Instead of the bonds with maturities equal to exactly 3 months, 6 months, 1 year, 2 years, and
3 years, we have the bonds that are listed in Table 3. Bund 1 and 2 only provide the notional
at maturity and do not provide any coupons. We assume that the day count is act/365. Filling
in Equation (36), we find that

P (0, 77 days) = e−
77
365 z(77 days) = 0.9940,
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hence
z(77 days) = −365

77
ln(0.9940) = 0.0285.

In the same way:
P (0, 170 days) = e−

170
365 z(170 days) = 0.9875,

hence
z(170 days) = −365

170
ln(0.9875) = 0.0270.

For Bund 3 we have

P (0, 362 days) = (1 + 0.04)e−
362
365 z(362 days) = 1.0135,

hence

z(362 days) = −365
362

ln
(

1.0135
1 + 0.04

)
= 0.0260.

For Bund 4 we have

P (0, 758 days) = 0.035e−
393
365 z(393 days) + (1 + 0.035)e−

758
365 z(758 days) (41)

= 1.0075,

hence

z(758 days) = −365
758

ln

(
1.0075− 0.035e−

393
365 z(393 days)

1 + 0.035

)
.

To calculate z(758 days), we need to know z(393 days). However, until now, we have only
obtained the zero rates for today until 77, 170, and 362 days, so z(393 days) cannot be found
by interpolating. There are two ways to solve this:

• extrapolate, or

• try a value for z(758 days), interpolate to find z(393 days) and check if this satisfies
Equation (41). If not, try a bigger (or smaller) value for z(758 days), until the bond price
is fit to the equation.

The first method is not a nice way to solve this, because it usually does not get close to the
actual rates. The second method is the most precise, but for larger maturities with unknown
zero rates, it could take some time to solve. In this case, we only have to interpolate one zero
rate, which we do by applying Equation (38) for t =393 days, ti=362 days and ti+1=758 days:

z(393 days) =
393− 362
758− 362

758
393

z(758 days) +
758− 393
758− 362

362
393

z(362 days).

Table 3: Data of the bonds in the example

Bond Price Time to maturity Time to first coupon Coupon Rate
Bund 1 0.9940 77 days = 0.2110 years - 0
Bund 2 0.9875 170 days = 0.4658 years - 0
Bund 3 1.0135 362 days = 0.9918 years 362 days = 0.9918 years 4
Bund 4 1.0075 758 days = 2.0767 years 393 days = 1.0767 years 3.5
Bund 5 1.0178 1080 days = 2.9589 years 350 days = 0.9589 years 3.75

36



If we substitute this is Equation (41), then the only unknown is z(758 days). Matlab can solve
this equation easily and finds that z(758 days) = 0.0295.

The price of Bund 5 is:

P (0, 1080 days) = 0.0375e−
350
365 z(350 days) + 0.0375e−

715
365 z(715days)

+ (1 + 0.0375)e−
1080
365 z(1080 days). (42)

= 1.0178.

We need z(350 days) and z(715 days) to compute z(1080 days). We will find these rates easily
by interpolating.
By applying Equation (38) for t =350 days, ti=170 days, and ti+1=362 days, we obtain:

z(350 days) =
350− 170
362− 170

362
350

z(362 days) +
362− 350
362− 170

170
350

z(170 days)

= 0.0261.

By applying Equation (38) for t =715 days, ti=362 days, and ti+1=758 days, we obtain:

z(715 days) =
715− 362
758− 362

758
715

z(758 days) +
758− 715
758− 362

362
715

z(362 days)

= 0.0293.

With these zero rates, it is possible to compute z(1080 days), which equals 0.0313. In Figure 8
we can see what the zero curve looks like.

Figure 8: Zero curve

2.4 Conclusion

In this chapter a number of short rate models have been discussed, and their advantages and
disadvantages were pointed out. We have chosen to work with the Ho-Lee model, because
the bond prices are explicitly computable, which we showed in Equation (20), it is very well
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suited for building a recombining lattice, which we saw in Section 2.2.2 and it is an exogenous
model. The continuous and discrete time Ho-Lee models were compared in Section 2.2.3 with a
numerical approximation in Section 2.2.4. How to interpolate and bootstrap was explained in
Section 2.3 and an example is given to show why and how we need to interpolate.
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3 Future and bond pricing

In this chapter an introduction about the Euro-Bunds and the Euro-Bund futures is given. It is
looked at how to price the bonds and futures and how to determine which bond is the cheapest
at delivery of the future. An example is given to clarify how this can be done. Later on in the
chapter we take a look at the variables necessary to calculate the bond and futures prices.

3.1 Introduction

The bonds that we look at, are the underlyings of the FGBL contract or Euro-Bund fu-
tures contract. This contract is traded on the Eurex, one of the world’s largest derivatives
exchanges and the leading clearing house in Europe (www.eurexchange.com). It is jointly oper-
ated by Deutsche Börse AG and SIX Swiss Exchange. Since it has market participants connected
from 700 locations worldwide, the trading volume at Eurex exceeds 1,5 billion contracts a year.

The contract is unique in the sense that it only trades bonds with a maturity of 8.5 to 10.5
years. To get an idea of what other contracts are traded on the Eurex, in Table 4 the notional
short-, medium- or long-term debt instruments, issued by the Federal Republic of Germany, are
summarized. The currency is in euros.

Table 4: Data of the futures traded on the Eurex

Contract Product ID Remaining Term Years Coupon rate
Euro-Schatz Futures FGBS 1.75 to 2.25 6
Euro-Bobl Futures FGBM 4.5 to 5.5 6
Euro-Bund Futures FGBL 8.5 to 10.5 6
Euro-Buxl Futures FGBX 24.0 to 35.0 4

The value of the FGBL contract or par value is 100.000 euro and the price quotation is in
percent of the par value. The minimum price change should be one basis point (0.01 percent)
or 10 euro. The delivery day is the tenth calendar day of the maturity month, if this day is
an exchange day; otherwise, it is the exchange day immediately succeeding that day. For the
December 2008 FGBL contract that we study this means that delivery takes place on Decem-
ber 10, 2008. The last trading day is two exchange days prior to the delivery day. On this
day, the members with open short positions should notify Eurex which of the bonds they will
deliver. This is on December 8, 2008, and this is the day on which the short position determines
which bond is the Cheapest-to-Deliver.

The final settlement price is established by Eurex on the last trading day at 12:30 and it
is based on the volume-weighted average price of all trades during the final minute of trading,
provided that more than ten trades occurred during this minute. Otherwise the volume-weighted
average price of the last ten trades of the day is taken as the final settlement price, provided
that these are not older than thirty minutes. If such a price cannot be determined, or does
not reasonably reflect the prevailing market conditions, Eurex will establish the final settlement
price.

The December 2008 FGBL contract has three bonds as its underlyings, i.e., the bonds with
ISIN codes DE0001135333, DE0001135341, and DE0001135358. They will be abbreviated by
Bund 1, 2, resp. 3. Bund 1 has the shortest maturity and Bund 3 the longest, as can be seen
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in Table 5, where also their coupon rates and conversion factors can be found. Note that the
day-count convention is actual/actual, the coupon rates are annual and the settlement date is
the day on which the bond is issued.

Table 5: Data of the bonds in the December 2008 FGBL contract

Bond Settle First Coupon Maturity Coupon Rate Conversion factor
Bund 1 25-5-2007 4-7-2008 4-7-2017 4.25 0.885104
Bund 2 16-11-2007 4-1-2009 4-1-2018 4.00 0.863086
Bund 3 30-5-2008 4-7-2009 4-7-2018 4.25 0.874950

The option on the FGBL contract is called the OGBL, or option on the Euro-Bund futures.
It expires six exchange days prior to the first calendar day of the futures expiration month.
For the December 2008 FGBL contract the option expires on November 21, 2008. Unlike other
options, the price of the OGBL option is settled daily, just like the future, with a margin account.

3.2 Cheapest-to-Deliver bond

The main goal of this thesis is to find out which of the three bonds, is the Cheapest-to-Deliver
on the last trading day December 8, 2008. This is the day that the party with the short position
on the future, has to notify which bond it will deliver. From Bloomberg, we have collected
information of the dates from October 27, 2008 until December 8, 2008, and we would like to
predict which bond will be the cheapest on the last trading day. We call the day that we look
at, ‘today’, or t = 0, and the last trading day, December 8, 2008, is called ‘delivery’, or t = td,
although it is actually delivered on December 10, 2008.

The bond that is cheapest-to-deliver on t = td, is the bond with the least value of

Quoted bond price− (Settlement price× Conversion factor). (43)

The quoted bond price is the clean bond price and the settlement price is the price of the future.
The conversion factors of the bonds can be seen in Table 5.

On the website of the Eurexchange can be found that for FGBL contracts with delivery
March, June, and September 2008 the short parties always delivered the cheapest bond. For
the FGBL of December 2008, it states that in 98 % of the cases, the short position delivered the
cheapest bond on the delivery day, which was Bund 1. The final settlement price of the future
was 122.47 and the price of Bund 1 was 108.40 at that time point. The cost to deliver this bond
would therefore be:

108.40− 122.47× 0.885104 = 0.

This means that it would cost nothing to deliver Bund 1, and to deliver any of the other bonds
would cost more. We can conclude that at delivery the futures price only depends on the bond
for which Equation (43) is zero, so at delivery the price of the future is the minimum of

Futures price = min
i=1,2,3

(
Clean price of bond i

Conversion factor of bond i

)
.

We want to calculate the prices of the bonds at delivery of the future. One way to do this,
is by making a Ho-Lee short rate lattice from ‘today’ until maturity of the bonds, calculate all
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the bond and future prices at the nodes by going backwards through the lattice, and find out
which one is the cheapest to deliver. It is an extensive work to go through all the steps of this
enormous Ho-Lee tree, but luckily there is another less extensive way to do this.

Since we are only interested in the bond prices between today and delivery, we could also
price the bonds more efficiently, by making a short rate tree from ‘today’ until delivery of the
future, and calculate the bond prices at delivery analytically, by applying Equations (8) and (25).
When a bond j, for j = 1, 2, 3, has a series of coupons cj

ti
that are paid at times tji , i = 1, . . . , N ,

where tjN is the maturity of the bond, then the price of this bond at time td is:

J(~cj ,
~
tjc, td) =

N∑
i=1

cj
ti

P (td, t
j
i ) + P (td, t

j
N ). (44)

P (td, t
j
i ) is the price of a bond at time td that pays one at time tji , so when a coupon of cti is

paid at time tji , we have to discount with P (td, t
j
i ) to find the value of the coupon at time td.

The total price of the coupon-bearing bond is the sum of the discounted coupon payments plus
the discounted notional.

We want to price the bonds at delivery t = td, at the end nodes of a binomial tree with
M steps, hence we want to know the prices of the three bonds at the nodes (M, s), where
s = 1, . . . ,M . We introduce two new notations, the first is the definition of H((M, s), t) as the
discount factor at node (M, s) with maturity t, hence it is the price at node (M, s) of a bond

that pays one unit at time t. Next, we define K(~cj ,
~
tjc, (M, s)) as the price at node (M, s) of a

bond j with coupons ~cj at times ~
tjc, and it can be calculated by using the above formula:

K(~cj ,
~
tjc, (M, s)) =

N∑
i=1

cj
ti

H((M, s), tji ) + H((M, s), tjN ). (45)

The coupon payments cj
ti

are known for every payment date of every bond j = 1, 2, 3 and so are
the dates on which the coupons are paid tji . How this equation can be solved, will be shown in
Section 3.3.

When all the bond prices K(~cj ,
~
tjc, (M, s)) are known at delivery, for the nodes (M, s), s =

1, . . . ,M , we can calculate the bond prices at the nodes prior to delivery, by doing the following.
At some node (M−1, s), then one time step later, we are either at node (M, s), with probability
1
2 , or at node (M, s+1), with probability 1

2 . The price of Bund j, at node (M−1, s) is therefore:

K(~cj ,
~
tjc, (M − 1, s)) = 1

2dM−1,s

[
K(~cj ,

~
tjc, (M, s)) + K(~cj ,

~
tjc, (M, s + 1))

]
, (46)

where dM−1,s is the discount factor at state s for the period M − 1 to M . Note that if a bond
would have a coupon payment between today and delivery of the future, then this cash flow
should be added to the bond price at that time point, hence it should be added to the bond
prices in the nodes (k, s) for k closest to the coupon date. The three bonds that we study, do
not have any coupons in this time interval.

We have seen that the futures price at delivery can be found by taking the minimum of the
bond prices divided by their conversion factors:

F ((M, s), td) = min
j=1,2,3

K(~cj ,
~
tjc, (M, s))
CFj

. (47)
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This is what we do at the final nodes of the tree (M, s), for s = 1, . . . ,M to find the price of
the FGBL contract at delivery. One time step before, at t = M − 1, the future price equals

F ((M − 1, s), td) = 1
2 [F ((M, s), td) + F ((M, s + 1), td)] , (48)

because from node (M − 1, s), it goes to node (M, s) with probability 1
2 and to node (M, s + 1)

with probability 1
2 . Since the future is settled daily, we do not have to encounter a discount fac-

tor. In other words, the futures price is the average of the two next prices using the risk-neutral
probabilities without discounting. By going backwards through the lattice and computing the
averages like this, we can find today’s price of the future with delivery td at the initial node (0, 0).

Example 2: Finding the cheapest-to-deliver and the futures price
In this example we will show how to use the above theory in practice. Assume that in exactly
three months the futures contract will expire. The zero curve for today until one, two and three
months is given by:

Z(t) = (0.0260, 0.0269, 0.0275),

for t = ( 1
12 , 2

12 , 3
12 ). Assume the volatility σ1 equals 0.01. Since the zero rates and the volatil-

ity are known, we can build a short rate tree and its corresponding discount factor tree, see
Figures 9a and b. The difference of 0.0058 in the short rates between the states follows from
Equation (34):

for all k :
b(k + 1)

2
= σ

√
∆t ⇒ b(1) = b(2) = 2 · 0.01

√
1
12

= 0.0058.

Figure 9:a. Short rate tree, b. Discount factor tree

At delivery, at the last nodes, the Bund prices are as follows:

Table 6: Bond prices at the nodes of the tree

Bund 1 Bund 2 Bund 3
Node (3,1) 108.88 107.53 109.34
Node (3,2) 105.39 103.75 105.26
Node (3,3) 100.18 98.66 98.79

The conversion factors are as given in Table 5: 0.885104, 0.863086, and 0.874950 for Bund
1, 2, resp. 3. To find out which bond is the cheapest-to-deliver at the nodes (3, 1), (3, 2), and
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(3, 3), we can compare the values of

K(~cj ,
~
tjc, (M, s))
CFj

,

for the bonds j = 1, 2, and 3, as can be seen in Table 7.

Table 7: Calculation of the cheapest bond and the corresponding futures price

K(~c1,~t1c,(M,s))
CF1

K(~c2,~t2c,(M,s))
CF2

K(~c3,~t3c,(M,s))
CF3

CTD F ((M, s), 3
12 )

Node (3,1) 123.01 124.59 124.79 1 123.01

Node (3,2) 119.07 120.21 120.30 1 119.07

Node (3,3) 113.18 114.31 112.91 3 112.91

The futures price is the minimum of these values. To calculate the futures price at the earlier
nodes, we use Equation (48). The futures price at nodes (2, 1), resp. (2, 2) equal:

F ((2, 1), 3
12 ) = 1

2

(
F ((3, 1), 3

12 ) + F ((3, 2), 3
12 )
)

= 1
2 (123.01 + 119.07) = 121.04,

resp.

F ((2, 2), 3
12 ) = 1

2

(
F ((3, 2), 3

12 ) + F ((3, 3), 3
12 )
)

= 1
2 (119.07 + 112.91) = 115.99.

Today’s price of the future can be found in the initial node (1, 1) of the tree:

F ((1, 1), 3
12 ) = 1

2

(
F ((2, 1), 3

12 ) + F ((2, 2), 3
12 )
)

= 1
2 (121.04 + 115.99) = 118.52.

In Figure 10 the probabilities that either Bund 1, 2, or 3 will be the cheapest, are summarized.

Figure 10: Tree with the probabilities that Bund 1, 2, or 3 will be the cheapest on delivery

We can also calculate the bond prices at the earlier nodes by applying Equation (46), as can
be seen in Table 8. We can conclude that Bund 1 is the cheapest-to-deliver in the nodes (3, 1)
and (3, 2) and Bund 3 is cheapest-to-deliver in node (3, 3). Today’s price of the future is 118.52
and today’s bond prices are 104.72, 103.18, and 104.42 for Bund 1, 2, resp. 3.
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Table 8: Bond prices at the nodes of the tree

Bund 1 Bund 2 Bund 3
Node (2,1) 106.91 105.42 107.08
Node (2,2) 102.52 100.95 101.76
Node (1,1) 104.72 103.18 104.42

3.3 Finding all the elements to compute the bond prices at delivery

In the previous section we have seen that the bond prices at delivery can be priced by Equa-
tion (45). To calculate the discount factors H((M, s), tji ) of this equation, with which the cash
flows have to be discounted, we can make use of Equation (25):

P (td, t
j
i ) =

P (0, tji )
P (0, td)

e−(tj
i−td)(r̂(td)−f(0,td))− 1

2 σ2
2td(tj

i−td)2 , (49)

hence at node (M, s) the discount factor H((M, s), tji ) equals:

H((M, s), tji ) =
P (0, tji )
P (0, td)

e−(tj
i−td)(r̂(M,s)−f(0,td))− 1

2 σ2
2td(tj

i−td)2 . (50)

At every state s of the tree, there is a different short rate and therefore a different bond price.

We will explain how the parameters that we need for Equation (50) can be found.

• the discount factors P (0, tji ) and P (0, td) are obtained by linearly interpolating the loga-
rithm of the discount factors, which follow from the zero curve, see Section 3.3.1

• the short rates r̂(M, s) follow from the binomial tree from t = 0 until t = td, that we
construct according to the Ho-Lee method, as can be seen in Section 2.2.2. We need the
zero curve and the volatility for the period [0, td], which we denote by σ1, to build this
tree, see Sections 3.3.1, 3.3.2 and 3.3.3

• the forward rate of the equation is found by Equation (7):

f(0, td) = − ∂

∂t
lnP (0, t)|t=td

.

Since we interpolate linearly over the logarithm of the discount factors, we know that its
derivative must be constant on the time intervals.

• σ2 is the volatility for t = td until t = tjN , which we assume to be constant for all bonds j,
see Section 3.3.4. The volatility σ2 that we use in Equation (50) is another volatility than
the volatility σ1, that we use in the tree.

The reason why we have chosen to use two different volatilities in the model is the following. We
can fit the volatility σ1 by pricing the call options on the FGBL contract, which is explained in
detail in Section 3.3.3. This way to fit the volatility is very appropriate, because the options are
based on government interest rates, just like the future and the bonds. Unfortunately we can
only find the volatility for a very short time period, because the options expire on November
21, 2008.
Instead of applying the short term volatility for the larger time interval, we expect the model to
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fit the bond and futures prices better, when using another volatility until maturity of the bonds.
Since the call options are not available for this time interval, we make use of caps to fit these
volatilities, see Section 3.3.4. This method is less appropriate, because it uses interbank interest
rates instead of government interest rates. However, we suppose that this method still fits the
bond and futures prices better, than applying the same short term volatility in the whole model.

3.3.1 Zero Curve

We start by creating a zero curve, from which the discount factors follow immediately. From
Bloomberg we find the prices of a series of Euro Bunds with maturities of two until ten years
that are listed in Table 9. These bonds are coupon-bearing bonds, not zero-coupon bonds, which
means we first have to eliminate the coupons from the bond prices, by applying the bootstrap-
ping method, as was showed in Section 2.3.

Since the first bond, that we use for bootstrapping, is a two years bond, we do not have
information about the zero curve within these two years. We can instead find this information
from the Eonia swap, or Euro Over-Night Index Average swap, which is a type of plain vanilla
interest rate swap. It gives the zero rate from today until one week, two weeks, three weeks,
one month, . . . , twelve months. Now that we have found the zero curve, which can be seen in
Figure 11, we can calculate the discount factors by applying Equation (1).

Note that in Bloomberg, there is also information available about a three and six months
bond and a one year bond, but since they are not liquid, which means that they are not traded
much, it results in a zero curve with extreme fluctuations. The Eonia swap rates, on the con-
trary, are very liquid and therefore give a more reliable rate.

We are able to use the Eonia rates together with the zero curve from the government bonds,
because in both cases, the credit risk is very low. For swaps this was already described in the
introduction, and for government bonds it holds that they are supposed to be very safe and
therefore they also have a low credit risk.

We want the zero curve to be as precise as possible, to price bonds 1, 2, and 3, so all three
bonds have been used for bootstrapping, as can be seen in the table, Bund 1 is the 8.5 years
bond, Bund 2 is the 9 years bond, and Bund 3 is the 10 years bond. In this way, we are sure
that the bonds are priced well.

3.3.2 Short Rate Tree

We want to build a short rate tree with M steps, from ‘today’, t = 0, until December 8, 2008,
t = td. To do so, according to the Ho-Lee model, we need to know the zero curve and the
volatility σ1 on [0, td].
The zero curve has been determined by bootstrapping and the Eonia swap rates. To find the
volatility of the tree, is much more complicated, because the Ho-Lee volatility cannot be observed
in the market. The method that we use to find volatility σ1 is first introduced shortly here and
in the next section it is explained in detail.
Assume the volatility on the interval [0, td] equals σ̂1, which is an estimator of the volatility
σ1. We can build a short rate tree and if all the other elements of Equations (45) and (50) are

known, we can find the bond prices K(~cj ,
~
tjc, (M, s)) at the nodes (M, s) of the tree and calculate

the futures price F ((M, s), td) in the nodes. Subsequently, we can calculate the theoretical price
of the OGBL option and compare it with the market option price. When the theoretical price
is larger than the market option price, we try a smaller σ̂1 and vice versa, when it is smaller, we
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Table 9: Data of the bonds used for bootstrapping the zero curve

Bond Settle Next Coupon Maturity Coupon Rate
Bund 2 year 9/10/2008 9/10/2009 9/10/2010 4
Bund 3 year 9/29/2006 10/14/2009 10/14/2011 3.5
Bund 4 year 9/28/2007 10/12/2009 10/12/2012 4.25
Bund 5 year 9/26/2008 10/11/2009 10/11/2013 4
Bund 6 year 11/26/2004 1/4/2009 1/4/2015 3.75
Bund 7 year 11/25/2005 1/4/2009 1/4/2016 3.5
Bund 8 year 11/17/2006 1/4/2009 1/4/2017 3.75
Bund 8.5 year 5/25/2007 7/4/2009 7/4/2017 4.25
Bund 9 year 11/16/2007 1/4/2009 1/4/2018 4
Bund 10 year 5/30/2008 7/4/2009 7/4/2018 4.25
Bund 15 year 1/4/1994 1/4/2009 1/4/2024 4.25

Figure 11: Zero curve on November 4, 2008

try a larger σ̂1. We do this iteratively until we find the volatility σ̂1 that fits the prices perfectly.
Then we know that σ̂1 = σ1.

3.3.3 Volatility σ1

The price of an option depends on its underlying, in case of the OGBL the underlying is the
FGBL contract. To compute today’s value of the option, we use part of the short rate lattice
that we constructed earlier with the estimator of σ1. The lattice starts today at t = 0 and ends
at expiration of the option t = to. We assume that there are m time steps in this lattice, so at
expiration of the option, we are at time m.

We calculate the futures prices at the nodes with Equation (47). At maturity of the call
option, t = to, the payoff of the option is

O((m, s), to) = max(0, F ((m, s), td)− S),
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where S is the strike of the option.

The price of the option at one time step before expiration, at t = m− 1, and at state s, can
be calculated as follows:

O((m− 1, s), to) = 1
2 (O((m, s), to) + O((m, s + 1), to)) ,

where O((m, s), to) and O((m, s+1), to) are the prices of the option at nodes (m, s) resp. (m, s+
1). Since the option is settled daily, just like the futures price, we do not encounter a discount
factor. Therefore, the price at delivery of the option, does not have to be discounted with a
discount factor to find the price of the option today.

By going backwards through the lattice from t = m− 1 to t = 0, one can find today’s value
of the option at node (0, 0) and compare this theoretical price with the price of the OGBL that
we have found in Bloomberg and adjust σ1 in case they are not equal. We change the volatility
until the theoretical and market option price are equal, and then we have found the volatility
σ1 that fits the option price.

Note that the volatility that we look at in this section is actually the volatility on the time
interval [0, to], but since we assume the volatility to be constant between t = 0 and t = td, we
use this volatility on the whole interval [0, td].

There are also other possibilities to find the volatility σ1, that we have not used:

• calculating the theoretical option price according to Black’s model, see [6], and comparing
it with the market OGBL price. This is not possible, because the underlying of the option
needs to be lognormally distributed. This is not the case, because the underlying future
has three bonds as its underlyings and the minimum of the prices of three bonds, that are
lognormally distributed, is not lognormal.

• using Black’s model for bond options instead of bond futures options, because the bonds
are lognormally distributed, but these options are not available, so this is not possible
either.

3.3.4 Volatility σ2

The objective is to find the volatility from t = td until the maturity of the bonds. We want to
use one volatility in the model, that is used for all three bonds and we have chosen to work with
the volatility that corresponds to the longest maturity, that of Bund 3, of 9.5 years. The reason
for this is that the differences between the 8, 9, and 10-years volatilities are very small, so we
do not expect it to have a big influence which one of them we take for the three bonds.
Actually we should calculate the ‘forward volatility’, because the volatility that we obtain from
the 10-years cap is from today until 10 years from today, but we want to find the volatility from
delivery of the future until maturity of the bonds. Since we expect this difference to be very
small, we decided to take today’s 10-years cap.

Although the cap volatilities are not equal to the Ho-Lee volatilities, we are indeed able to
find the Ho-Lee volatilities from the data that we have of the cap. In the introduction it was
explained that a cap is a series of caplets or call options on interest rates. We can price these
options on our short rate tree, as it is explained in detail at the end of this section. By fitting
our theoretical Ho-Lee price of the cap, which is the sum of the caplets, to the price of the cap
in the market, we can find the volatility of our model. We will first show how the market cap
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pricecan be calculated from the cap strike and volatility and later on in this section it will be
showed how the theoretical price of the cap is computed.

In Bloomberg we have found that the 10-years cap has the six months Euribor rate as its
floating rate. This means that the tenor is six months, so every half a year the cap rate or
strike is compared to the Euribor rate and when the Euribor rate is more than the strike, the
difference will be paid out six months later. The 10-years cap has 19 reset dates: 0.5, 1, 1.5,
. . . , 9, 9.5 years and 19 payoff dates: 1, 1.5, 2, . . . , 9.5, 10 years.

In the market, the price of a cap is calculated according to Black’s model. It assumes that
the underlyings of the option, the forward rates, are lognormal. When the cap strikes and
volatilities are known, the cap can be priced easily.
The Ho-Lee model does not assume that the forward rates (and short rates) are lognormally
distributed, so when calculating the theoretical cap price later on in the section, Black’s model
will not be used.

Black’s model states that at time t, the payoff of a caplet, with cap rate Sn and reset date
tn and payoff date tn+1, is:

(tn+1 − tn)P (t, tn+1) [f(t, tn, tn+1)N (d1(n))− SnN (d2(n))] ,

where

d1(n) =
ln( f(t,tn,tn+1)

Sn
) + σ2

mtn

2

σm

√
tn

,

d2(n) =
ln( f(t,tn,tn+1)

Sn
)− σ2

mtn

2

σm

√
tn

= d1(n)− σm

√
tn,

where P (t, tn+1) is the discount factor for the period from t to tn+1, f(t, tn, tn+1) is the forward
rate at time t for the period between tn and tn+1, and N is the normal distribution. The tenor
is 6 months, hence tn+1 − tn = 1

2 . The cap volatility σm and the cap rates Sn can be found
in Bloomberg and the discount factors follow from the zero curve. The forward rates satisfy
Equation (2), hence we can rewrite this as:

f(t, tn, tn+1) = − log Pf (t, tn, tn+1)
tn+1 − tn

= −
log
(

P (t,tn+1)
P (t,tn)

)
tn+1 − tn

= − log P (t, tn+1)− log P (t, tn)
tn+1 − tn

= 2(log P (t, tn)− log P (t, tn+1)). (51)

The 10-years cap consists of 19 caplets, so we can sum up the caplet payoffs to find the value
of the cap at time t:

1
2

19∑
n=1

P (t, tn+1) [f(t, tn, tn+1)N (d1(n))− SnN (d2(n))] . (52)

Note that for all caplets, we have taken the same volatility σm. These volatilities are referred
to as flat volatilities and all have the same maturity, namely the maturity of the cap. We
could also have taken a different volatility for every caplet, which are called spot volatilities,
that have the maturities of the caplets. Since the volatilities of the market caps, that we have
obtained from Bloomberg, are flat volatilities, we also use flat volatilities for the pricing of the
caps with the Ho-Lee model. The strikes or cap rates of the caps are at the money, which means
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they equal the value of the underlying forward rate.

We will now take a look at how to price the caps on our Ho-Lee tree.
The 10-years cap is a series of 19 call options with 19 different maturities (the payoff dates)
with the forward rates as its underlying. For every option, we can build a short-rate tree with
some estimator of σ2, M steps, from t = 0 until the reset date of the caplet t = tn. At time tn
we are in any of the nodes (M, s), for s = 1, . . . ,M , and we want to know the half-year forward
rates at these nodes, that depend on the corresponding short rates.
To achieve this, we start by calculating the discount factor for the interval tn to tn+1, at node
(M, s), that we already defined as H((M, s), tn+1). From the Ho-Lee bond pricing formula (25)
follows:

H((M, s), tn+1) =
P (0, tn+1)
P (0, tn)

e−
1
2 (r̂(M,s)−f(0,tn))− 1

2 tnσ2
2(tn+1−tn)2

=
P (0, tn+1)
P (0, tn)

e−
1
2 (r̂(M,s)−f(0,tn))− 1

8 tnσ2
2 ,

where f(0, tn) is the instantaneous forward rate. Since we linearly interpolate over the logarithm
of the discount factors, the forward rate is constant on the interval [tn, tn + ε] according to
Equation (7). Therefore:

f(0, tn) = − ∂

∂t
log P (0, t)|t=tn

=
log P (0, tn)− log P (0, tn + ε)

ε
.

We are now able to compute the discount factor H((M, s), tn+1), from which we can calculate
the forward rate f((M, s), tn+1), which is defined as the forward rate at node (M, s) for maturity
tn+1. Just like in Equation (51), we find:

f((M, s), tn+1) = − log H((M, s), tn+1)
tn+1 − tn

= −2 log H((M, s), tn+1).

Since the payoff of the caplet is given at time tn+1, but we want to know the payoff at the
end nodes of the tree, at time tn, we have to discount it with H((M, s), tn+1) to find the payoff
at node (M, s):

Caplet((M, s), tn+1) = max(f((M, s), tn+1)− Sn, 0) ·H((M, s), tn+1).

By going backwards through the lattice, one can find that at node (M − 1, s), the option is
worth:

Caplet((M − 1, s), tn+1) = 1
2d(M − 1, s) (Caplet((M, s), tn+1) + Caplet((M, s + 1), tn+1)) ,

which follows from the risk-neutral pricing and by stepwise discounting instead of discounting
from t to tn−1 in one time, like in Equation (52). Continuing like this, one finds today’s price
of the option at the node (0, 0).
The payoff at time zero of a cap with cap rates Sn, reset dates tn, payoff dates tn+1, for
n = 1, . . . , 19, is:

1
2

19∑
n=1

Caplet((0, 0), tn+1). (53)

If the theoretical value of the cap in Equation (53) is lower than the market value in Equa-
tion (52), then we need to try a bigger estimator for σ2. If it is higher than the market price,
we need to try a smaller estimator for σ2. We adjust the estimator of σ2 in this manner, until
the theoretical and the market price of the cap are equal. Then we have found the volatility σ2

that fits the cap price.
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4 Fitting with real market data

In this chapter we take a look at the results of the model using real market data. At time
t = td of the short rate tree, we calculate the bond prices and the futures prices, according
to Equations (44), (50) and (47), and we fit the volatilities σ1 and σ2 as we described in
Sections 3.3.3, resp. 3.3.4.
We take the data on a daily basis at 9.30 h, and in the first section it is studied how many steps
are needed in the tree to give reliable results. There is also showed how well the futures and
bond prices would be fitted when assuming that the volatilities are equal, σ1 = σ2. In the next
section the volatilities are fitted at every time point and it is looked at how well the futures and
bond prices are fitted. In Section 4.3 we take a look at which bond is the cheapest to deliver
and at what change in the short rates the bond changes from being the cheapest to deliver.
In Section 4.4 it is analyzed how sensitive the futures price is to changes in the bond prices or
volatilities and in the last section we look at how well the futures price is fitted in future time
points, when taking fixed volatilities of an earlier time point.

4.1 Increasing the number of steps in the tree

In this section we want to find out how many steps are needed to obtain reliables values for the
bond and futures prices and the volatilities. We expect that the futures and bond prices con-
verge to some value, because the more steps we take, the more the discrete time model converges.

When increasing the number of steps in the Ho-Lee tree, today’s bond prices converge to
some values between 0.027 and 0.033, which is 0.026 and 0.032 percent of the market price,
see Figure 12a. Since the bond prices are used as an input of the model, they should be fitted
‘perfectly’. The reason why they do not converge to zero is that we have taken two different
volatilities in the tree, although the Ho-Lee model assumes that there is only one constant
volatility.

Figure 12:
a. The difference between the Ho-Lee prices and the market prices of Bund 1, 2, and 3, when
increasing the number of steps in the tree, on October 27, 2008
b. The difference between the Ho-Lee futures price and the market futures price, when increasing
the number of steps in the tree, on October 27, 2008

We take a closer look at Equation (50) to see how this error is caused. When the zero curve
is fixed, the only elements that can influence the equation, are the volatility σ2 and the short
rate tree, constructed according to the fixed zero curve and the volatility σ1. Equation (50) is
made according to the Ho-Lee model, that assumes that the volatility is constant. However, we

50



decided to take a different volatility on the time interval [0, td] than on the time interval [td, T i],
until maturity of the bonds. This is the reason why the theoretical prices of the bonds do not
equal the market prices exactly.
At the end of this section we show what happens if we take σ1 = σ2, which means we take one
volatility in the model.

In Figure 12b one can see that when increasing the number of steps from 30 to 400, the
futures price converges to the value 0.7025. One of the reasons that it does not converge to zero,
is that we have taken two different volatilities in the model, like we just described.

Figure 13:
a. σ1 fitted by comparing the Ho-Lee and market call options, when increasing the number of
steps in the tree, on October 27, 2008
b. σ2 fitted by comparing the Ho-Lee and market caps, when increasing the number of steps in
the tree, on October 27, 2008

The volatilities σ1 and σ2 converge to the values 0.01135, respectively 0.00725, when the
number of steps increases, as can be seen in Figures 13a, resp. 13b. In all the figures in this
section it can be seen that from 300 steps on, the values do not improve significantly. Therefore
we will use a binomial tree of 300 steps throughout the rest of this chapter.

Figure 14:
a. The difference between the Ho-Lee prices and the market prices of Bund 1, 2, and 3, when
σ2 = σ1, on October 27, 2008
b. The difference between the Ho-Lee futures price and the market futures price, when σ2 = σ1,
on October 27, 2008

51



When taking volatility σ2 equal to σ1, it means that we do not calculate σ2 by fitting the
market and theoretical cap prices, but we assume that the volatility from delivery of the future
until maturity of the bonds equals the volatility from today until delivery of the future. This
volatility σ1 is found by fitting the OGBL market and theoretical price. In Figure 14a one can see
that the differences between the Ho-Lee and market Bund prices get smaller when the number
of steps increases. The error is much smaller than the error that we found, when assuming
that there are two different volatilities σ1 and σ2, and it is caused by the discretization of the
continuous Ho-Lee model. When taking more steps, the discrete time model converges to the
continuous time model and the errors becomes smaller.

4.2 Fitting the volatities σ1 and σ2

In this section we take a look at the results found by fitting the parameters σ1 and σ2. First we
discuss the volatilities, then the futures prices and at the end we look at the bond prices.

In Figure 15 one can see that the prices of the call option with strike 118 have extreme
fluctuations, so when fitting the volatility σ1 with these prices, we find unreliable values. Since
the option with strike 119 has a much smoother graph, we decided to fit the volatility σ1 with
this option. The values that we have found for σ1 can be seen in Figure 16a.

Figure 15: Values of the call options with strikes S = 118, 119, and 120

The figure gives the volatility at the dates up to and including November 18, 2008. The
volatility σ1 has a very nice value, because the difference between the smallest and largest value
is only 4.1 percent. On November 20, 2008, one day before expiration of the option, we cannot
fit the volatility. The reason for this is that the closer we get to maturity, the closer the payoff
of the option comes to

max(Futures price− Strike, 0),
so the price of the option is not so sensitive to the volatility anymore. On November 20, 2008,
the theoretical price of the call option can be calculated as:

Price of call option = max(Futures price− Strike, 0) = max(120.2− 119.0) = 1.20,
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Figure 16:
a. σ1 fitted by comparing the Ho-Lee and market call option with strike 119 b. σ2 fitted by
comparing the Ho-Lee and market caps

which is very close to the market call price of 1.21. This confirms what we just explained,
the price of the call option does not depend on the volatility, but it converges to the value at
delivery. Therefore we were not able to fit the volatility on November 20, 2008.

In Figure 16b it can be seen that the volatility σ2 grows as the time evolves. The difference
between the highest and lowest volatility is 4.3 percent.

We would like to check how well the model fits the theoretical futures price to the market
futures price, when fitting the volatilities as described in Sections 3.3.3 and 3.3.4. In Figure 17a
we can see the difference between these futures prices on the days between October 27, 2008 and
November 18, 2008. We cannot look at the days after November 21, 2008, because the OGBL
expires on this day, so we cannot calculate σ1 on the succeeding days, because there is no market
price of the call option available. We have just seen that one day before the expiration of the
option, the OGBL is not sensitive to volatility and therefore the value that we found for σ1 was
not representative either. We exclude these dates in the rest of the analysis of this section and
only look at the futures price until November 18, 2008.

Figure 17:
a. The difference between the Ho-Lee futures price and the market futures price
b. The difference between the Ho-Lee prices and the market prices of Bund 1, 2, and 3

From Figure 17a we can deduce that the closer we get to delivery of the future, the better
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the model fits the futures price. This holds, because when we approach delivery, it becomes
clearer, which bond will be the cheapest at delivery and the futures price depends on this bond.
Also, as the time to delivery of the future decreases, it becomes more unlikely that there will be
enormous changes in the zero curve. The largest difference between the market and theoretical
futures price is on October 27, 2008 and is 6.0 percent, but the differences of the other dates
are much smaller.

We will now take a look at the differences between today’s theoretical prices and today’s
market prices of Bund 1, 2, and 3, which can be seen in Figure 17b. Just like the futures price
differences, it also holds for the bond price differences that they become smaller when the time
evolves. The errors are very small, but still larger than zero.

4.3 Which bond is the cheapest to deliver

By calculating the bond and futures prices at the delivery nodes, we can find out at every node,
which bond is the cheapest to deliver. In Table 10 it can be seen per day, what the lowest and
the highest short rate is in the tree, and at which value of the short rate Bund 1 and 3 switch
from being the cheapest to deliver. Bund 1 is the CTD between the lowest short rate and the
value in the second column of the table and Bund 3 is CTD between the value in column 3 and
the highest short rate. The short rates can be negative, as was already mentioned in Section 2,
which can be seen very clearly in Figure 18a. The part between the blue line and the green line
is where Bund 1 is CTD, and the part between the red line and the purple line is where Bund
3 is CTD.

Table 10: Overview of the short rate levels (in percent) at which the CTD changes from Bund
1 to 3

Date Lowest short rate Bund 1 Bund 3 Highest short rate
October 27, 2008 −3.60 5.10 5.14 9.67
October 28, 2008 −3.77 4.92 4.96 9.76
October 29, 2008 −4.20 4.79 4.84 10.18
October 30, 2008 −4.55 4.61 4.66 10.42
October 31, 2008 −3.85 4.65 4.70 9.60
November 3, 2008 −4.03 4.55 4.59 9.83
November 4, 2008 −3.47 4.71 4.75 9.21
November 5, 2008 −3.43 4.75 4.80 9.12
November 6, 2008 −3.14 4.73 4.77 8.62
November 11, 2008 −1.84 4.72 4.75 7.54
November 12, 2008 −2.04 4.57 4.60 7.59
November 13, 2008 −1.59 4.52 4.54 6.94
November 14, 2008 −1.52 4.37 4.40 6.83
November 17, 2008 −1.45 4.82 4.85 7.56
November 18, 2008 −1.17 4.71 4.74 6.97

We have seen which bond is the cheapest at the delivery of the future. In the nodes prior to
the delivery nodes, we can calculate the probabilities that Bund 1, Bund 2, or Bund 3 will be
the cheapest-to-deliver at delivery, just like we have done in Example 2. We look at the data of
October 27, 2008 and the graph demonstrates the probabilities between this date and delivery,
that the bonds become the CTD. Bund 2 is in neither of the end nodes of the tree the cheapest,
so the probability that Bund 2 becomes cheapest is zero in the whole tree. In Figure 18b the
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Figure 18:
a. The short rate levels, between the green and blue line Bund 1 is cheapest and between the
red and purple line Bund 3 is cheapest
b. The probability tree, in the blue area Bund 1 is cheapest, in the red area Bund 3 is cheapest
and in the mixed colors they both have a probability of becoming the cheapest at delivery

blue area is the part where Bund 1 is the cheapest, the red area is where Bund 3 is the cheapest
and the colors in between state that there is a probability that Bund 1 will become the cheapest
at delivery aswell as there is a probability that Bund 3 will become the cheapest at delivery.

4.4 Sensitivity of the futures price

In this section we take a look at how sensitive the futures price is towards the bond prices and
the volatilities.

4.4.1 Influence of the bond prices on the futures price

First we show what happens to the theoretical futures price when one of the three bond prices
increases or decreases by one. We assume that the bond prices are not correlated. We look at
the ratio:

original futures price− futures price after changing the bond price
original bond price− bond price after changing

=
∆Fj

∆bond j
,

where j = 1, 2, or 3. In Section 4.2 we have fitted the volatilities σ1 and σ2, such that the
theoretical and market call, resp. cap prices were equal. We fix these volatilities and change one
of the three bond prices by one, which is approximately a one percent change. When the bond
price is changed, this means that the zero curve, the short rate tree and therefore the futures
price is different. How much influence it has on the futures price can be seen in Figures 19a, b
and c.

In Section 3.2 we have seen that at delivery of the future, its price equals the minimum of
the three bonds divided by their conversion factors. In case we change one of the bond prices
it is possible that another bond becomes the cheapest to deliver. In Figure 19c it can be seen
that even if Bund 3 would decrease with one, then its influence on the futures price is still very
small.

If Bund 1 decreases with one, then the futures price decreases with approximately 1.13 at
every time point, see Figure 19a. This follows from the fact that Bund 1 is always cheaper than
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Figure 19:
a. The influence of Bund 1 on the futures price
b. The influence of Bund 2 on the futures price
c. The influence of Bund 3 on the futures price

the other bonds, so the futures price depends uniquely on this bond. This change in futures
price is explainable, because when dividing the change in bond price by the conversion factor,
we find:

1
CF1

=
1

0.885104
≈ 1.13.

If Bund 1 increases by one, we see that its influence of the futures price is smaller. This
follows because Bund 1 is no longer the cheapest at all time points. For example, on November
3, 2008,

price of Bund 1 + 1
CF1

=
104.02

0.885104
≈ 117.53,

and
price of Bund 2

CF2
=

101.09
0.863086

≈ 117.13,

so Bund 2 becomes the cheapest when Bund 1 increases by one.

The same holds when we decrease the price of Bund 2 by one, while keeping the other prices
fixed, then Bund 2 also becomes cheaper than Bund 1 at some time points. Figure 20 is a scatter
diagram with on the horizontal axis

price of Bund 1
CF1

− price of Bund 2 − 1
CF2

, (54)

Figure 20: On the horizontal axis: difference as described in Equation (54) and on the vertical
axis the difference in futures price when decreasing Bund 2 by one
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and on the vertical axis the difference in futures price when decreasing Bund 2 by one. It can
be seen on the left side of the graph that when the term in Equation (54) is negative, Bund 1 is
the cheapest and Bund 2 barely effects the futures price. Otherwise, when it is positive, Bund
2 is the cheapest and has a big effect on the futures price.

4.4.2 Influence of the volatilities on the futures price

In a similar way, we look at the difference in futures price when one of the volatilities is changed.
We want to know vega, which is the ratio:

νi =
original futures price− futures price after changing the volatility

original volatility− volatility after changing
=

∆Fi

∆volatility i
,

for i = 1 or 2. The value of νi that we obtain in this manner, is not very representative. It shows
the difference in futures price, when the volatility is changed by one, but since the volatilities
are around 0.01 or even smaller, the ratio νi does not make sense. Therefore we look at the one
percent futures price change, so we divide look at vega divided by hundred.

We fix the bond prices and the volatility σ2, and change σ1 with approximately one percent,
or 0.0001. We construct a new short rate tree and find different futures prices. The influence
of σ1 on the futures price, can be found in Figure 21a. From November 20, 2008, on, it is
not possible to determine the volatility σ1, so we use the volatility of November 18, 2008 for
these days. We can deduce from the results that when everything is kept fixed, except for the
volatility σ1, that has been increased, then the bond prices increase, and hence the futures price
increases.

Figure 21:
a. The influence of σ1 on the futures price
b. The influence of σ2 on the futures price

We change volatility σ2 with approximately one percent, or 0.00007, while fixing the bond
prices and volatility σ1. We calculate the new bond and futures prices. The influence of σ2 on
the futures price, can be found in Figure 21b. In Equation (50), we can see that when everything
is kept fixed, except for the volatility σ2, that has been increased, the bond prices decrease, and
hence the futures prices decrease. Vice versa, when σ2 decreases, the bond and futures prices
increase.

One can see in the graphs of both volatilities that the lines of an up- or downwards change in
the volatilities are very close to each other, which means that for small changes, the difference
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in futures price is linear with respect to the difference in volatilities.

To get a better idea of how much influence the volatilities have, we take a closer look at the
volatility σ1.
In Figure 21 it can be seen that the largest difference in futures price is 0.095, which means that
when changing σ1 by 0.01, the futures price changes by 0.095. This is very little compared to
the effect of Bund 1 on the futures price. For example, assume we want to decrease the futures
price with 1.13 by changing the volatility σ1, just like we did when decreasing the price of Bund
1. Volatility σ1 needs to decrease with 1.13

0.095 · 0.01 = 0.119, which is ten times the value of the
original volatility of 0.011 and which we cannot even subtract from the volatility, because it
cannot be negative. Hence, the influence of volatility σ1 is very small and the same holds for
volatility σ2, especially when we compare the influences of the volatilities to those of the bond
prices.

We would like to see how well the model fits the futures prices for future time points, when
fixing the volatilities on November 18, 2008. We look at the futures price on later time points,
between November 21, 2008 and December 5, 2008, and want to see how close they are to the
market values. This is a check to see how well we can predict the futures price, at a certain
time point.

In the previous section we have seen that the futures price does not depend much on the
volatilities, but is above all determined by the zero curve, which is calculated at every time
point again. Therefore, we find that the futures price is fitted well to the model, when we use
the volatilities of November 18, 2008.

Figure 22:
a. The difference between the Ho-Lee futures price and the market futures price, where until
November 18, 2008 the volatilities are fitted at every date and from November 20, 2008, the
volatilities of November 18, 2008 are taken
b. The difference between the Ho-Lee prices and the market prices of Bund 1, 2, and 3, when
σ1 and σ2 are fixed on November 18, 2008

When we look at the bond prices between November 20, 2008 and December 5, 2008, when
fixing the volatilities, on November 18, 2008, we find that the theoretical bond prices get closer
to the market bond prices as the time evolves. They are very well fit, which is for the same
reason as we just explained, because the bond prices are determined mostly by the zero curve.
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5 Conclusion

In this thesis we have studied the questions that were stated in the abstract. To answer these
questions, we first examined a range of different short rate models in Chapter 2 and decided
that the Ho-Lee model was the most appropriate model for our analysis. The reasons for this
choice are that the Ho-Lee model is an exogenous term structure model, that can compute the
bond prices analytically, which is done in Section 2.2, and that it is very suitable for building
recombining trees, which we explained in detail in Section 2.2.2. The discrete and continuous
time models were compared in the succeeding section and a numerical approximation of this
comparison was given. In the same chapter a series of interpolation methods was listed with
their properties and it was pointed out why we decided to use the raw interpolation method in
our model. The chapter was concluded with an example of how to bootstrap and interpolate
with real maket data to show that the bootstrapping and interpolation method go hand in hand.

In Chapter 3 we took a closer look at the Euro-Bunds and their futures. It was described
how the bond and futures prices are calculated and how we can determine the cheapest bond
at delivery from the bond prices and their conversion factors. We gave an overview of all the
elements that were necessary to calculate the bond prices at delivery and made a Ho-Lee short
rate tree from ‘today’ until delivery of the future, on which we could price the bonds, futures,
options and caps that we needed to find the volatilities and the bond and futures prices. We
took two different volatilities in the model, one for ‘today’ until delivery of the future, and one
from delivery until maturity of the bonds. We expected it to give a better fit than when using
one single volatility σ1 in the model, because this volatility could only be calculated for a very
short time period.

In Chapter 4 real market data was used to fit the model and we were able to find the answers
to the questions of the abstract.

How many steps are needed in the binomial tree to get good results?
We investigated how many steps were needed to get nicely converged bond and futures prices
and discovered that from 300 steps on, the bond and futures prices and the volatilities σ1 and
σ2 did not improve significantly anymore, hence we used a 300 steps-binomial tree in the rest
of our calculations.

Is it possible to predict beforehand which bond will be the CTD?
Since the term structure is stochastic, we cannot give an exact prediction of which bond will
be the CTD on December 8, 2008, but what we can do, is make a tree of the probabilities that
Bund 1, 2 or 3 will become the CTD. In Figure 18b these probabilities were demonstrated of
October 27, 2008. It gave an impression of the probabilities that Bund 1, resp. Bund 3 would
be the Cheapest-to-Deliver on December 8, 2008. The probability that Bund 2 would become
cheapest was zero. In the tree one can see that it is very likely that Bund 1 would become
the cheapest at delivery, because only when the short rate would increase enormously, the CTD
would change from Bund 1 to Bund 3.

At what difference in the term structure is there a change in which bond is the cheapest?
In Figures 18a and b it could be seen very clearly that in most cases Bund 1 was the cheapest.
Together with Table 10 we can conclude that Bund 3 only becomes the cheapest, when the short
rate is very high, between 4.37 and 5.14. For more on this topic, see the next question.

How sensitive is the futures price for changes in the zero curve?
The futures price is very sensitive to changes in the term structure. When Bund 1, that appeared
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to be the cheapest at delivery, is decreased by one, the futures price decreases by approximately
1.13 at all time points. When Bund 1 is increased by one, the change in futures price was
between 0.8 and 1.13, because at most dates, Bund 1 remained the CTD. Bund 2 also effects
the futures price, but much less than Bund 1. If it decreases by one, the change in futures price
is at most 0.43. Bund 3 barely effects the futures price, because the change in futures price is
at most 0.058.
Note that the bond prices are usually highly correlated, so when looking at a change of one
in the price of a bond, it is very unlikely that the other bonds stay fixed. Since Bund 1 has
the most influence on the futures price, even with it is increased by one, we can conclude that
there is only a very small probability that any of the other bonds would become the CTD. For
example, when we mentioned that Bund 2 could become cheaper to deliver than Bund 1, if its
price would decrease by one, this was based on the fact that the other bond prices were kept
fixed. However, Bund 1 and Bund 3 will also decrease if Bund 2 decreases, so there is only a
very small probability that Bund 2 would indeed become the cheapest.

How stable are the volatilities of the model and how sensitive is the futures price for changes
in these parameters?
The volatilities that we fitted, appeared to be quite stable, because the difference between their
smallest and biggest values was only about four percent of the total value. They did not influ-
ence the futures price much, because when changing σ1 by 0.01, the change in futures price was
between 0.01 and 0.095. Since volatilities cannot be negative and the value of the volatility σ1

itself is only around 0.011, this range actually gives the maximal decrease that is possible in the
futures price. Of course increasing the volatility can be done endlessly to increase the futures
price, but to perceive a significant effect, the volatility should attain unreasonable high values.
Changing σ2 with 0.01, leaded to a futures price change between −0.0575 and −0.0073, which
is even less than for volatility σ1. Indeed, the maximal futures change that can be reached
when decreasing this volatility does not attain these values, because the value of the volatility
is around 0.007, so it cannot decrease by 0.01. We can conclude that the volatilities both have
a very small effect on the futures price.
Because of this, we have taken a look at how far in the future we can still use the volatilities of
a certain date. We have looked at the bond and futures prices between November 20, 2008 and
December 5, 2008, when we use the volatilities that were fitted on November 18, 2008. Since
the futures price is mainly determined by the bond prices and much less by the volatilities, we
already expected the futures price to be priced well. In Section 4.4 this was confirmed. Since
the model uses the bond prices as an input of the model, the bond prices were also fitted well
at the future time points, when using these fixed volatilities.

Is the Ho-Lee model a good model to price bonds and futures, i.e. how well does the model fit
their prices?
After the analysis in Chapter 4 we are able to state that the Ho-Lee model is a very satisfactory
model to price bonds and futures. We fitted the volatilities, and found a futures price that was
very close to the market price. In the worst case, which was on October 27, 2008, there was a
difference of 0.7 between the market and the theoretical price, which was only 0.6 percent of the
market price. At the later time points this difference was a lot smaller.
A reason for the (small) difference between the theoretical and the market futures prices, could
be that the market uses a slightly different term structure of interest rates than we have used to
price the future. For the first two years, we applied the Eonia swap rates, which are interbank
interest rates, and since they have a very low credit risk, just like the government bonds, we
decided that they would be a good replacement for the short term government rates. It could
be that the gap between the market and theoretical futures price is caused by this difference
between the two rates.
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We checked what the differences between the market and theoretical bond and futures prices
were, when using one volatility for the whole model, σ1 = σ2. We calculated this volatility by
fitting the market and theoretical OGBL prices, just like we did for σ1 and found a better fit
for the futures and bond prices. As the steps in the tree increased, the bond price differences
became much smaller than in the case we used two different volatilities. This means that we
were wrong in our assumption that it would be better to use a different volatility for the long
term instead of using the same volatility in the whole model. The short term volatility can
indeed be used for the long term.

To conclude this thesis, here are some ideas for future investigation:

• taking one volatility for the whole model, as we just mentioned. This gave an improved
fit for the futures and bond prices.

• looking at a time-varying volatility, that is fitted at many time points. We have looked at
a volatility with two different values, but maybe when increasing this number, it gives a
better fit.

• finding a better way to fit the long term volatility, until maturity of the bonds. This could
improve the futures and bond prices. We have used the caps to do so, but as we mentioned
earlier, they depend on interbank interest rates and the bonds and its future depend on
government interest rates.

• taking the forward volatility from td to the maturity of the bonds, when optimizing volatil-
ity σ2. We have looked at the volatility from ‘today’ until the largest maturity of the three
bonds, but it is more precise to take the volatility from time td on, and take some ‘average
forward volatility’ for the three maturities, eventually by calculating the spot and forward
volatilities between the maturities and computing the intermediate volatility.

• using an alternative source for short term rates for the first two years, such as repo rates.
These are rates at which one prime bank offers funds in euro to another prime bank if in
exchange the former receives from the latter Eurepo as collateral, see www.eurepo.org.
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6 Appendix

6.1 Derivation of the Vasicek model

dr(t) = a(θ − r(t))dt + σdWt,

where θ, a and σ are positive constants. Applying Itô’s formula with Y (u) = γ(u, r(u)) = r(u)eau

gives:

dY (u) = ar(u)eaudu + eaudr(u)
= ar(u)eaudu + eau ((θ − ar(u))du + σdWu)
= aθeaudu + σeaudWu

Integrating this equation for t ≤ u, leads to:

r(u)eau = r(t)eat +
∫ u

t

aθeasds +
∫ u

t

σeasdWs

= r(t)eat + θ(eau − eat) + σ

∫ u

t

easdWs

r(u) = r(t)e−a(u−t) + θ(1− e−a(u−t)) + σ

∫ u

t

e−a(u−s)dWs,

so r(u) conditional on Ft is normally distributed with mean respectively variance:

E(r(u)|Ft) = r(t)e−a(u−t) + θ(1− e−a(u−t)),

Var(r(u)|Ft) = E
(

σ

∫ u

t

e−a(u−s)dWs|Ft

)2

(17)
= σ2E

(∫ u

t

e−2a(u−s)ds|Ft

)
=

σ2

2a
(1− e−2a(u−t)).

6.2 Matlab codes

In this section, the following Matlab codes can be found:

1. bootstrapping per time, this file is the main file, which bootstraps the zero curve, adds
the Eonia rates to the zero curve, builds the Ho-Lee short rate lattice and calculates the
futures prices, bond prices, σ1 and σ2, by making use of the following other files, see
page 64.

2. vol1c calculates the σ1 by comparing the market option price by the option price that
follows from the Ho-Lee tree, see page 66.

3. vol2a and vol2b calculate the σ2 by comparing the market cap price by the Ho-Lee cap
price, see page 68.

4. InterpolatedSpot1 and InterpolatedSpot2 calculate the zero rates in the intermediate time
steps, see page 70.

5. fita1a, fita1b, fita2a, fita2b calculate the Ho-Lee short rate trees, see page 71.
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function [sigma1,fval1,sigma2,fval2] = bootstrapping_per_time(k)

M = 300;
[num1,txt1] = xlsread(’BondData_Compact.xls’,’BondInformation’);
[num2,txt2] = xlsread(’BondData_Compact.xls’,’Aligned_HistoricalPrices’);
[num3,txt3] = xlsread(’BondData_Compact.xls’,’Aligned Eonia Swap’);
[num4,txt4] = xlsread(’BondData_Compact.xls’,’FGBL’);

Start = datenum(txt4(k+1,1));
StartNum = floor(Start);
StartDate = datestr(StartNum);
BundDate = datenum(txt2(2:size(txt2,1),1));
for i=1:length(BundDate)
if Start < BundDate(i) && Start > BundDate(i+1)

Bund_m = num2(i+1,8:10)
end

end
Fut_m = num4(k,1)

EoniaNum = datenum(txt3(3:size(txt3,1),1));
for i = 1:length(EoniaNum)
if EoniaNum(i) == StartNum

ZR_Eonia = num3(i+1,:)/100;
end

end
t_Eonia = num3(1,:)/365;
ZR_Eonia;

BootDate = datenum(txt2(2:size(txt2,1),1));
for i = 1:length(BootDate)

if Start < BootDate(i) && Start > BootDate(i+1)
BPclean = num2(i+1,:);

elseif k==1
BPclean = num2(1,:);

end
end

MaturityDates(1:(size(txt1,1)-1)) = txt1(2:size(txt1,1),11);
for i = 1:length(MaturityDates)

Maturity(i) = (datenum(cell2mat(MaturityDates(i)))-datenum(StartDate))/365;
end
FirstCouponDate = txt1(2:size(txt1,1),10);
for j = 1:length(FirstCouponDate)

FirstCoupon(j) = (datenum(cell2mat(FirstCouponDate(j)))-datenum(StartDate))/365;
end

c = num1(:,1);
freq = [2,3,4,5,7,8,9,9,10,10,16];
C = zeros(length(freq),freq(end));
for i = 1:length(freq)
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C(i,1:(freq(i)-1))=c(i);
C(i,freq(i))=100+c(i);

end
CouponDates = zeros(length(freq),freq(end));
for i=1:length(freq) % All coupons payment dates

CouponDates(i,1:freq(i)) = FirstCoupon(i)+(0:(freq(i)-1));
end
BP=BPclean;

t=[t_Eonia,Maturity];
length_Eonia=length(t_Eonia);
ZR=ZR_Eonia;

for i=(length_Eonia+1):length(t)
dd=zeros(1,freq(i-length_Eonia));

g=@(x) bootstrapping2(i,freq,dd,BP,C,t,length_Eonia,CouponDates,[ZR(1:(i-1)) x]);
ZR(i)=fzero(g,ZR(i-1));

end
logP=-t.*ZR;

[num8,txt8]=xlsread(’BondData_Compact.xls’,’Options’);
OptDate = datenum(txt8(2:size(txt8,1),1));
for i=1:length(OptDate)
if Start == OptDate(i)

Call_m = num8(i,3);
elseif Start < OptDate(i) && Start > OptDate(i+1)

Call_m = num8(i+1,3);
end

end

tto=(datenum(’21-Nov-2008’)-datenum(Start))/365;
K=119;

[CapValue_m,CapletValue_m,sigma2,fval2] = vol2a(Start,t,ZR,logP,M);
l = @(xxx) vol1c(Start,t,ZR,logP,M,Fut_m,Call_m,tto,K,sigma2,xxx);
[sigma1,fval1] = fzero(l,[0,0.05],optimset(’Display’,’iter’));

*********************************************************************************

function f = bootstrapping2(i,freq,dd,BP,C,t,length_Eonia,CouponDates,ZZ)

for k=i-length_Eonia
for y=1:freq(k)

dd(y) = interp1(t(1:i),-( t(1:i) ).* ZZ(1:i),CouponDates(k,y));
end

end

f = BP(k) - sum( C(k,1:freq(k)).*exp(dd(1:freq(k)) ));
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function f = vol1c(Start,t,ZR,logP,M,Fut_m,Call_m,tto,K,sigma2,xxx)

StartDate = datestr(floor(Start));
ttd=(datenum(’8-Dec-2008’)-datenum(StartDate))/365;

if ttd<=7/365
t= [0,t];

ZR = [ZR(1),ZR];
logP = -t.*ZR;
P_ttd = exp(interp1(t,logP,ttd));
forw_ttd = (logP(1)-logP(2))/(t(2)-t(1));
dt1 = ttd/M;
NewSpot1(1:M) = ZR(1);
[d1,SR1] = fit_a_1a(dt1,NewSpot1,M,xxx);

end

for i=1:length(t)-1
if ttd>t(i) && ttd<=t(i+1)

P_ttd = exp(interp1(t,logP,ttd));
forw_ttd = (logP(i)-logP(i+1))/(t(i+1)-t(i));
Spot1 = ZR(1:i+1);
tt = t(1:i+1);
[dt1,NewSpot1] = InterpolatedSpot1(ttd,tt,Spot1,M);
[d1,SR1] = fit_a_1a(dt1,NewSpot1,M,xxx);

end
end
SRlastcol = SR1(:,M);

[num5,txt5]=xlsread(’BondData_Compact.xls’,’BundInformation’);

Bund_FirstCouponDate = txt5(2:4,10);
Bund_FirstCoupon = (datenum(cell2mat(Bund_FirstCouponDate))-datenum(StartDate))/365;
Bund_c = num5(:,1);
Bund_freq = [9,10,10];
Bund_C = zeros(3,10);
P_total = zeros(M,M,3);
for bb=1:3

Bund_C(bb,1:(Bund_freq(bb)-1)) = Bund_c(bb);
Bund_C(bb,Bund_freq(bb)) = 100 + Bund_c(bb);
Bund_CouponDates(bb,1:Bund_freq(bb))=Bund_FirstCoupon(bb)+(0:(Bund_freq(bb)-1));
P_coupon(bb,1:Bund_freq(bb))=exp(interp1(t,logP,Bund_CouponDates(bb,1:Bund_freq(bb))));
P_ttd_coupon = zeros(M,Bund_freq(bb),3);
for s=1:M

for j=1:Bund_freq(bb)
P_ttd_coupon(s,j,bb)=P_coupon(bb,j)./P_ttd...
.*exp(-(Bund_CouponDates(bb,j)-ttd)...
.*(SR1(s,M)-forw_ttd)-1/2*(sigma2)^2*ttd...
.*(Bund_CouponDates(bb,j)-ttd)^2);

end
P_total(s,M,bb)=sum(P_ttd_coupon(s,1:Bund_freq(bb),bb).*Bund_C(bb,1:Bund_freq(bb)));

end
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end

CF = [0.885104,0.863086,0.874950];
Fut = zeros(M,M);
CTD = zeros(M,1);
for s=1:M

for i=1:3
Fut_total(s,i) = (P_total(s,M,i)./CF(i));

end
if Fut_total(s,1) < Fut_total(s,2) && Fut_total(s,1) < Fut_total(s,3)

CTD(s) = 1;
Fut(s,M) = Fut_total(s,1);

elseif Fut_total(s,2) < Fut_total(s,1) && Fut_total(s,2) < Fut_total(s,3)
CTD(s) = 2;
Fut(s,M) = Fut_total(s,2);

elseif Fut_total(s,3) < Fut_total(s,1) && Fut_total(s,3) < Fut_total(s,2)
CTD(s) = 3;
Fut(s,M) = Fut_total(s,3);

end
end
for j=M-1:-1:1

for k=j:-1:1
Fut(k,j) = 1/2 * (Fut(k,j+1) + Fut(k+1,j+1));
for i=1:3

P_total(k,j,i) = 1/2 * d1(k,j)*(P_total(k,j+1,i) + P_total(k+1,j+1,i));
end

end
end

Fut_th = Fut(1,1)
P_th = P_total(1,1,1:3)

ii = round(tto/dt1);
for kk = 1:ii

if Fut(kk,ii) - K > 0
Call(kk,ii) = Fut(kk,ii) - K;

else
Call(kk,ii) = 0;

end
end
for j=ii-1:-1:1

for k=j:-1:1
Call(k,j) = 1/2 * (Call(k,j+1)+Call(k+1,j+1));

end
end
Call_th = Call(1,1)

f = Call_th - Call_m

67



function [CapValue_m,sigma2,fval2] = vol2a(Start,t,ZR,logP,M)

[num7,txt7]=xlsread(’CapData2.xls’,’Aligned vol-strike’);

CapDate = datenum(txt7(2:size(txt7,1),1));
CapVolList = num7(:,2)/100; % cont. comp. act/365
CapStrikeList = num7(:,4)/100; % cont. comp. act/365

for i=1:length(CapDate)
if Start < CapDate(i) && Start > CapDate(i+1)

CapStrike = CapStrikeList(i+1);
CapVol = CapVolList(i+1);

else
CapStrike = CapStrikeList(end);
CapVol = CapVolList(end);

end
end
NumCaplets = 19;
CapletResets = 1/2 * (1:NumCaplets);
CapletPayments = 1/2 + CapletResets;
Totaltimes = [1/2,CapletPayments];
logP_CapletPayments=interp1(t,logP,Totaltimes);
P_CapletPayments=exp(logP_CapletPayments)
for i = 1:NumCaplets

F_caplet(i)=(logP_CapletPayments(i)-logP_CapletPayments(i+1))/(1/2)
d1(i) = (log(F_caplet(i)/CapStrike)+(1/2)*(CapVol^2)*CapletResets(i)) ...

./ (CapVol*sqrt(CapletResets(i)))
d2(i) = d1(i) - CapVol * sqrt(CapletResets(i))
CapletValue_m(i) = 1/2 * P_CapletPayments(i+1) .* (F_caplet(i)*normcdf(d1(i)) ...
- CapStrike .* normcdf(d2(i)))

end
CapValue_m = sum(CapletValue_m);

h = @(yy) vol2b(t,ZR,M,CapStrike,NumCaplets,Totaltimes,CapletPayments,logP,logP_CapletPayments,P_CapletPayments,CapValue_m,yy);
[sigma2,fval2] = fzero(h,[0,0.05],optimset(’Display’,’iter’));

*********************************************************************************

function f = vol2b(t,ZR,M,CapStrike,NumCaplets,Totaltimes,CapletPayments,logP,logP_CapletPayments,P_CapletPayments,CapValue_m,yy)

[dt2,NewSpot2] = InterpolatedSpot2(t,ZR,M,CapletPayments);
[d2,SR2] = fit_a_2a(dt2,NewSpot2,M,yy);
SRlastcol = SR2(:,M);

eps = dt2/10;
logP_eps=interp1(t,logP,Totaltimes+eps);

for cc=1:NumCaplets
i = round((cc*(1/2))/dt2); % i = reset_step
reset_time = cc/2;
F_instan(cc)=(logP_CapletPayments(cc)-logP_eps(cc))/eps;
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CV = zeros(i,i);
for j=1:i

P_reset_payoff(j) = (P_CapletPayments(cc+1)/P_CapletPayments(cc))...
*exp(-(1/2)*(SR2(j,i)-F_instan(cc))-(1/8)*(yy^2)*reset_time);

forw_reset_payoff(j) = -2*log(P_reset_payoff(j));
if forw_reset_payoff(j) - CapStrike > 0

CV(j,i) = (forw_reset_payoff(j) - CapStrike)* P_reset_payoff(j);
else

CV(j,i) = 0;
end

end
for j=(i-1):-1:1

for k=j:-1:1
CV(k,j) = 1/2 * d2(k,j) * (CV(k,j+1)+CV(k+1,j+1));

end
end
CV;
CapletValue_hl(cc) = 1/2 * CV(1,1);

end

CapValue_hl = sum(CapletValue_hl);
f = CapValue_hl - CapValue_m
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function [dt1,NewSpot1] = InterpolatedSpot1(ttd,tt,Spot1,M)

D = exp(-Spot1.*(tt));
logD_ttd = interp1(tt,log(D),ttd);
Spot_ttd = -(1/ttd)*(logD_ttd);

tttt = [tt(1:length(tt)-1),ttd];
Spot1 = [Spot1(1:length(tt)-1),Spot_ttd];

T=ttd;
dt1=T/M;

% The zero rates are known from 7 days on, we extrapolate for the rates
% < 7 days and interpolate in the usual way from > 7 days

D=exp(-Spot1.*tttt);
NewD=zeros(M,1);
for i=1:M

if i*dt1 < tttt(1)
NewD(i)=D(1)^(i*dt1/tttt(1));

elseif i*dt1 >= tttt(1)
NewD(i) = interp1(tttt,log(D),i*dt1);
NewD(i) = exp(NewD(i));

end
end

for i=1:M;
NewSpot1(i)=-(1/(i*dt1))*log(NewD(i));

end

*********************************************************************************

function [dt,NewSpot] = InterpolatedSpot2(t,Spot,M,CapletPayments)

dt=CapletPayments(end)/M;
D = exp(-Spot.*(t));
for i=1:M;

if i*dt < t(1)
NewSpot(i)=Spot(1);

elseif i*dt >= t(1)
NewD(i) = interp1(t,log(D),i*dt);
NewSpot(i)=-(1/(i*dt))*(NewD(i));

end
end
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function [d1,SR1] = fit_a_1a(dt1,NewSpot1,M,sigma1)

global EP1 d1

a1=NewSpot1(1);
b=zeros(2,1);
b=b+2*sigma1*sqrt(dt1);
[indxa,indxb]=meshgrid(1:2,1:2);
d1=exp(-dt1*(a1+b(indxb).*(indxb-1)));

EP1=zeros(M+1,M+1);
EP1(1,1)=1;
EP1(1,2)=1/2*d1(1,1)*EP1(1,1);
EP1(2,2)=1/2*d1(1,1)*EP1(1,1);

% M is the length of the NewSpot=the interpolated spot rates
for ii=2:M

N=length(a1)+1; % The vector of parameters a is known up to time N-1,
% so it has length N-1.

g=@(x) fit_a_1b(dt1,NewSpot1,[a1(1:(N-1)) x],sigma1);
% we put a(N)=x and then let f=0.
a1(ii) = fzero(g,a1(N-1));

end

SR1=(-1/dt1).*log(d1);

*********************************************************************************

function f = fit_a_1b(dt1,NewSpot1,aa,sigma1)

global EP1 d1

M=length(NewSpot1);
N=length(aa);

b=2*sigma1*sqrt(dt1);

[indxa,indxb]=meshgrid(1:N,1:N);
d1=exp(-dt1*(aa(indxa)+b*(indxb-1)));

EP1(1,N+1)=1/2*d1(1,N)*EP1(1,N);

EP1(N+1,N+1)=1/2*d1(N,N)*EP1(N,N);

for i=2:N;
EP1(i,N+1)=1/2*(d1(i,N)*EP1(i,N)+d1(i-1,N)*EP1(i-1,N));
end

zcbvolgensSpot=exp(-NewSpot1(N).*N*dt1); % zcb=zero-coupon-bond
zcbvolgensHoLee=sum(EP1(:,N+1));
f=zcbvolgensSpot-zcbvolgensHoLee;

71



*********************************************************************************

function [d2,SR2] = fit_a_2a(dt,NewSpot,M,yy)

global EP2 d2

a2=NewSpot(1);

b = zeros(2,1);
b = b+2*yy*sqrt(dt);
[indxa,indxb] = meshgrid(1:2,1:2);
d2 = exp(-dt*(a2+b(indxb).*(indxb-1)));

EP2 = zeros(M+1,M+1);
EP2(1,1) = 1;
EP2(1,2) = 1/2 * d2(1,1) * EP2(1,1);
EP2(2,2) = 1/2 * d2(1,1) * EP2(1,1);

% M is the length of the NewSpot=the interpolated spot rates
for ii = 2:M

N = length(a2)+1; % The vector of parameters a is known up to time N-1,
% so it has length N-1.

g = @(x) fit_a_2b(dt,NewSpot,[a2(1:(N-1)) x],yy);
% we put a(N)=x and then let f=0.
a2(ii) = fzero(g,a2(N-1));

end

SR2=(-1/dt)*log(d2);

*********************************************************************************

function f = fit_a_2b(dt,NewSpot,aa,yy)

global EP2 d2

M=length(NewSpot);
N=length(aa);

b=2*yy*sqrt(dt);

[indxa,indxb]=meshgrid(1:N,1:N);
d2=exp(-dt*(aa(indxa)+b*(indxb-1)));

EP2(1,N+1)=1/2*d2(1,N)*EP2(1,N);

EP2(N+1,N+1)=1/2*d2(N,N)*EP2(N,N);

for i=2:N;
EP2(i,N+1)=1/2*(d2(i,N)*EP2(i,N)+d2(i-1,N)*EP2(i-1,N));
end
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zcbvolgensSpot=exp(-NewSpot(N).*N*dt); % zcb=zero-coupon-bond
zcbvolgensHoLee=sum(EP2(:,N+1));
f=zcbvolgensSpot-zcbvolgensHoLee;

73


