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Summary

An appointment schedule aims to achieve a proper balance between dif-
ferent interests: the waiting time for the customers and the waiting time
for the service providers, the so called idle time. These interests are truly
conflicting; focusing on small idle time results in large waiting times for
the customer and vice versa. This thesis considers the area of appointment
scheduling for a single server in continuous time with punctual customers.
There is a vast amount of literature addressing this topic, however, there is
not a generic approach to generate large schedules analytically with general
service time distributions. First, we study the characteristics of this problem
with exponential service times. Next, we propose an approximation method
that enables us to design appointment schedules with general service time
distributions. This method is the lag order approximation method, which is
the main result of this thesis. Another method is proposed to overcome the
dimensionality problem, when designing appointment schedules for a large
number of customers. We will present both methods, and investigate their
performance and applicability.

Keywords: Appointment Scheduling ⋆ Approximation Methods ⋆ Continu-
ous Time Scheduling ⋆ Equidistant ⋆ General Service Time Distributions ⋆
Heuristic Methods ⋆ Lag Order.



Preface

You are now reading the Master’s thesis of Wouter Vink. This thesis is
about scheduling customers for a single server. For example, patients for a
CT scan or court cases for a court. We will introduce a new approximation
method for this problem, improving and enhancing current analytical meth-
ods. It reduces computation time and increases applicability.

At the beginning of the second year of my Master in Utrecht, I was investi-
gating the possibilities of doing an internship to write my thesis. Via via, I
came in contact with Tjarko de Vree, who wrote his thesis at the Institute
for Business and Industrial Statistics of the University of Amsterdam (IBIS
UvA). I would like to thank Tjarko for sharing his experiences, which led to
my application for an internship at this institute.

Professor Ronald Does, director of IBIS UvA, and Benjamin Kemper, con-
sultant at IBIS UvA, gave me the opportunity to write my master thesis at
their company for which I am very thankful. Benjamin was assigned to me
as my supervisor. Despite the fact that he was finishing his PhD thesis, he
found the time to guide and help me. The complete period at IBIS UvA I
was given under good supervision, thanks gozertie! I was lucky Benjamin
and Michel Mandjes just discovered a new area of research, in which I was
allowed to do my own research. Soon it became clear in which direction my
thesis would go and we booked results quite quickly. I thank Benjamin and
Michel for the cooperation on this topic and the fruitful discussions.

In an earlier stage I asked Sandjai Bhulai, associate professor at the VU,
to be my supervisor, to which he agreed, enthusiastically! I would like to
thank Sandjai for his overwhelming positive demeanor, which inspired me
and helped me to finish this thesis pleasantly. Also thanks for the thorough
explanation of the Hindu religion (or philosophy) and the automatic car
parking showcase.



Every good thing comes in three applies for Karma Dajani, senior lecturer
at Utrecht University, being my third supervisor. Thanks for supervising
me, although you had close to zero time for this. The few meetings we had
were very helpful and the comments on my draft versions very useful.

Martin Bootsma was added on the finish line, being the second reader from
Utrecht University. I would like to thank you for your time and the unex-
pected revision, which I received just before my deadline.

I would like to thank Tashi Erdmann for sharing his room with me. You were
always willing to converse about whatever topic, helping with a mathemat-
ical problem or talking about day-to-day things. Also accepting the mess
I made, my occupation of the white board and the music-question almost
every day. Thanks for that Tashi, we had a good laugh.

Of course I would like to thank the entire IBIS crew: Atie Buisman, fellow
almost-West-Frisian Joran Lokkerbol, Jeroen de Mast and Marit Schoonhoven
for welcoming me so friendly and making sure I was part of the team very
quickly. I would like to thank Ronald for teaching me in making decisions
(‘just make them!’) and for taking me along on the black belt training for
three days.

Finally, I would like to thank my friends Jöbke Janssen, Tomas Molenaars
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Chapter 1

Introduction

Modern health care involves the use of several high cost devices and facil-
ities such as MRI machines, CT scanners and operating rooms. For these
facilities, appointment scheduling is vital to ensure a high utilization of the
resources and at the same time high quality of service, i.e., short waiting
times for the customers.

Consider the problem of scheduling surgeries for patients in an operating
room at a hospital. The planning of the surgeries needed to be performed
on a particular day, is known in advance. However, the time needed to
perform each surgery varies. The resource planner needs to decide in ad-
vance the time at which a particular surgery is scheduled, and the duration
to assign to that surgery. If on one hand, a relatively small time period is
assigned to a surgery, then it is likely that the realized time will exceed this
assigned time period, thus delaying the next surgery. The inconvenience,
potentially fatal haste and costs, resulting from the delay of both the pa-
tients and the staff, constitute extra cost of that surgery. If, on the other
hand, the hospital manager assigns an excessively long time period for a
surgery, then the surgery may end earlier than expected and the operating
room will be left idle until the next appointment. In that case, the hospital
again incurs extra costs caused by the under-utilization of the resources in
the operating room.

Similar problems could arise in many other operational contexts. For exam-
ple, if ship-to-shore cranes in a harbor are left idle, they do not yield and
their earnings diminish. Then again, if the ships are left waiting for a crane
to be available, extra costs are incurred for keeping the boat operating. Also
the risk of shipping companies choosing for alternative harbors with smaller
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Chapter 1. Introduction

waiting times, should be taken into account. For these reasons a good sched-
ule is necessary.

Many service providers in the medical, legal or financial professions operate
on an appointment basis and are usually concerned with both the idle time
of the service provider and the waiting times of the customers.

A good appointment schedule should achieve the right trade-off between idle
time and waiting time.

Motivation:
This thesis is part of the master Mathematical Sciences at the Utrecht Uni-
versity. It has been written at the Institute for Business and Industrial
Statistics (IBIS UvA) in Amsterdam. At this institute I got involved in this
topic due to an article on appointment scheduling, written by my supervisor.
In this article a new optimization approach is proposed. Further insights of
this approach compared to the conventional approaches were needed and
this is part what we do in this thesis. Some of the results of this thesis are
included in Kemper et al. (2011).

Problem Statement:
An appointment schedule consists of non-random arrival times for customers.
These customers arrive at their assigned times and will be served by the
server directly if it is available. However, it is possible that the server is
still busy while the next customer arrives. Consequentially, the arriving
customer has to wait, what we call waiting time. If the service provider
is idle before the next customer arrives, the time the server has to wait is
called idle time. These idle and waiting time are losses of the appointment
system. The objective of scheduling is to find an appointment system for
which a particular measure of performance for the system’s losses in terms
of these waiting and idle time is minimized. In the literature this is referred
to as: ‘An application of resource scheduling under uncertainty’ (Cayirli
and Veral, 2003). The resources are the service provider and the customers
and the uncertainty originates from the modeling of the service times with
a probability distribution. Hence, we work in a probabilistic setting using
measures as percentiles of idle and waiting time or expected idle and waiting
time. The former measure may be used if ones wishes to assess the quality
of schedules with tail expressions. The latter, is the performance measure
we use in this thesis, it is in terms of the quantities expected idle time of the
server and expected waiting time of the customer. This measure is referred
to as, the loss function, since it measures the expected losses of the appoint-
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ment system in terms of the aforementioned quantities. The objective is to
minimize this loss function by optimally choosing the arrival times of the
customers.

The idle time of the server before the arrival of customer i is denoted with
Ii, Wi is the waiting time of customer i. An example of a loss function is:

n
∑

i=1

(

EI2
i + EW 2

i

)

. (1.1)

With n the number of customers. Note that this loss function measures the
sum of the second moments of the idle and waiting time equally.

Expression (1.1) is an example of a loss function, another choice can be the
linear loss function with the option to penalize waiting times more than idle
times, or vice versa:

n
∑

i=1

(

αEIi + (1 − α)EWi

)

, α ∈ [0, 1],

with α a normalized weight factor.

The arrival time of customer i is denoted with ti. A crucial observation
is that the random variables Ii and Wi are affected by the services and
arrivals of preceding customers, and its own arrival. These customers arrive
at t1, . . . , ti−1, and therefore Ii and Wi are functions of t1, . . . , ti, including
the arrival of customer i itself. Using expression (1.1) we arrive at a typical
example of a minimization problem which we investigate in this thesis:

min
t1,...,tn

n
∑

i=1

(

EI2
i (t1, . . . , ti) + EW 2

i (t1, . . . , ti)
)

.

This problem is an n-dimensional optimization problem. As n increases, it
gets harder to solve. Apart from numerical approaches, to the best of our
knowledge no manageable generic characterization for the optimal schedule
is known. Ideally, one would like to have a closed form solution for general
service time distributions and arbitrary loss functions. Given that such a so-
lution would be at hand, it can be applied across a broad range of application
areas; such as health care, service systems, manufacturing, transportation,
et cetera.

In a setting where we have exponential service times we are able to give
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Chapter 1. Introduction

an explicit characterization for the optimal schedule. However, for general
service time distributions no such result exists. In this thesis we investigate
the reason for this absence. We will introduce certain approximation meth-
ods that are able to design appointment schedules with general service time
distributions.

Approach of the Stated Problem
From current literature protrudes two complications to obtain a closed-form
solution for large optimal schedules with general service time distributions.
The first one is that with general service time distributions it is hard to de-
rive expressions for the waiting time, what is not the case with exponential
distributed service times. In that setting, it is possible to derive expressions
for the waiting time for customer i in terms of all the previous customers.
In other words, it is possible to incorporate the influence of all the prede-
cessors on the waiting time of the current customer. This is possible since
the exponential distribution has the memoryless property. This means that
the expected remaining service time is equal to the expected service time at
any moment in time. In mathematical notation:

P(X > s + t|X > t) = P(X > s) for s, t > 0,

with X an exponentially distributed random variable.

The analytical consequence of this is that we only have to compute the prob-
ability of a predecessor still being in the system upon the arrival of customer
i. If we multiply these probabilities with the expected service times we are
done. This property can also implicitly be applied for Erlang distributions,
since it can be described as a composition of memoryless stages. Unfortu-
nately, this memoryless property does not apply for any other continuous
distribution. Hence, deriving the same expressions for general distribution
functions is hard. In our attempt to do so nonetheless, we came up with
the lag order approximation method, which comes down to capturing the
influence of only a few predecessors on the waiting time of the current cus-
tomer. Not only do we discuss the specifications, we will also look at the
performance in various problem settings of this approximation method and
we will address where this method can add value to current conventional
methods to derive appointment schedules.

The second complication of appointment scheduling is the dimension of it.
As we mentioned before, with one customer more in the schedule, the di-
mension of the problem increases with one as well. In case we need to serve
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the same type of customers, hence equal service time distributions, we ob-
serve in the optimal schedule for most of these customers equal interarrival
times. We will take advantage of this knowledge by batching customers with
the same type. This results in a reduction of the problem dimension and
therefore a reduction of computation times.

Note that in this thesis most of the numerical calculations are performed
using Mathematica and Matlab. The codes and programs will be made
available on the readers request.

Organization of this thesis
This thesis is organized as follows. We start in Chapter 2 with an overview
of the current literature, placing our contribution in a proper context using
the classification of Westeneng (2007). We continue with the formulation
of the mathematical model in Chapter 3. Most of the inspiration for our
ideas came from the comparison between the sequential and the simultane-
ous optimization approach. Chapter 4 shows the results of this comparison,
giving a lot of insight in the problem itself and the characteristics of both
methods. Then we introduce some approximation methods for this problem
in Chapter 5. The application of these methods on the problem in a realistic
setting will be done in Chapter 6. Even more realistic will be Chapter 7,
where we will show a problem from practice. In Chapter 8 we analyze the
sensitivity of (sub-)optimal schedules, extracting some rules for the resource
planner on how to deal with the derived results. Finally, in Chapter 9 we
discuss the results, the advantages and disadvantages of the approximation
methods and some recommendations for future research.

Throughout this thesis τ is defined as τ := C
r
, with C the circumference and

r the radius of a circle, i.e., τ = 2π. See Appendix A.8 for more details on
this.
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Chapter 2

Literature

In this chapter we present an overview of the current literature. The problem
of appointment optimization has generated substantial interest over the last
decades. Beginning with the seminal papers of Bailey (1952) and Welch and
Bailey (1952), an extensive body of literature on appointment scheduling has
been accumulated. State-of-the art surveys are given in Cayirli and Veral
(2003) or Westeneng (2007) and more recently, a study of literature focusing
on challenges and opportunities in this area of research, Gupta and Denton
(2008). The articles in these surveys are mainly related to two medical
problems: the scheduling of patients into a clinic, and the scheduling of
surgeries into an operating room.

Appointment scheduling can be classified in two broad categories: static
and dynamic. In the static case, all decisions must be made prior to the
beginning of a session. In the dynamic case, the schedule of future arrivals
is revised continuously over the course of the scheduling period, based on the
current state of the system (Cayirli and Veral, 2003). For a good example
of a paper on dynamic appointment scheduling see Liu et al. (2010). These
authors use Markov decision processes to maximize the long-run average
net ‘reward’ for the clinic. They also provide a good overview of the current
literature on dynamic appointment scheduling, and a discussion about Open
Access systems. The idea of Open Access is to keep your system open and
let customers decide when they want to be served.

In this thesis our focus is on the static paradigm.

We classify the papers on static scheduling as follows: there are those that
evaluate (potential) schedules, often using simulation, and those that design
algorithms to find good schedules, the analytical approach.
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Examples of the former can be found in the overview papers of Cayirli
and Veral (2003) and Westeneng (2007). An example not included in both
is Hutzschenreuter (2005), who uses non-exponential service times.

In the analytical approach one can distinguish papers focusing on con-
tinuous time and papers focusing on discrete time. The former deals with
finding the optimal interarrival times, whereas the latter deals with the
question how many arrivals should be scheduled at each potential arrival
moment (with the possibility of zero arrivals included). Some important re-
sults for the discrete time, i.e., a finite number of potential arrival moments,
include Liao et al. (1993). This paper uses a branch-and-bound method to
find the optimal schedule. This, however, works only for small instances.
Vanden Bosch et al. (1999) derive upper and lower bounds for the optimal
appointment schedule. To show these bounds, they use, what they call,
submodularity, what is related to convexity. These upper and lower bound
schedules often coincide and can be made starting from a specific sched-
ule. Kaandorp and Koole (2007) propose a method extending these results.
Their method gives convergence to the optimal schedule starting from any
initial schedule. They also extend the results to different types of patients.
Vanden Bosch et al. (1999) uses Erlang service times, whereas Kaandorp
and Koole (2007) uses exponential service times.

One of the reasons to study this problem in discrete time is due to dimen-
sionality issues. As the number of slots increases, the problem gets harder
to solve, because the minimization algorithm considers every extra slot as
an extra dimension to the problem. By making time discrete, the number
of possible schedules decreases, and we can use local search algorithms to
derive (sub)-optimal schedules, e.g., Kaandorp and Koole (2007). In case of
continuous time this dimension problem remains.

This thesis focuses on appointment scheduling in continuous time. Hence,
computing an optimal schedule means computing the optimal interarrival
times for the customers. Wang (1993) and Gray and Wang (1995) obtained
the optimal schedule for arrivals over continuous time by applying nonlin-
ear programs to the cost functions they chose. Wang also proved that the
expected waiting times are convex with respect to the arrival time vector
in case of general service time distributions (Wang, 1993). Vanden Bosch
et al. (1999) obtained this result also in discrete time, while only considering
waiting time and server completion time, not idle time.

These results however only consider exponential service times. Robinson and
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Chapter 2. Literature

Chen (2003) do consider a different service time distribution, the generalized
lambda distribution. This distribution is very useful to fit to datasets of,
for example, realized service times. Using this distribution makes it possible
to derive schedules with a realistic service time distribution. Yet, they only
managed to do so for schedules with a maximum of 16 customers and only
with this specific distribution.

There have been more attempts in continuous time, see Westeneng (2007)
for an overview. However, to the best of our knowledge, there has been no
successful attempt for large schedules with general service time distributions
in continuous time. A recent attempt in continuous time, not mentioned in
the overview articles, is Kemper et al. (2011). In their paper, the authors
suggest an sequential approach to the problem. By sequential they refer to
an approach that determines the i-th appointment time ti, with the earlier
arrival epochs t1, · · · . . . , ti−1 being fixed already.

Below we put our contribution in the classification of Westeneng (2007):

Classification parameter Our setting

Methodology Analytical
Number of doctors 1
Number of patients n varies, n=100 is shown
per session
Appointment rule Interval
Patient classification Service times do not need to be i.i.d.
Scope One session
Stages Single stages
Queue discipline First appointment, first serve
Performance measurement Patients waiting time, doctors idle time

and doctors overtime
Service time distribution Exponential, log-normal, weibull

and general service time distribution
Patient punctuality Punctual
Walk-ins None
Doctors’ lateness Punctual
Doctors’ interruption level None

8



Chapter 3

Model Formulation

This chapter provides a technical introduction to the theory we use through-
out this thesis. In Section 3.1, we list the main assumptions and the outline
of our research. We continue with the mathematical notation in Section 3.2
and in Section 3.3 we introduce the most common loss functions. In Section
3.4 we present our algorithm that computes optimal schedules. We conclude
with the characteristics of two optimization approaches in Sections 3.5 and
3.6. In Chapter 4 we will deepen the understanding of the differences be-
tween both.

3.1 Problem Setting

An appointment schedule consists of arrival times for the customers. When
a customer arrives, the server is either available or busy. If it is available, it
is not utilized and the server is waiting, what is called idle time. Hence, it is
the time the server is waiting for the next customer after having served the
current customer earlier than expected. If the server is busy, the customer
has to wait, this time is called waiting time. The objective of scheduling is to
find an appointment system for which a particular measure of performance
for the system’s losses in terms of these waiting times and idle times is
optimized. In some settings also the completion time or system lateness are
added to the performance measure of the schedule. The system lateness
is the expected time the schedule exceeds the reserved running time of the
server.

9
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Figure 3.1: The notation used for the time slots and appointment times.

We investigate this problem under certain assumptions and in a setting
specific characteristics, which we list below:

1. There is one service provider.

2. The customers are punctual, i.e., customer i arrives at its assigned
time ti.

3. The server is punctual, i.e., if the server is idle and a customer arrives,
the server will start serving this customer immediately.

4. All customers show up for their appointment, i.e., the model does not
include no-shows.

5. The service times of the customers are modeled by a probability dis-
tribution. Unless stated otherwise, the service times for all customers
are i.i.d..

6. We do not consider a schedule which allows walk-in customers, e.g.,
emergency patients.

7. The service order of the customers is first appointment, first serve.

Further on in this thesis we will relax some of these restrictions, adjust-
ing our problem setting to make our results more applicable to practical
situations.

3.2 Notation

We consider an appointment schedule with customers arriving at their as-
signed arrival time, denoted by ti with t1 = 0 and t1 ≤ t2 ≤ · · · ≤ tn. So

10



3.2. Notation

customer 1 arrives and will immediately get served at t1 = 0. We define

xi−1 := ti − ti−1, (3.1)

to be the slot size to serve customer i − 1, for i > 1. Note that xi ≥ 0 for
i ≥ 1. Figure 3.1 gives an illustration on how to interpret notation (3.1).
The schedule in the figure starts on the left with the arrival of customer 1
on t1 = 0, next on t2 customer 2 arrives resulting in the time slot x1 for
customer 1. On t3 customer 3 arrives and so forth. We will use both xi, the
slot size for customer i, and ti, the arrival time for customer i, as variables
in this thesis. We denote n as the number of customers in the appointment
schedule.

Let us now introduce the following random variables:

Ii Idle time of the server before customer i arrives,
Wi Waiting time for customer i,
Bi Service time for customer i,
Si Sojourn time for customer i; the time customer i is in the system

(= Wi + Bi).

If customer i finds the server idle at his arrival, we can express Ii in terms
of random variables of the previous slot:

Ii = max{ti − ti−1 − (Wi−1 + Bi−1), 0},
= max{xi−1 − Si−1, 0}. (3.2)

If customer i finds the server busy at his arrival, we can express Wi in terms
of random variables of the previous slot:

Wi = max{Wi−1 + Bi−1 − (ti − ti−1), 0},
= max{Si−1 − xi−1, 0}. (3.3)

1−ix

1−it it

1−iW

1−iB

iI

1−iS

2−iB

1−ix

1−it it

1−iW

1−iB 1−iB

iW

1−iS
2−iB

1−iS

Figure 3.2: Graphical explanation of the relation between the random vari-
ables Bi, Ii, Wi and Si.
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Chapter 3. Model Formulation

Note that W1 = I1 = 0 and if Wi > 0 than Ii = 0 and if Ii > 0 than Wi = 0,
for i > 1. Expressions (3.2) and (3.3) are due to the Lindley recursion
(Lindley, 1952) and are illustrated in Figure 3.2. In this figure time is on
the horizontal axis and what is stacked vertically happens at the same time.
The left hand side represents the situation for expression (3.2) and the right
hand side represents the situation for expression (3.3). In both situations
time slot i− 1 starts with waiting time for customer i− 1, which is equal to
the exceeding service time of customer i − 2. This waiting time is followed
by its service time. Together this is the sojourn time for customer i−1. The
sojourn time on the left hand side is smaller than the size of the slot and
hence we have idle time, which is denoted by Ii. The sojourn time on the
right is larger than the size of the slot and hence customer i has to wait on
the service of its predecessor. So the time the previous customers exceeds
its time slot, is the waiting time for the next customer.

As we explained in the introduction our objective is to assure little waiting
time for the customer and the server. In case of simple linear loss, this
comes down to designing an appointment schedule with arrival times ti for
the customers such that,

n
∑

i=1

(

EIi(t1, . . . , ti) + EWi(t1, . . . , ti)
)

(3.4)

is minimal, i.e., our problem becomes,

min
t2,...,tn

n
∑

i=2

(

EIi(t1, . . . , ti) + EWi(t1, . . . , ti)
)

. (3.5)

The value of function (3.4) represents the total expected idle time of the
server and the total expected waiting time of all the customers together.
Note that the sum starts at i = 2, since I1 = W1 = 0. In some cases the idle
time of a server is more important than the waiting time of the customer.
For example an MRI scanner can cost millions, therefore the importance of
this scanner not being idle is larger than reducing the patient’s waiting time.
For this we introduce normalized weights, α and (1 − α), for both random
variables:

min
t2,...,tn

n
∑

i=2

(

αEIi(t1, . . . , ti) + (1 − α)EWi(t1, . . . , ti)
)

, α ∈ [0, 1].
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Secondly, the evaluation of the waiting time of a customer does not
necessarily show a linear pattern. That means that two customers waiting
one hour does not have to be evaluated equally to one customer waiting
two hours. Summarizing, the designer of the schedule might not wish to
measure both random variables linearly. For these purposes, we introduce
nondecreasing continuous functions g(·) and h(·) with g(0) = h(0) = 0. In
these functions we can include the weights. Hence, we arrive at:

min
t2,...,tn

n
∑

i=2

(

E[g(Ii(t1, . . . , ti))] + E[h(Wi(t1, . . . , ti))]
)

.

Until this moment we used ti, 1 ≤ i ≤ n as variables. For the main part of
this thesis we will use xi, 1 ≤ i ≤ n−1 as variables. Recall that, xi = ti+1−ti,
is the interarrival time for customer i. The general loss function (LF ) for
an appointment schedule now becomes:

LF (x1, . . . , xn−1) =
n

∑

i=2

(

E[g(Ii(x1, . . . , xi−1))] + E[h(Wi(x1, . . . , xi−1))]
)

.

Sometimes we prefer to analyze the loss function per slot, this is noted by
LFi with,

LF (x1, . . . , xn−1) =
n

∑

i=2

LFi(x1, . . . , xi−1),

=
n

∑

i=2

(

E[g(Ii(x1, . . . , xi−1))]

+E[h(Wi(x1, . . . , xi−1))]
)

. (3.6)

Further on in this thesis we do not explicitly denote the dependence of the
waiting and idle time on the previous slots. Instead we simply denote them
with Ii and Wi.

3.3 Various Loss Functions

3.3.1 General Loss Function

Upon deriving an appointment schedule one has to choose its loss function.
To do so, we introduced functions g(·) and h(·) to give weights and powers

13



Chapter 3. Model Formulation

to the random variables: idle time and waiting time. However, it depends
on the problem approach if one is able to work with the loss function of your
choice. In case of simulation one is truly free in choosing non-decreasing
functions g(·) and h(·) with g(0) = 0 and h(0) = 0. In case of the analytical
approach things become harder.

It is for example difficult to deal with the case where g and h have
different powers. The loss functions that are still applicable in the analytical
approach are those where g and h have the same power with the possibility
of adding weights. Hence for the analytical approach one may use:

LF (x1, . . . , xn−1) =
n

∑

i=2

(

αE[Ik
i (x1, . . . , xi−1)] + (1 − α)E[W k

i (x1, . . . , xi−1)]
)

,

α ∈ [0, 1], k ∈ N+.

Within this class of functions the linear loss function, as we will explain in
Section 3.3.3, is very well suited to make a correspondence to the systems
costs, this is well illustrated in Vanden Bosch et al. (1999). The quadratic
loss function is widely used because of its mathematical attraction, as we
will show in Section 3.3.2 and as is illustrated in Kemper et al. (2011). Both
type of loss functions can be used with and without weights.

3.3.2 Quadratic Loss Function

A common choice for g(·) and h(·) is the quadratic function, g(x) = h(x) =
x2. This function is used in for instance, Schild and Fredman (1961) and
Kemper et al. (2011). The loss function is denoted by Q. We obtain the
following loss function:

LFi(x1, . . . , xi−1) = Qi(x1, . . . , xi−1) = E[I2
i ] + E[W 2

i ], i > 1. (3.7)

Using (3.2) and (3.3) we get:

W 2
i + I2

i = (Si−1 − xi−1)
2, i > 1.

So (3.7) now becomes.

Qi(x1, . . . , xi−1) = E[I2
i + W 2

i ],

= E(Si−1 − xi−1)
2,

= ES2
i−1 − 2xi−1ESi−1 + x2

i−1.
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3.3. Various Loss Functions

The objective function we want to minimize becomes:

Q(x1, . . . , xn−1) =
n−1
∑

j=1

E[(Sj − xj)
2]. (3.8)

Note that we change index in this expression.

In case one wants to add weights, function (3.7) becomes:

Qi(x1, . . . , xi−1) = E[αI2
i + (1 − α)W 2

i ],

= αE[I2
i + W 2

i ] + (1 − 2α)EW 2
i , α ∈ [0, 1].

We choose to put the weight difference separately for the waiting time, be-
cause we do already need to derive expressions for the waiting time.

3.3.3 Linear Loss Function

Another common choice for g(·) and h(·) is the identity function g(x) = x =
h(x). This function is used in for instance, Wang (1999),Vanden Bosch et al.
(1999) and Kaandorp and Koole (2007). The loss function is denoted by L.
We obtain the following loss function:

LFi(x1, . . . , xi−1) = Li(x1, . . . , xi−1) = EIi + EWi, i > 1. (3.9)

Here again by (3.2) and (3.3) we get:

Wi + Ii = |Si−1 − xi−1|, i > 1.

Hence, the objective function we want to minimize in this case becomes:

L(x1, . . . , xn−1) =
n−1
∑

j=1

E|Sj − xj|.

In case one wants to add weights, function (3.9) becomes:

Li(x1, . . . , xi−1) = E[αIi + (1 − α)Wi],

= αE[Ii + Wi] + (1 − 2α)EWi, α ∈ [0, 1].

Along the same arguments as in the previous section, we choose to put the
weight difference separately for the waiting time.
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Chapter 3. Model Formulation

3.3.4 Completion Time

For a schedule it is also important to finish on time. Hence, one does not
only wants to minimize expected waiting and idle time but also minimize the
expected total completion time of the schedule. This can be done by simply
incorporating the total expected completion time in the loss function. This
is also done in: Fries and Marathe (1981), Wang (1999), Vanden Bosch et al.
(1999) and Kaandorp and Koole (2007). This results in:

LF (x1, . . . , xn−1) =
n

∑

i=2

(

E[g(Ii)] + E[h(Wi)]
)

+ Ef
(

Sn +
n−1
∑

i=1

xi

)

,

with f(·) a nondecreasing continuous function.

Likewise, the systems lateness can be incorporated. This is the expected
time the schedule exceeds the reserved operating time of the server:

LF (x1, . . . , xn−1) =
n

∑

i=2

(

E[g(Ii)] + E[h(Wi)]
)

+ max
(

0, f
(

tstart − tend + ESn +
n−1
∑

i=1

xi

))

,

with tstart = t1 = 0, the time the schedule starts and tend the time the
service provider and its operating space is reserved for a following session.
Exceeding of this time leads to penalties.

3.4 Wang’s Extended Algorithm for Sojourn

Times

In the next chapter we start to investigate the characteristics of appointment
scheduling with exponential service times. To do so, we use the results from
Wang (1999). This article studies the problem of sequencing and scheduling
n customers for a single-server system and showed that the optimal schedule
can be obtained by solving a set of nonlinear equations. We use these results
to efficiently derive expressions for the first moment of the sojourn times and
extend these results to be able to derive expressions for the second moment
of the sojourn times as well (in case µ1 = · · · = µn = 1). The algorithm
makes use of the memoryless property of the exponential distribution. The
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analytical consequences of this property for appointment scheduling is elab-
orated at the end of Chapter 1.

Following the results, we introduce the extended algorithm from Wang. Let
dn be the cumulative distribution function of the sojourn time for customer
n, u a vector of order n with all elements 1 and Pn(t) a probability vector
of dimension n, which is introduced as an auxiliary vector. The coordinates
in Pn represent the probabilities of a number of predecessors still in service.

Let us define:
dn(t) = 1− < Pn(t), u >,

with < ·, · > the dot product. The following expression is to be computed
before the algorithm starts:

P1(t) = exp(M1t),

with

Mn =









−µ1 µ1 0
−µ2 µ2

. . .
0 −µn









.

The following step of the algorithm is the computation of Pn(t) for n ranging
from 2 to the number of customers in the schedule:

Pn(t) = [Pn−1(xn−1), dn−1(xn−1)] exp(Mnt).

Note that exp(Mnt) is a n x n matrix and [., . . . , .] is a row vector.

With these results we are able to derive expressions for the first and sec-
ond moment of the sojourn time, ESn and ES2

n, which we will need in the
upcoming chapters:

ES1 =
1

µ1

,

ESi = [Pn−1(xn−1), dn−1(xn−1)]βn,

ES2
1 =

2

µ2
1

,

ES2
i = [Pn−1(xn−1), dn−1(xn−1)]ζn,

with:

βn = [n, n − 1, . . . , 1],

ζn = [n(n + 1), (n − 1)n, . . . , 2].
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Chapter 3. Model Formulation

This applies in a setting with i.i.d. service times with µ = 1.

For arbitrary µ, βn represents the sum of the expected service times of
customers still in the system:

βn = [
n

∑

i=1

1

µi

,

n−1
∑

i=1

1

µi

, . . . ,
1

µn

].

So far, an expression for ζn with arbitrary µ is not yet known. To obtain
such an expression turns out to be a hard problem. By hand we are able to
derive expressions for the second moment of the waiting time for customer
1 and 2, for arbitrary µ. By some algebra we obtain an expression for ζ2

and also for the last two coordinates in ζn. These results can be found in
Appendix A.2. In general, ζn does not represent the sum of second moments
of service times of customers in the system, but wil be a combination of first
and second moments.

The algorithm in this section is written in a Matlab function. The code,
including a clarification, can be found in Appendix A.1.

3.5 Simultaneous Optimization Approach

The simultaneous approach is an often used optimization approach. For
most problems one intends to find the global minimum, implicitly one will
use the simultaneous optimization approach to do so. In this approach all
the variables are simultaneously varied to obtain the global minimum of your
objective function. In our problem setting this implies that all the interar-
rival times are simultaneously varied such that the objective function attains
its global minimum. Our objective function is the general loss function, a
sum of loss functions per slot. Let us recall expression (3.6):

LF (x1, . . . , xn−1) =
n

∑

i=2

LFi(x1, . . . , xi−1).

This function is convex in all its variables, see Appendix A.5. Hence,
there is one local minimum, which is the global minimum. We call this min-
imum x̂, being the vector with the optimal interarrival times [x̂1, . . . , x̂n−1].
In x̂ the derivative in each variable is equal to zero, i.e.,

d

dxi

LF (x̂1, . . . , x̂n−1) = 0, for i = 1, . . . , n − 1. (3.10)
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3.6. Sequential Optimization Approach

The loss function per slot is a function of the previous slots and hence does
not depend on all the variables. For that reason the derivative of (3.10) with
respect to xi results in:

d

dxi

n
∑

j=2

LFj(x1, . . . , xj−1) =
d

dxi

n
∑

j=i

LFj(x1, . . . , xj−1).

Summarizing the previous expressions, the following holds:

d

dx1

n
∑

j=2

LFj(x1, . . . , xj−1)|x=x̂ = 0

d

dx2

n
∑

j=3

LFj(x1, . . . , xj−1)|x=x̂ = 0

...
...

d

dxn−1

LFn(x1, . . . , xn−1)|x=x̂ = 0

Hence, we need to solve the following system of equations:

d

dx1

n
∑

j=2

LFj(x1, . . . , xj−1) = 0,

d

dx2

n
∑

j=3

LFj(x1, . . . , xj−1) = 0,

...
...

d

dxn−1

LFn(x1, . . . , xn−1) = 0. (3.11)

Solving this system yields the exact, global minimum.

Now we will take a closer look at the optimization characteristics of the
sequential approach.

3.6 Sequential Optimization Approach

The sequential optimization approach is proposed in Kemper et al. (2011).
Following this approach, we first compute the interarrival time for customer
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Chapter 3. Model Formulation

1 by minimizing the loss function for slot 1. So

min
x1

LF2(x1).

Resulting in x̃1. Secondly, we compute the interarrival time for customer 2
by minimizing the loss function for slot 2, given the previously computed
x̃1. Hence,

x̃2 = min
x2

LF3(x̃1, x2).

We continue this process until we arrive at customer n.

x̃n−1 = min
xn−1

LFn(x̃1, . . . , x̃n−2, xn−1).

If one would substitute the expressions in each other, one arrives at the
following cumbersome expression:

min
xn−1

LFn(arg min
x1

LF2(x1), arg min
x2

LF3(arg min
x1

LF2(x1), x2), . . . , xn−1).

The loss function for slot i, LFi(x̃1, . . . , x̃i−1, xi), is convex in xi, see Ap-
pendix A.5. Hence, in order to solve this minimization problem, the follow-
ing system of equations needs to be solved sequentially:

d

dx1

LF2(x1) = 0,

d

dx2

LF3(x̃1, x2) = 0,

...
...

d

dxn−1

LFn(x̃1, . . . , x̃n−2, xn−1) = 0.

Note that the main difference with the simultaneous approach is that now
we have n − 1 minimization problems of 1 dimension.

For linear and quadratic loss functions, the sequential approach yields opti-
mal interarrival times:

x̃i = ESi, in case of a quadratic loss function; (3.12)

x̃i = F−1
Si

(1

2

)

, in case of a linear loss function, (3.13)
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3.6. Sequential Optimization Approach

with F−1
Si

the inverse of the distribution function of the sojourn time of
customer i. Both results are derived in respectively Section 4.1.3 and 4.2.3.
For more details, see Kemper et al. (2011).

In the next chapter we have a closer look at both optimization approaches
in a setting with i.i.d. exponential(µ=1) service times.
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Chapter 4

Analytic Approaches:

Simultaneous versus Sequential

In this section, we compare the performance of the sequential approach with
the simultaneous approach. The difference between these optimization ap-
proaches is that the sequential approach does not take future customers into
account, while the simultaneous approach does. As a consequence the re-
sulting schedules differ, which we elaborate in this chapter.
We compare both optimization approaches with i.i.d. exponentially dis-
tributed service times with µ = 1, unless stated otherwise.

4.1 Quadratic Loss Function

We start our comparison with the unweigthed quadratic loss function. Recall
this function from page 15:

Q(x1, . . . , xn−1) =
n−1
∑

j=1

E[(Sj − xj)
2].

4.1.1 A Schedule with Three Customers

First we consider the case where we have three customers with, µ1 = µ2 =
µ3 = 1. The first customer arrives at t1 = 0. According to Wang’s extended
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4.1. Quadratic Loss Function

algorithm we obtain:

ES1 = 1,

ES2
1 = 2,

ES2 = 1 + e−x1 ,

ES2
2 = 2 + 4e−x1 .

Using these, the expressions for the loss function per slot becomes:

Q2(x1) = ES2
1 + x2

1 − 2x1ES1 = 2 + x2
1 − 2x1,

Q3(x1, x2) = ES2
2 + x2

2 − 2x2ES2 = 2 + 4e−x1 + x2
2 − 2x2(1 + e−x1).

According to the sequential approach x̃1 is given by the solution of

d

dx1

Q2(x1) = 0.

Hence, 2x1 − 2 = 0, so,

x̃1 = 1.

x̃2 is given by the solution of

d

dx2

Q3(x̃1, x2) = 0.

Hence, 2x2 − 2(1 + e−x̃1) = 0, so

x̃2 = 1 + e−x̃1 = 1 + e−1 ≈ 1.37. (4.1)

Note that we could have derived these values from (3.12) much faster.

The total loss function is Q(x1, x2) = Q2(x1) + Q3(x1, x2) which you can
see in Figure 4.1. The plot shows the convexity of Q(x1, x2) and we see a
global minimum. We now minimize according to the simultaneous approach
to obtain this global minimum. So we take the derivative in both variables
equal to zero and solve the following system of equations:

dQ

dx1

= 2x1 − 2 − 4e−x1 + 2x2e
−x1 = 0,

dQ

dx2

= 2x2 − 2 − 2e−x1 = 0.
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Figure 4.1: Plot of the loss function as a function of x1 and x2. Quadratic
loss, n=3, i.i.d exponential(µ=1) service times.

The second equation leads to:

x2 = 1 + e−x1 . (4.2)

Note that this is the same expression as in the sequential case (4.1), as
we could have expected from (3.11) and (3.12). So the difference between
both optimization approaches, in this example, is the choice for the size of
x1. In the sequential case this value is already known and equal to 1. For the
simultaneous case we still have to compute this value. We substitute expres-
sion (4.2) in Q(x1, x2) and arrive at a convex function of only one variable,
x1, see Figure 4.2. One can see that the optimal value of x1 in the simulta-
neous case is larger than x̃1. This results, as the figure illustrates, in a lower
value of the loss function (Q). These results are summarized in Table 4.1.
This table shows the results for both optimization approaches. Also one can
see that for the losses per slot, Q2(x̂1) > Q2(x̃1) but Q2(x̂1, x̂2) < Q3(x̃1, x̃2)
what results in Q(x̂1, x̂2) < Q(x̃1, x̃2). We will continue the comparison with
a larger appointment schedule in the next section.

x1 x2 Q2(x1) Q3(x1, x2) Q(x1, x2)
sim 1.21 1.30 1.04 1.51 2.55
seq 1.00 1.37 1.00 1.60 2.60

Table 4.1: The differences between the sequential and simultaneous approach
for the quadratic loss function, n = 3, µ1 = µ2 = µ3 = 1
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simx1ˆ
seqx1

~

Figure 4.2: Plot of the loss function Q(x1, 1 + e−x1) as a function of x1.
Quadratic loss, n=3, i.i.d exponential(µ=1) service times.

x̂1 x̂2 x̂3 x̂4 x̂5, . . . , x̂74 x̂75 x̂76 x̂77 x̂78 x̂79

1.36 1.70 1.78 1.82 1.85 1.81 1.79 1.75 1.66 1.41

x̃1 x̃2 x̃3 x̃4 x̃5 x̃6 x̃7 x̃8 x̃9, . . . , x̃79

1.00 1.36 1.48 1.52 1.54 1.56 1.57 1.57 1.58

Table 4.2: The actual value of the slots of the schedules from Figure 4.3.
Quadratic loss, n=80, i.i.d. exponential(µ=1) service times.

4.1.2 More Customers, Scaling the Problem

In the previous section we analyzed the difference between the two optimiza-
tion approaches in a setting with only three customers. We now analyze the
difference with more customers. For this we use Wang’s extended algorithm,
see Wang (1999) and Section 3.4. With this we are still able to solve this
minimization problem analytically and exact. We use Matlab to do this.
The code for this extended algorithm can be found in Appendix A.1. The
code computes a value of the quadratic loss function for a certain appoint-
ment schedule, this schedule is presented as a vector ~x with interarrival
times xi. Next, we are able to minimize this function using fminsearch, a
multidimensional unconstrained nonlinear minimization function using the
Nelder-Mead simplex method. D’Errico (2005), extended this function to a
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Figure 4.3: The slot sizes of an appointment schedule, optimized using
the simultaneous and the sequential approach. Quadratic loss, n=80, i.i.d.
exponential(µ=1) service times.

constrained version, which we used for our multidimensional optimization
problem.

Figure 4.3 shows the problem optimized, using the sequential and the simul-
taneous approach. We see the slot size of the various slots on the y-axis and
the slot number on the x-axis. You can see that the slot sizes derived by the
sequential approach are smaller than the ones derived by the simultaneous
approach, except for the final few slots. After customer 10 the slot sizes
of the sequential approach stabilize to a value of approximately 1.58. The
slot sizes of the simultaneous approach also stabilizes after customer 10 to
a value of approximately 1.84, however, towards the end of the schedule,
the slot sizes decrease. This results in a dome shaped graph and this phe-
nomenon illustrates what we stated before, that the simultaneous approach
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4.1. Quadratic Loss Function

takes future arrivals into account. At first, it takes future services into ac-
count, resulting in larger slots. Towards the end of the schedule there are
less future arrivals, resulting in a decrease of slot size. This is in contrast
to the sequential approach where we do not see this behavior. In the next
section we come back to the values of stabilized slot sizes.

Next, we analyze the differences between both approaches on the value of
the objective function, which is the value of function (3.8), Q(x1, . . . , xn−1).
This difference is more interesting since it is the systems loss we want to
minimize. In Figure 4.4 we show these values for a range of problem di-
mensions for both optimization approaches. For all the considered problem
dimensions, the objective of simultaneously derived schedules is smaller than
for sequentially derived schedules. The percentage difference between both
is also shown in the figure. This value seems to stabilize at approximately
20%. In Section 4.3 we will prove that as the dimension increases we trully
have convergence to this percentage.
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objective value simultaneous
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Figure 4.4: The objective values of both optimization approaches and their
percentage differences. Quadratic loss, 0<n<28, i.i.d exponential(µ=1) ser-
vice times.

4.1.3 Limiting Properties

In the previous section, we have seen that in case of large schedules, (i.e.,
many customers) the size of the majority of the slots is equal to approxi-
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mately 1.58 for the sequential approach and equal to approximately 1.84 for
the simultaneous approach. In this section we prove these values.

We have seen that if n increases the number of slots with the same size in-
creases, for both simultaneously and sequentially derived schedules. So for
large n most slots have equal size. Hence, for n large enough, the total loss
function can be approximated by:

Q(x1, . . . , xn) =
n

∑

i=1

E(Si − xi)
2 ≈ nE(S(x) − x)2. (4.3)

Clearly, convexity is preserved since (4.3) is a sum of convex functions. We
take the derivative and set it equal to zero to obtain an expression for the
optimal slot size:

d

dx
nE(S(x) − x)2 = n(

d

dx
ES2

x + 2x − 2ES(x) − 2x
d

dx
ES(x)) = 0. (4.4)

The scheduling setting we study in this thesis can be seen as a queue with
deterministic arrivals, exponential service times and 1 server, i.e., a D|M |1
queue. From Tijms (1986) we know that for the steady state of such a
D|M |1 queue we have:

ES(x) =
1

µ(1 − ρx)
, (4.5)

ES2(x) =
2

µ2(1 − ρx)2
. (4.6)

Where ρ := ρx is the occupation rate of the queue, with ρ ∈ (0, 1) the unique
solution of:

e−µ(1−ρ)x = ρ, (4.7)

with x the slot size of the stabilized system. More details can be found in
Appendix A.4

For n large we may assume that our system is in steady state. With steady
state we mean that optimal interarrival times do not change if n increases.
This assumption is supported by the results from Section 4.1.2, so we may
use the aforementioned results from Tijms, expressions (4.5) and (4.6). Next,
to obtain a solution for equation (4.4) we need the derivatives of these results:

d

dx
ES(x) =

ρ
′

x

µ(1 − ρx)2
, (4.8)

d

dx
ES2(x) =

4ρ
′

x

µ2(1 − ρx)3
. (4.9)
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4.1. Quadratic Loss Function

The previous expressions indicate that we need an expression for ρ
′

x. By
implicit differentiation of (4.7) we arrive at:

ρ
′

x =
µρx(ρx − 1)

1 − µρxx
. (4.10)

Via (4.7) we can express x in terms of ρx:

x =
log ρx

µ(ρx − 1)
. (4.11)

Now we can substitute (4.8), (4.9), (4.10) and (4.11) into (4.4):

0 =
4ρ

′

x

µ2(1 − ρx)3
+ 2x − 2

1

µ(1 − ρx)
− 2x

ρ
′

x

µ(1 − ρx)2
,

=
4µρx(ρx − 1)

(1 − µρxx)µ2(1 − ρx)3
+ 2x − 2

1

µ(1 − ρx)
− 2x

µρx(ρx − 1)

(1 − µρxx)µ(1 − ρx)2
,

=
4ρx

(1 − ρx + ρx log ρx)µ(ρx − 1)
+

2 log ρx + 2

µ(ρx − 1)
+

2ρx log ρx

(1 − ρx + ρx log ρx)µ(ρx − 1)
,

=
2

µ(1 − ρx)(1 − ρx + ρx log ρx

[

1 + log ρx + ρx(1 + log ρx + log2 ρx)
]

.

This equation implies that:

0 = ρx + (1 + log ρx)(1 + ρx log ρx).

Note that this expression does not contain µ, so the optimal value of ρ̂x is
independent of the value of µ. Solving this equation leads to ρ̂x ≈ .25 and
hence by (4.11) we get:

x̂ =
log ρx

µ(ρ − 1)
≈ 1.85

µ
.

For the sequential optimization approach we obtain a different result. In
this approach the derivatives in equation (4.4) are zero. Solving this yields
the result (3.12) on page 20,

x̃ = ES(x).

Substituting (4.5) and (4.11) into this result we get:

log ρx

µ(ρx − 1)
=

1

µ(1 − ρx)
,
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which solves for ρ̃x = e−1. Note that this value is also independent of µ. For
the slot size we get:

x̃ =
log ρ̃x

µ(ρ̃x − 1)
=

e

µ(e − 1)

∣

∣

∣

µ=1
≈ 1.58.

4.1.4 Sequential with Simultaneous Start

To understand the difference between both optimization approaches even
better we will derive a schedule starting with simultaneously derived slots
followed by sequentially derived slots, see Figure 4.5. For clients 1, . . . , 10 we
use the interarrival times from a simultaneous optimized problem (n = 33).
After customer 10 we schedule the customers according to the sequential
approach. The result is illustrative for the differences between both ap-
proaches. As we start the sequential approach, the interarrival time drops
and continues with the same interarrival times as in the sequential approach,
see dotted line in Figure 4.5. This happens because it does not take future
customers into account. Slot x10 is computed according to the sequential
approach. Hence x̃10 = ES10(x̂1, . . . , x̂9). The slots 1-9, simultaneously de-
rived, are larger than they would be when sequentially derived. This results
in:

ES10(x̂1, . . . , x̂9) < ES10(x̃1, . . . , x̃9).

4.2 Linear Loss Function

We start our comparison with the unweigthed linear loss function. Recall
this function from page 15

L(x1, . . . , xn−1) =
n−1
∑

j=1

E|Sj − xj|.

4.2.1 A Schedule with Three Customers

We consider the case where we have three customers and µ1 = µ2 = µ3 = 1.
The first customer arrives at t1 = 0. According to Wang’s algorithm the
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Figure 4.5: First 9 clients according to simultaneous approach continued by
sequential approach. Quadratic loss, n=33, i.i.d exponential(µ=1) service
times.

loss function per slot becomes:

L2(x1) = E|S1 − x1| = −1 + x1 + 2e−x1 ,

L3(x1, x2) = E|S2 − x2| = −1 + x2 + 2e−x2 − e−x1 + 2(1 + x2)e
−x1−x2 .

According to the sequential approach x̃1 is given by the solution of

d

dx1

L2(x1) = 0.

Hence, 1 − 2e−x1 = 0, so,

x̃1 = log 2 ≈ .69.

The solution of x̃2 is given by :

d

dx2

L3(x̃1, x2) = 0.

Hence, 1 − 2e−x̃1−x2(ex̃1 + x2) = 0, so

x̃2 = −2 − product logarithm[−1,−1/e2] ≈ 1.15.
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Figure 4.6: Plot of the loss function as a function of x1 and x2. Linear loss,
n=3, i.i.d exponential(µ=1) service times.

This result is obtained with Mathematica, a mathematical software package.
The product logarithm is also called the Omega function or the Lambert W
function. It is defined as the solution for w in z = wew, with z ∈ R Note
that we could have derived these values from (3.13) much faster.

The total loss function is L(x1, x2) = L2(x1) + L3(x1, x2), which you can
see in Figure 4.6. The plot shows again the convexity of L(x1, x2) and we
see a global minimum. We will now minimize according to the simultaneous
approach to obtain this global minimum. So we take the derivative in both
variables equal to zero and solve the following system of equations:

dL

dx1

= e−x1−x2(ex2(ex1 − 1) − 2 − 2x2) = 0,

dL

dx2

= 1 − 2e−x1−x2(ex1 + x2) = 0.

Solving this system leads to

x̂1 = .89, x̂2 = 1.05.

The results are summarized in Table 4.3. This table shows the results for
both optimization approaches. Also one can see that for the losses per slot,
L2(x̂1) > L2(x̃1) but L2(x̂1, x̂2) < L3(x̃1, x̃2) what results in L(x̂1, x̂2) <
L(x̃1, x̃2). We will continue the comparison with a larger appointment sched-
ule in the next section.
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x1 x2 L2(x1) L3(x1, x2) L(x1, x2)
sim .89 1.05 .71 .93 1.64
seq .69 1.15 .69 .96 1.66

Table 4.3: The differences between the sequential and simultaneous ap-
proach in resulting appointment schedules for the linear loss function, n=3,
µ1=µ2=µ3=1

4.2.2 More Customers, Scaling the Problem
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Figure 4.7: Slot sizes of an appointment schedule, optimized using
the simultaneous and the sequential approach. Linear loss, n=7, i.i.d
exponential(µ=1) service times.

As in the quadratic case we can also scale the problem in the linear case.
We used Matlab to solve this minimization problem.

As an example we optimized a schedule for 7 customers in Figure 4.7. You
can see that the slot sizes derived by the sequential approach are smaller
than the ones derived by the simultaneous approach, except for the final
few slots. Again we see the dome shape for the interarrival times, as we
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saw with the quadratic loss. Again, the slot size of the sequential approach
stabilizes as n increases. The size of this slot is approximately 1.39. The
slot size of the simultaneous approach stabilizes to a value of approximately
1.68. Again this applies for the majority of the slots in the middle of the
schedule. We come back to the stated values in the next section.

4.2.3 Limiting Properties

In the previous section we have seen that in case of large schedules, (i.e.,
many customers) the size of the majority of the slots is equal to approxi-
mately 1.58 for the sequential approach and equal to approximately 1.84 for
the simultaneous approach.

We have seen that if n increases the number of slots with the same size in-
creases as well, for both simultaneously and sequentially derived schedules.
So for large n most slots have equal size. Hence for n large enough, the total
loss function can be approximated by:

n
∑

i=1

E|Si − xi| ≈ nE|S(x) − x|,

= n

[∫ ∞

x

(s − x)fS(x)(s)ds +

∫ x

0

(x − s)fS(x)(s)ds

]

.(4.12)

Kemper et al. (2011) tells us that the distribution of the sojourn time is

FS(x)(s) = 1 − e−µ(1−ρx)s. (4.13)

So the density of the sojourn time is

fS(x)(s) =
d

ds
FS(x)(s) = µ(1 − ρx)e

−µ(1−ρx)s.

Substituting this together with (4.11) and ρx ∈ (0, 1), the unique solution
of (4.7), in equation (4.12), we get:

n

[

1 − 2e−µ(1−ρx)x − µ(1 − ρx)x

µ(ρx − 1)

]

= n

[

1 − 2ρx + log ρx

µ(ρx − 1)

]

.
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This again is a convex function and so we set the derivative equal to zero.
By using (4.10) and (4.11) we get:

0 =
d

dx

1 − 2ρx + log ρx

µ(ρx − 1)
,

= −(1 + ρx(−2 + log ρx))ρ
′

x

µ(ρx − 1)2ρx

,

=
1 + (−2 + log ρx)ρx

µ(ρx − 1)(1 − ρx + ρx log ρx)
.

This equation implies that:

1 = (2 − log ρx)ρx.

Note that this expression does not contain µ, so the optimal value of ρ̂x is
independent of value of µ. Solving this equation leads to:

ρ̂x =
−1

product logarithm(−1, −1
e2 )

≈ .32,

with the product logarithm as in the previous section.

Hence by (4.11) we get:

x̂ =
1.68

µ
,

For the sequential optimization approach we obtain a different result. In this
approach, setting the derivative of expression (4.12) equal to zero yields, by
an application of Leibniz’s rule, result (3.13) on page 20,

x̃ = F−1(1/2).

Substituting (4.11) and rewriting (4.13), we get for this result,

log ρx

µ(ρx − 1)
=

log (1 − 1
2
)

µ(ρx − 1)
,

which solves for ρ̃x = 1
2
. Note that this is independent of µ. So we get:

x̃ =
log ρ̃x

µ(ρ̃x − 1)
=

2 log 2

µ

∣

∣

∣

µ=1
≈ 1.39.
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4.3 Loss Function Value Comparison

In case of the quadratic loss function, Figure 4.4 already indicated a con-
vergence of the percentage difference to approximately 20%. In this section
we prove that the percentage difference of the objective values of both opti-
mization approaches converges to 20% as the schedule size increases. This
applies to both the quadratic loss function as the linear loss function. We
use the results from the previous sections:

Quadratic loss function:

nE(S(x̃) − x̃)2

nE(S(x̂) − x̂)2
=

E(S(x̃) − x̃)2

E(S(x̂) − x̂)2
,

=
2 + 2 log ρ̃x + log2 ρ̃x

µ2(ρ̃x − 1)

/2 + 2 log ρ̂x + log2 ρ̂x

µ2(ρ̂x − 1)
,

=
2 + 2 log ρ̃x + log2 ρ̃x

ρ̃x − 1

ρ̂x − 1

2 + 2 log ρ̂x + log2 ρ̂x

.

Observe that this fraction is independent of µ, recall that ρ̃x = e−1 and
ρ̂x = .25 are also independent of µ. Hence,

nE(S(x̃) − x̃)2

nE(S(x̂) − x̂)2
≈ 1.23.

Linear loss function:

nE|S(x̃) − x̃|
nE|S(x̂) − x̂| =

E|S(x̃) − x̃|
E|S(x̂) − x̂| ,

=

[

1 − 2ρ̃x + log ρ̃x

µ(ρ̃x − 1)

]

/

[

1 − 2ρ̂x + log ρ̂x

µ(ρ̂x − 1)

]

,

=
1 − 2ρ̃x + log ρ̃x

(ρ̃x − 1)

(ρ̂x − 1)

1 − 2ρ̂x + log ρ̂x

.

Again, observe that this fraction is independent of µ, recall that ρ̃x = 1
2

and
ρ̂x = .32 are also independent of µ. Hence,

nE|S(x̂) − x̂|
nE|S(x̂) − x̂| ≈ 1.21.

So, for both types of loss functions the difference between the sequential
approach and the simultaneous approach is over 20%, independent of µ.
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4.4 Conclusions

For the comparison between both optimization approaches studied in this
chapter, we can conclude that in a i.i.d. exponential setting, the sequen-
tial approach yields over 20% more expected loss than the simultaneous
approach. This applies for both the unweighted quadratic and unweighted
linear loss function and is independent of the value of µ.

An important aspect of appointment scheduling is the computation time
for a schedule. The sequential approach is able to construct a schedule in
only a few seconds. While for the simultaneous approach this is a matter
of minutes in the exponential case and a matter of hours with other ser-
vice time distributions. Hence, with the simultaneous approach you derive
schedules with a lower value of the loss function than as with the sequen-
tial approach, but the latter approach creates schedules much faster with
the price of having more expected loss for the system. Especially for large
schedules the computation time becomes substantial. We come back to this
remark in the upcoming chapters.

The results from this chapter made us more aware of the dynamics of
appointment scheduling. This awareness consists of the consequences of
whether taking future arrivals into account and the derivation of the wait-
ing times capturing the influence of all the previous customers. The latter
knowledge we intend to exploit in the upcoming chapters to overcome the
analytical complications of appointment scheduling with general service time
distributions. Furthermore, the large number of optimal interarrival times
with the same size in a schedule (when service times are i.i.d.) justified
the usage of limiting results. This property motivated us to introduce an
approximation method to overcome the problem with dimensionality, which
you can find in the next chapter.
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Chapter 5

Approximation Methods for

Appointment Scheduling

In this chapter we will introduce approximation methods to overcome the
complications we stated in the introduction, these are, the dimensionality
and the analytical problems with general service time distributions. The
methods can be used while considering the simultaneous optimization ap-
proach, which is the approach we consider throughout this chapter, unless
stated otherwise.

5.1 Equidistant Appointment Times

In the case of a schedule with i.i.d service times, we have seen that the slot
sizes of the customers in the centre of the optimal schedule are equal. Hence,
if n is large most of the customers will have the same interarrival time in
the optimal schedule. So generally speaking, we consider an n dimensional
optimization problem, which has an optimal solution with most of the vari-
ables having the same optimal value. Perhaps we can exploit this to reduce
the dimension of the problem by letting those slots with the same optimal
size correspond to only one variable. One radical choice even, is if we take
for example x1 = x2 = · · · = xn−1. In this case we reduce the dimension
of the problem from n to 1. Note that this approximation method only
works if the customers have the same service time distribution and we ap-
proach the problem simultaneously. This radical choice results in schedules
with equidistant appointment times, hence the name of this approximation
method. Recall the results from previous chapter and notice the similarities
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with Sections 4.1.3 and 4.2.3, where we approached the limiting schedule
with one single variable as well.

For small n this heuristic affects the performance considerably more than
for larger schedules, but still it is not substantial as Figure 5.1 illustrates. In
this figure we show the value of the quadratic loss function of optimal sched-
ules divided by the value of schedules derived with the equidistant method.
The figure shows that as n grows, the ratio converges to 1 and is never larger
than 1.02 (2%).
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Figure 5.1: The fractional difference in objective of the equidistant approach
and the non-equidistant. Quadratic loss, 0<n<85, i.i.d exponential(µ=1)
service times.

5.2 Lag Order

In this section we introduce the main result of this thesis. The Lag order
approximation method. In the first part of this thesis we considered the
waiting time for a certain customer as a function of the service times of all
the previous customers. Hence we considered the waiting time expression:

Eh(Wi(x1, . . . , xi−1)). (5.1)
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The key observation is that customers i’s waiting time depends on all the
time slots and service times of preceding customers. Additionally, the further
away a predecessor, the smaller his influence on the waiting time, illustrated
by Figure 5.2. The figure shows the sojourn time of a customer from the
center of an simultaneously optimized schedule. This sojourn time consists
of its service time and waiting time. The waiting time by itself, consists
of waiting time caused by the customers first predecessor, caused by the
customers second predecessor and so forth, until we arrive at 100%. As the
figure illustrates the waiting time caused by preceding customers declines
as this customer is earlier in the schedule, until the influence is neglegible.
Also one can discard this influence even before it is neglegible. Cutting of
this influence until a certain level is the basic idea of this approximation
method. Summarizing:

We do not create expressions of the waiting time in terms of all the
previous customers, but only the first few. So the expression for lag order k
of (5.1) would be:

Eh(Wi(xi−k, . . . , xi−1)).

As a result this approximation method enables the use of other service time
distributions besides the exponential. In case of the exponential service
times we have seen that it is possible to derive expressions for the waiting
times considering the influence of all the predecessors. This is very hard in
case of other service time distributions, since they do not have the memo-
ryless property, as we explained in Chapter 1. So in case of other service
times distributions we arrive at difficult expressions and evaluations of com-
plex integrals. With a decrease of the influence of previous customers these
expressions become more attractive, without losing too much performance
in terms of the value of the loss function, as you will see in Chapter 6.

As we mentioned before, we call this approximation method the lag order
method as we consider the lags of influence on the waiting time up to a
certain order. The various lag orders are defined as follows.

• Lag order I: there is no influence of previous customers on the current
customer waiting time

• Lag order II: there is only influence of first previous customer on the
current customers waiting time

• Lag order III: there is influence of first two previous customers on the
current customers waiting time
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Figure 5.2: Percentage influence on the sojourn time of a customer from
the center of an optimized schedule. Service times exponentially (µ = 1)
distributed and we considered the quadratic loss function with n = 30.
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Figure 5.3: Explanation of the lag order terminology.

• Lag order k: there is influence of first k− 1 previous customers on the
current customers waiting time

• Full lag order: The normal setting, without using the approximation
method, i.e., full influence.

The various lag orders are illustrated in Figure 5.3. One can see the same
values as in Figure 5.2, but now we discard the level of influence of preceding
customers.

To give an impression of the effect of different orders we apply it to both
optimization approaches. The results can be found in Figure 5.4 and Table
5.1. One sees that as the order increases the schedules converge to a limiting
schedule, the full lag order schedule. How close every order approximates
the full lag order is subject of Chapter 6, Table 5.1 gives an impression
already. It shows the objective values of various lag order schedules, and
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one can see the convergence for both optimization approaches, as the order
increases the objective value of that schedule converges to the objective of
the full lag order.

Notice the kinks in both figures. In Figure 5.4(a) one can see the kink
moving to the right as the lag order increases, this is caused by the ne-
glected waiting time which results in an optimistic next interarrival time. In
the sequential approach the kink represents the moment the lag order starts
being active (before the kink the order is bigger than the number of cus-
tomers already scheduled). The same reasoning applies for the simultaneous
approach.

lag order I II III IV V Full
sim 47.6 22.9 19.5 18.6 18.4 18.3
seq 47.6 24.3 23.3 21.8 21.2 20.6

Table 5.1: The objective value of various lag order using both the simulta-
neous and the sequential optimization approach. Quadratic loss function,
n=11, i.i.d. exponential(µ=1) service times.

5.3 Hybrid Method

In an appointment scheduling problem with i.i.d. general service times we
may apply both proposed approximation methods at the same time. By
applying both methods, one is able to derive large appointment schedules
with general service times, this we may call the hybrid method.

In the next chapters we will apply the proposed approximation methods to
scheduling problems which have the aforementioned complications, general
service times and dimensionality.
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(a) Sequentially optimized schedules for various lag orders.
Quadratic loss, n=15, i.i.d exponential(µ=1) service times.
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(b) Simultaneously optimized schedules for various lag orders.
Quadratic loss, n=11, i.i.d exponential(µ=1) service times.

Figure 5.4: The lag order approach applied to exponential distributed service
times considering quadratic loss.
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Chapter 6

Realistic Service Time

Distributions

Most analytical studies use exponential service times in order to make their
methods tractable, like we did as well in Chapter 4. However empirical ev-
idence shows that this assumption is too restrictive and unrealistic (Cayirli
and Veral, 2003). Hence, real life data of service times do not fit to the expo-
nential distribution, see also Brown et al. (2005). In this chapter we replace
the exponential distribution by a general distribution for the service times,
enabling a more realistic setting. We are however unable to generate ex-
pressions for the waiting times with general service times. So with a general
service time distribution we can not derive optimal schedules analytically.
Therefore, we use the lag order approximation method from Section 5.2.

In this chapter we work with the quadratic loss function. Other loss func-
tions are possible as well, however they will require the derivation of different
moments of idle and waiting time than show below.

From the previous chapters we need:

EW 2
i+1 + EI2

i+1 = E(Si − xi)
2,

= ES2
i + x2

i − 2xiESi,

= E(Bi + Wi)
2 + x2

i − 2xiE(Bi + Wi),

= EB2
i + EW 2

i + 2EBiEWi +

x2
i − 2xi(EBi + EWi). (6.1)
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6.1. Lag Order Waiting Times

6.1 Lag Order Waiting Times

Expression (6.1) indicates that, for the quadratic loss function, we need
expressions for the first and the second moment of the waiting time for
general service time distributions. Below we derive these expression for lag
order I, II and III.

Lag order I:
In this order the waiting time of customer i does not depend on preceding
customers, hence,

EWi = 0,

EW 2
i = 0.

For this order, expression (6.1) becomes:

EW 2
i+1 + EI2

i+1 = EB2
i + x2

i − 2xiEBi.

Lag order II
In this order the waiting time of customer i depends on the service time of
customer i − 1. This implies that,

EWi =

∫ ∞

xi−1

(s − xi−1)fBi−1
(s)ds, (6.2)

EW 2
i =

∫ ∞

xi−1

(s − xi−1)
2fBi−1

(s)ds, (6.3)

with fBi
(s) the probability density function (pdf) of the service time of

customer i.

To derive expressions (6.2) and (6.3), we assume that the service of the
previous customer starts at its assigned arrival time, ti−1.

Lag order III
In this order the waiting time of customer i depends on the service time of
customer i−1 and i−2. For ease of notation and also to keep the expressions
readable, we chose to derive these expressions for i = 3. For more details
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Chapter 6. Realistic Service Time Distributions

see Appendix A.6. Recall that the service times are independent.

E[W3] =

∫ ∞

0

E[W3|B1 = u1]fB1(u1)du1,

=

∫ t2

0

E[W3|B1 < t2]fB1(u1)du1 +

∫ t3

t2

E[W3|t2 < B1 < t3]fB1(u1)du1

+

∫ ∞

t3

E[W3|t3 < B1]fB1(u1)du1,

=

∫ x1

0

fB1(u1)du1

∫ ∞

x2

(u2 − x2)fB2(u2)du2

+

∫ x1+x2

x1

∫ ∞

x1+x2−u1

(u2 − (x1 + x2 − u1))fB2(u2)du2fB1(u1)du1

+

∫ ∞

x1+x2

(u1 − (x1 + x2) + EB2)fB1(u1)du1,

E[W 2
3 ] =

∫ x1

0

fB1(u1)du1

∫ ∞

x2

(u2 − x2)
2fB2(u2)du2

+

∫ x1+x2

x1

∫ ∞

x1+x2−u1

(u2 − (x1 + x2 − u1))
2fB2(u2)du2fB1(u1)du1 +

∫ ∞

x1+x2

[

(u1 − (x1 + x2))
2 + 2(u1 − (x1 + x2))EB2 + EB2

2

]

fb1(u1)du1.

To derive expressions E[W3] and E[W 2
3 ] in lag order III, we assume that

the service of the two customers earlier, in this case customer 1, starts at
its assigned arrival time, t1 = 0. This is of course the case for customer
1. But in this lag order it will be generally assumed that customer i − 2
starts getting service at ti−2, while deriving the waiting time expression for
customer i.

6.2 Log-Normal Distribution

A commonly used distribution for service times in a realistic setting is the
log-normal distribution, see Cayrili et al. (2006) and Klassen and Rohleder
(2004). The pdf of the log-normal distribution with parameters µ and σ is
given by:

f(x; µ, σ) =
1

xσ
√

τ
e−

(ln(x)−µ)2

2σ2 , x > 0.
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6.2. Log-Normal Distribution

We will generate an appointment schedule using this distribution. Without
loss of generality we choose EBi = VarBi = 1, like in the exponential setting
of Chapter 4. Hence, EB2

i = 2. The first and second moment are given
through, eµ+σ2/2 and EB2

i = e2(µ+σ2). Solving this leads to:

σ =
√

log 2, µ = − log 2

2
.

We derive the required expressions from the previous section using ma-
nipulations by hand and Mathematica. We implement these in a Matlab
code and we use fminsearchbnd to solve the optimization problems. Ta-
ble 6.1(a) and 6.1(b) show the results. First, we applied the lag order to
a scheduling problem with 21 customers and second to a problem with 31
customers. The tables show results for the various lag orders. Simulated
optimal, from the first column, means that we use fminsearchbnd in com-
bination with our simulation program, as explained in Appendix A.7. This
approach results in the optimal schedule. One can find in the second column
the most frequent slot size of the derived schedules, in the third column the
value of the loss function obtained by simulation, see Appendix A.7. The
simulated value of the total loss has confidence interval of less than 1%. The
forth column (∆ Opt) shows the percentage difference of the specific lag or-
der with the simulated optimal schedule. The value of ∆ Opt is a indication
of the performance of the specific lag order. Finally the last column shows
the computation time for that schedule, the E stands for the power of ten.

The coefficient of variation(CV), which is the standard deviation divided by
the mean (CV = σ/µ), is a commonly used measure for the variability of
service times. Empirical studies report CV values that range from approx-
imately .35 to .85 (Cayirli and Veral, 2003). In the previous situation we
had CV = 1. We choose CV = .5 and keep without loss over generality the
first moment equal to 1. For the parameters this implies:

σ =

√

log
5

4
, µ = − log 5

4

2
.

According to what one would expect, the slots become smaller, but also the
lag order performs better. This is due to the lower variance, which causes
smaller expected waiting times and with that comes smaller influence of pre-
ceding customers on the waiting time, what results in a better performance
for a specific lag order. The results can be found in Table 6.1(c). The ob-
jective value of the lag order III schedule has a error of less than 1% with
respect to the simulated optimal schedule.
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Chapter 6. Realistic Service Time Distributions

6.3 Weibull Distribution

Another commonly used distribution for service times in a realistic setting
is the Weibull distribution, see Liu and Liu (1998) and Babes and Sarma
(1991). The pdf of the Weibull distribution is given by:

f(x; λ, k) =
k

λ

(x

λ

)k−1

e−(x/λ)k

, x > 0.

Again we choose for a realistic coefficient of variation and a first moment
equal to 1. We choose CV 6= 1

2
but CV =

√

8/τ − 1 ≈ 0.52, since this
choice reduces the Matlab code for the resulting expressions from Section
6.1 substantial. The results can be found in Table 6.1(d). We find lag order
II performing having an error of 3.4% with respect to the simulated optimal
schedule.

6.4 Conclusions

In this chapter we applied the lag order approximation method to scheduling
problems with realistic service time distributions. We derived expressions for
lag order I, II and III for arbitrary service time distributions. The results
show that as the lag order increases the performance of the suboptimal
schedule converges to the performance of the optimal schedule.

If one takes a closer look at Table 6.1, one can see that the performance of
a certain lag order depends on two parameters. Which are, the number of
customers and the coefficient of variation. For this, one has to investigate
upfront what lag order suffices for the specific schedule one has to construct.

In the next Chapter we intend to put this process into practice with a
problem from practice.
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6.4. Conclusions

(a) Various lag orders compared with simulated optimal schedule. Quadratic loss,
n=21, i.i.d log-normal(CV=1) service times.

Computation type Most frequent Total loss ∆ Opt CPU
slot size (simulated) time (s)

Simulated optimal 1.80 45 – 5E3
lag order I 1 190 322% 0
lag order II 1.38 74 64% 3
lag order III 1.78 49 9% 4.3E3

(b) Various lag orders compared with simulated optimal schedule. Quadratic loss,
n=31, i.i.d log-normal(CV=1) service times.

Computation type Most frequent Total loss ∆ Opt CPU
slot size (simulated) time (s)

Simulated optimal 1.79 72 – 15E3
lag order I 1 425 490% 0
lag order II 1.38 129 79% 16
lag order III 1.78 78 8% 12E3

(c) Various lag orders compared with simulated optimal schedule. Quadratic loss,
n=31, i.i.d log-normal(CV=.5) service times.

Computation type Most frequent Total loss ∆ Opt CPU
slot size (simulated) time (s)

Simulated optimal 1.79 15.2 – 3E3
lag order I 1 102 577% 0
lag order II 1.19 23.5 55% 4
lag order III 1.49 15.3 <1% 4E3

(d) Various lag orders compared with simulated optimal schedule. Quadratic loss,
n=31, i.i.d weibull(CV=.52) service times.

Computation type Most frequent Total loss ∆ Opt CPU
slot size (simulated) time (s)

Simulated optimal 1.28 20.4 – 4E3
lag order I 1 108 427% 0
lag order II 1.20 21.1 3.4% 2
lag order III 1.18 20.9 2.4% 2E3

Table 6.1: Results of the lag order approximation method with realistic
service time distributions. All schedules are simultaneously optimized. The
simulated values of the total loss have a confidence interval of 1%.
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Chapter 7

Real Life Appointment

Schedule

In this chapter we consider a real life scheduling problem. We fit a distribu-
tion to a dataset and use this distribution to design appointment schedules.
We use both approximation methods from Chapter 5 as well as the hybrid
method.

7.1 CT Scan

To illustrate the methods introduced in the previous chapters, we discuss
the scheduling process in a computed tomography (CT) scan department.
The example results from a lean six sigma project from IBIS UvA at the
Deventer Hospital, described in Mast et al. (2011). A CT scan is a medical
imaging method, used in the diagnostic phase of a healthcare process. The
patients are typically scheduled between 8am−1pm on workdays, and are
treated in their scheduled order. In general, 20 patients are scanned during
this time period. Since the investment of the CT scan is around 1.3 million
euros and you need personnel (1 operator) to operate this machine we will
weight the idle time of this machine higher than the waiting time of a patient.
The decision for these weights are to be made by the schedule designer or
a manager. Guidelines so as how to choose these weights can be found
in Fries and Marathe (1981). We choose our weights by considering the
running costs of the CT scan and the costs of a patient waiting. We take 6
years depreciation time for the CT scan, which implies .2 million costs per
year. We estimate the costs of one operator on .1 million. Hence, the total
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7.2. Fitting Data for Service Time

running costs are .3 million per year. We estimate a patient’s income also
on .1 million a year and assume that the time a patient is waiting, he would
have been able to yield income as well. So we obtain at a cost ratio of 3:1
for idle time and waiting time. Taking this into account we arrive at the
following weighted loss function:

LF =
20

∑

i=2

(3

4
EI2

i +
1

4
EW 2

i

)

=
20

∑

i=2

3

4

(

EI2
i + EW 2

i

)

− 1

2
EW 2

i .

With the expression on the right hand side we can continue, this now be-
comes:

20
∑

i=2

3

4

(

EB2
i−1 +

1

3
EW 2

i−1 + EWi−1(2EBi−1 − 2xi−1) + x2
i−1 − 2xi−1EBi−1

)

−1

2
EW 2

n +
1

2
EW 2

1 .

Note that EW 2
1 = 0. This is the total loss function and will be used as

objective function to derive appointment schedules.

7.2 Fitting Data for Service Time

De Vree (2010) did part of his research on this CT scan area. This research
investigates the process of the CT scan and for this data of the service times
were acquired, which were made available to us. The service time is defined
as the time a patient spends in the scan area. The dataset contains 93
realizations to which we are able to fit a distribution. We used Minitab, a
statistics software package, to fit this service time distribution. We tested 12
distribution functions, with only one good fit as result. To illustrate that the
exponential distribution is not realistic, we tried to fit this distribution to
the dataset, see Figure 7.1(b). One can see that the exponential distribution
does not fit to the dataset, also indicated by the p-value being smaller than
.003. For the log-normal distribution we obtained a good distributional fit,
as indicated by a p-value .37, see Figure 7.1(a). For the scale and location
parameter we obtained:

µ = 2.4, σ = .58.

The first and second moment of this distribution are:

EBct = 13, EB2
ct = 238.
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Chapter 7. Real Life Appointment Schedule

So the mean service time is approximately 13 minutes. The values of these
moments result in a coefficient of variation of, CV = .63, which is inside the
interval mentioned on page 47 and given in Cayirli and Veral (2003).

7.3 Making a Schedule

Since we weight idle time more than waiting time, we can expect a schedule
with slot sizes close to the expected service time and some maybe even
smaller. We applied lag order II approximation method. The resulting
schedule can be found in Table 7.1(a). The second arrival is scheduled after
12.7 minutes, which is smaller than the expected service time of 13 minutes.

(a) n=19, the slots of the optimized appointment schedule for the CT scan
using the lag order II method in minutes.

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

12.7 16.3 15.1 15.4 15.3 15.3 15.3 15.3 15.3 15.3
x11 x12 x13 x14 x15 x16 x17 x18 x19

15.3 15.3 15.3 15.3 15.3 15.4 15.1 16 13.1

(b) n=19, the slots of the optimized appointment schedule for the CT scan
using the lag order II method in minutes. We have incorporated the lateness
of the schedule in the loss function as well.

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

12.4 16.1 14.8 15.2 15.1 15.1 15.2 15.1 15.1 15.1
x11 x12 x13 x14 x15 x16 x17 x18 x19

15.1 15.1 15.1 15.1 15.1 15.2 14.9 15.8 12.9

(c) n=19, the slots of the optimized appointment schedule for the CT scan
using the lag order II method in minutes. We have incorporated the lateness
of the schedule in the loss function as well.

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

14.6 16.2 17.0 17.1 17.2 17.2 17.2 17.2 17.2 17.2
x11 x12 x13 x14 x15 x16 x17 x18 x19

17.2 17.2 17.2 17.2 17.2 17.1 17.0 16.0 15.0

Table 7.1: Appointment schedules for the CT scan area.
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7.3. Making a Schedule

Computation type Most frequent Total loss ∆ Opt CPU
slot size (simulated) time (s)

Simulated optimal 17.2 1660 – 12E3
Lag order II 15.1 1940 17% 4.3
Hybrid method 14.9 1990 20 1.7
Equidistant simulation 17 1670 <1% 5E2
Hospital’s schedule 15 2000 20% -

Table 7.2: The hospitals’s current schedule and lag order II compared with
the simulated optimal. Quadratic weighted loss with lateness, n=19, i.i.d.
log-normal(CV=.63) service times. The simulated values of the total loss
have a confidence interval of 1%

In this schedule we did not consider lateness of the system, which is
the total expected completion time minus 5 hours, since we schedule from
8am-1pm. If the CT scan is still operating after 1 pm, the operator will be
paid double and the CT scan is not available for its next session. In our
loss function we had a weight of 3

4
for the idle time, so now we take twice

this weight for the systems lateness which results in a weight of 6
4
. The loss

function becomes:

LF =
20

∑

i=2

(3

4
EI2

i +
1

4
EW 2

i

)

+
6

4
max

(

0, EB20 + EW20 − 300 +
19

∑

i=1

xi

)

.

The resulting schedule for lag order II, can be found in Table 7.1(b). While
comparing both, one can see that penalizing lateness results in smaller slots,
as one might have expected.

7.3.1 Different Optimal Schedules

We try to use other methods or combine methods to optimally derive an
appointment schedule. The hybrid method from Section 5.3 with lag order
II yields a schedule with equidistant appointment times of 14.9 minutes.
Another combined method, applying simulation and equidistant at the same
time, yields a schedule with equidistant appointment times of 17.0 minutes.
See Appendix A.7 for further details on simulation. Finally, we use again
the simulated optimal, also explained in Appendix A.7. This will yield the
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Chapter 7. Real Life Appointment Schedule

optimal schedule and can be found in Table 7.1(c). If one compares these
slot sizes with the lag order II sizes in Table 7.1(b), one can see that most
of the slots from simulated optimal are approximately 2 minutes larger.

The current schedule of use in the hospital is one with equidistant ap-
pointment times of 15 minutes. We compare all these (sub-)optimal sched-
ules with each other, see the results in Table 7.2. In this table one can see
that lag order II performs similar to the hybrid method and the current
schedule of the hospital. The combi method performs substantial better.

7.4 Conclusions

This chapter shows that the lag order approximation method and the equidis-
tant method are easy to apply in a practical situation. One can conclude by
looking at the derived schedules, that lag order II does not suffice, since this
schedule has an error 17% with respect to the simulated optimal schedule.
The equidistant method combined with simulation turnes out to be very
strong. The computation time for this combi method is 20 times smaller
than for the simulated optimal, while the error is 1% with respect to the
simulated optimal schedule. Looking at the results in Table 7.1, one may
come up with even another optimization strategy. First derive the lag or-
der II schedule, and then optimize this schedule using simulation, adjusting
every slot together with the same value. We will explain and support this
strategy in the next chapter.
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(a) Probability plot for time spend in the CT scan room. We fit the
service time with a log-normal distribution.
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(b) Probability plot for time spend in the CT scan room. As you can see
the exponential distribution does not fit the dataset.

Figure 7.1: Two probability plots for the CT scan data fitted to a distribu-
tion. The 95% confidence intervals are also shown.
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Chapter 8

Sensitivity Analysis

In this chapter we show how sensitive the schedules are to small changes
(perturbations) in the slot sizes. We do this for global optimal schedules
and for sub-optimal schedules. The latter is even more interesting since
it gives some insight how the sub-optimal schedules relate to the optimal
schedules. Note that throughout this chapter the schedules are derived using
the simultaneous optimization approach.

8.1 Two Different Perturbation Analyses

We introduce two sorts of sensitivity analyses:

• Changing every slot in the schedule at the same time, called parallel
perturbation analysis (PPA):

[x̃1+δ, . . . , x̃n−1+δ] with δ ∈
[

− min
i∈{1,...,n−1}

x̃i, min
i∈{1,...,n−1}

x̃i

]

.

• Varying only one single slot in the schedule, called single perturbation
analysis (SPA):

[x̃1, . . . , x̃i−1, x̃i + δi, x̃i+1, . . . , x̃n−1],

with δi ∈ [−x̃i, x̃i] for i = 1, . . . , n − 1.

For every δ we compute the expected loss of the perturbated schedule and
hence arrive at a graph which displays the sensitivity. In PPA analysis we
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8.2. Conclusions

put δ on the x-axis, whereas in the SPA analysis we put the slot size on the
x-axis, i.e., x̃i + δi.

We start the analysis with a global optimal schedule:

x̃ = [x̃1, . . . , x̃n−1].

Recall that this is called the full lag order in our terminology.

We look at the effect of these perturbations in our objective function, the
loss function and in this case the quadratic loss function. The results for the
global optimal schedule can be found in Figure 8.2(b)(PPA) and 8.1(f)(SPA).
We analyzed the quadratic linear loss function with i.i.d. exponential(µ = 1)
service times. The * in the PPA and SPA figures represent the objective
value of the schedule that is being analyzed. In the SPA analysis you can
also see the current value of the slot on the x-axis. The figures confirm
that the schedule is optimal, because we see the * in both schedules in the
minimum of the graphs.

We can apply the same analysis to sub-optimal schedules. For this we
derived sub-optimal schedules with lag order I, II and III, IV and V and
did both a PPA and an SPA. The results for PPA for all the orders can
be found in Figure 8.1. What this figure illustrates is the convergence of
the orders to the optimal schedule. One can see the * getting closer to the
minimum of the graph as the lag order increases. For SPA we only show
the slots of lag order II in Figure 8.2(a). In this figure one can clearly see
the suboptimality of the schedule, since the * is not in the minimum of the
graphs. This applies for the SPA graph of every slot. Recall that lag order I
results in a schedule with interarrival times equal to 1. Also recall the dome
shape of the global optimal schedule. If we look at the SPA graph of slot
1 and 20 we see that the current slot values are closer to the optimal value
for that slot than the values of the other slots, for example slot 10. This is
because the first and last slot in the global optimal schedule are the smallest
slots in the schedule (≈ 1.4) and hence closer to one than slot 10 (≈ 1.84).
The SPA for the remaining lag orders can be found in Appendix A.9.

8.2 Conclusions

In the SPA of the optimal appointment schedule (Figure 8.2(b)), we obtain
convex graphs in every slot. In these graphs the optimal interarrival time is
the minimum value. Hence, we can conclude that we computed the optimal
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Chapter 8. Sensitivity Analysis

value in every dimension. In case of sub-optimal schedules, in this case a
certain lag order, we see that the chosen slot sizes are indeed not optimal.

In SPA, one investigates the sensitivity on perturbations in one interarrival
time. For a single slot, if we perturb the value of this slot with one time
unit, i.e., by 50%, we obtain a difference in loss of 4%. For the other analysis
(PPA), we look at the sensitivity for the entire appointment schedule. If we
decrease every interarrival time with .4 time units, i.e., an average change
of 22% for a slot, this results in an increase of loss by 40%. Likewise, if we
increase every interarrival time with .4 time units, the loss increases by 20%.

These observations bring us to some practical rules for designers of appoint-
ment schedules.

If you derive a (sub)-optimal schedule you should be careful with chang-
ing the size of all the slots together. This might be done on ground of
practical reasons, for example rounding up every slot size to a multiple of 5
minutes for convenience. Our results show that the loss function is sensitive
to such changes. However, in case of a lag order schedule, i.e., a sub-optimal,
this sensitivity is mainly on the left hand side of the schedule. This means
that the schedule is more sensitive to decreasing all the slots together, than
for increasing all the slots together, i.e., rounding up might improve the
performance.

For the sensitivity per slot, one can see that if you change only one time
slot the loss of the system does not increase substantially. this might be
practical if the designer of a schedule knows upfront that a particular patient
might take more time than expected. If he is right with his judgment, he
improved the schedule himself. If he is not right, we showed that he will
not incur substantial extra loss of the system. In general, if one derived a
schedule using the lag order approximation method, the time slots are more
sensitive to a decrease in size than to an increase, see Figures 8.1 and A.1.

One may take these rules into account in the predetermination phase of
an appointment schedule or while a schedule is already running, in order to
decrease the realization of the systems loss.
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(c) Lag Order III
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(d) Lag Order IV
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(e) Lag Order V
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(f) Full Lag Order

Figure 8.1: Sensitivity analysis of various lag order-optimal schedules.
Quadratic loss, n=21, i.i.d. exponential (µ=1) service times. The star is
the actual value of the schedule. On the x-axis the value, the interarrival
times are parallel varied with. The quadratic loss on the y-axis. From lag
order I, see Figure (a), to full lag order, see Figure (f).
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Figure 8.2: Sensitivity analysis of lag order I and optimal (full lag order)
schedule per slot. Quadratic loss, n=21, i.i.d. exponential (µ=1) service
times. The star is the actual value of the interarrival time. On the x-axis
the value of the interarrival time with the quadratic loss on the y-axis.
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Chapter 9

Conclusions and Future Work

We finish this thesis by summarizing the conclusions from the chapters.
Also, we come up with recommendations for applying the results stated in
this thesis and finally we give proposals for future research.

9.1 Conclusions

Sequential versus Simultaneous

We did a thorough investigation on the difference between the two opti-
mization approaches; sequential and simultaneous. In the derivation of the
global minimum, the simultaneous optimization approach is often implicitly
used, as we explained in Section 3.5. In Section 4.1.1 and 4.2.1 we showed
the computation of the global minimum explicitly in case of a schedule with
three customers. In both sections we also showed that the sequential opti-
mization approach does not yield the global minimum, which is confirmed
in the other sections of that chapter.

The sequential approach does not optimize the total loss function itself,
but sequentially the loss functions per slot. It starts by choosing x1 opti-
mally, only considering the expected loss in the first slot. The size of this
slot is fixed and the approach continues with choosing x2 optimally, only
considering the expected loss in the second slot, given x1 = x̃1. This sequen-
tial way of optimizing reduces an n-dimensional optimization problem to n
problems of 1-dimension.

In Section 4.3 we compared the objective values of large schedules (i.e.,
schedules with n large) for both optimization approaches. We showed that
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the value of the loss function after applying the sequential approach was 20%
higher than the value of the global simultaneous optimum. This result was
obtained for both the quadratic and linear loss function with i.i.d exponential
service times and independent of the value of µ.

Taking these results into account one may call the sequential optimiza-
tion approach a heuristic or approximation method for the hard global opti-
mization problem. Since this approach reduces the computation time, while
losing performance in terms of the value of the objective function. Hence,
this approach is a powerful method to quickly determine the optimal arrival
times, also online, when arrivals did occur already.

Approximation Methods

Lag order Approximation Method

In this thesis we propose two approximation methods, the lag order approxi-
mation method for the waiting time and the equidistant appointment times.
For the former method, we showed the expressions of the first and second
moment of the waiting time for lag order I, II and III, for general service
time distributions, with the possibility to extend this to higher orders.

The results of the lag order method, as you can see in Tables 5.1 and 6.1,
are very promising. In a realistic setting with i.i.d log-normal service times,
lag order III has an error of 1% with respect to the global simultaneous
optimum. Below we list the advantages and disadvantages of the lag order
method that we propose.

Advantages

• The schedule designer is flexible in choosing any service time distribu-
tion with a density. The distributions do not necessarily have to be
identical for every customer.

• If the full order method is at hand, e.g., in case of exponential service
times, the lag order method takes less computation time to derive
schedules. The price for this, are higher expected losses, in the sense
of expected waiting times. However, we can approximate any full order
with a certain lag order to come arbitrary close to the optimal schedule
(performance wise). This can be investigated for a particular problem
before deriving the schedules on a daily basis.
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• The lag order method can be used for the calculation of an initial
schedule in a simulation program. This will save the simulation method
time compared to starting with a random schedule.

• The lag order method can be applied together with the equidistant
method.

• The lag order method can be applied for both optimization approaches
we used throughout this thesis.

Disadvantages

• Before you want to apply the lag order approach for your specific
problem, you have to investigate which order performs well enough.
As we have seen in Section 6.2, this depends strongly on the coefficient
of variation of the service time distribution.

• By applying the lag order approach, you lose performance. This is in
the sense that you get more expected waiting time, since you neglect
part of these waiting times in the derivation of that schedule.

Equidistant Method

The equidistant method is only applicable when all customers agree to the
same service time distribution. This method reduces the computation time
substantially, especially when considering large schedules. In Chapter 7, we
see that since the hospital already uses equidistant appointment times, this
method is very useful. In that problem setting the equidistant method has
an error of 1% with respect to the simulated optimal schedule.

Below we list the advantages and disadvantages of the equidistant method
that we propose.

Advantages

• The method reduces computation time, since it converts an n-dimensional
problem into a 1-dimensional problem.

• In case i.i.d service times the equidistant method can be used for the
calculation of an initial schedule in a simulation program. This saves
the simulation method time.

• The equidistant method can be applied together with the lag order
method.
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Disadvantages

• The method requests i.i.d. service times.

• By applying the equidistant method, you lose performance. This is
because you do not obtain a dome shaped graph of the interarrival
times, which is the optimal shape. Hence, the interarrival times derived
with the equidistant method, are larger at the beginning and the end
of the schedule, than what is optimal.

This is because you loose the advantages of the dome shape, hence,
the interarrival times at the beginning and the end of the schedule are
bigger than optimal.

Real Life Schedule

In Chapter 7 we showed that our theory is applicable in practice. We used
both approximation methods and combined them with simulation to derive
an optimal schedule. This chapter takes you through the steps from practice
to theory. The result is that we found an equidistant schedule that has an
error of 1% with respect to the simulated optimal schedule.

Sensitivity Analysis

In Chapter 8 we showed how sensitive (sub-)optimal schedules are to per-
turbations of the slot size, both parallel and single perturbed. The practical
rules we extracted from these analyses are.

• If one has a global optimal schedule at hand, we recommend not to
increase nor decrease all the slots of the schedule together.

• If one has a lag order optimal schedule at hand, we recommend to
increase all slots together and recommend not to decrease all the slots
together.

• If one wishes to change the size of a single slot this does not affect the
performance substantially.
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9.2 Recommendations

Summarizing the conclusions from this thesis we come up with some recom-
mendations for using the theory and methods proposed in this thesis.

• In case of large schedules and i.i.d. customers we would recommend to
use the equidistant approach for the interarrival times in the middle
of the schedule and no approximation method for the beginning and
the end of the schedule. This results in a faster method than using
simulation and the performance will be close to optimal.

• If you consider a problem with i.i.d. general service times, we recom-
mend to use the lag order method for the beginning and the end of
the schedule and the equidistant for the center. Further simulation
might improve the schedule, but this depends on the lag order that is
applied.

• In case of customers with different general service time distributions,
we recommend using the lag order approach first to continue by using
a simulation method. The lag order result will function as an initial
schedule.

• In case of customers with different exponential service time distribu-
tions, we recommend to use the lag order approach up to an order
which approaches the optimal schedule well enough. This takes less
computation time than using the full lag order.

• Take the scheduling rules from Chapter 8 into account while you are in
the predetermination phase of a schedule or when a schedule is already
running.

• If you consider to use a lag order schedule as initial schedule for simu-
lation, one can obtain an ever better initial schedule by increasing all
the slots together. See the scheduling rules in Subsection 9.1 and the
analysis in Chapter 8 for further details.

9.3 Future Work

The list below states problems or areas in appointment scheduling that are
worthwhile investigating. This came about while writing and working on
this thesis.
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• A general expression for ζn in the algorithm for Wang (1999) is not
yet known, see Section 3.4. A general expression would extend Wang’s
extended algorithm to second moment sojourn times for arbitrary µ.

• The specific advantages of applying the lag order method as a start
schedule for simulation methods.

• How to incorporate the relaxation of certain assumptions in the model.
Assumptions such as no-shows, servers punctuality, customers punc-
tuality, server interruption level, et cetera. How does the lag order
method perform in these realistic settings?

• The differences between the sequential and simultaneous optimization
approach while considering general service times.

• What can we say about tail expressions, regarding the lag order ap-
proximation method? The percentiles can be computed while again
neglecting influence of predecessors on the waiting time. Further re-
search is needed.

• The speed of convergence of the lag order approximation method to
the full lag order.

• Is there a relation between the Bailey-Welch rule (two patients arriving
at t = 0) and the dome shape of the optimal schedule?
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Appendix

A.1 Matlab Code

The algorithm proposed by Wang (1999) and its extension, obtained by
ourselves, is used to compute the objective value of an appointment schedule
with exponential(µ = 1) service times. The condition of µ = 1 is because
of the absence of a general expression for ζn, see Appendix A.2. The input
argument of this function is an appointment schedule represented by a vector
of interarrival times. The output of this function is the quadratic loss of this
schedule. This function as such is minimized by fminsearchbnd to compute
the optimal schedule with minimal quadratic loss.

function [obj] = wangextended(x)

%x is vector with interarrival times

n = length(x); % number of slots

vector = zeros(n,n);

P = zeros(n,n);

d = zeros(n,1);

w = zeros(n,1);

wkw = zeros(n,1);

z = 1100; zeta = zeros(1,z); zeta(z) = 2;

for i = 1:z-1

zeta(z-i) = zeta(z-i+1) + (i+1)*2;

%the zeta vector is being constructed

end

w(1) = 1; %first moment of the sojourn time for customer 1

wkw(1) = 2; %second moment of the sojourn time for customer 1

P(1,:) = exp(-x(1));

d(1) = 1 - P(1,1:1);
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for i = 2:n

matrix = zeros(i,i);

for j = 1:i

matrix = matrix + diag(ones(1,i-j+1) * x(i)^(j-1) *...

exp(-x(i))/factorial(j-1) ,j-1);

end

vector(i,1:i) = [P(i-1,1:i-1), d(i-1)];

w(i) = vector(i,1:i) * [i:-1:1]’;

wkw(i) = vector(i,1:i) * zeta(z-i+1:z)’;

P(i,1:i) = vector(i,1:i) * matrix;

d(i) = 1 - P(i,1:i) * ones(i,1);

end

obj = 2 + x(1)^2 -2 * x(1) * 1;

loss(1) = obj; %Q_1, Quadratic Loss for slot 1.

for i = 2:n

obj = obj + wkw(i) + x(i)^2 -2 * x(i) * w(i);

loss(i) = wkw(i) + x(i)^2 -2 * x(i) * w(i);

%loss(i) is the quadratic Loss for slot i.

end

end

As mentioned in the code already, x is a vector of interarrival times. So,
if you give this function an appointment schedule it computes its quadratic
objective with exponential service times (µi = 1). This function is now
optimized using the function in Matlab called fminsearch. This function
does not fulfill all our needs, since the elements of x are larger or equal to
zero. So, we work with a slightly different function called fminsearcbnd,
see Appendix A.3.

A.2 A General Expression for ζn

For exponential service times with arbitrary µ we can derive the expressions
for the waiting time of customer 1 and 2 by hand. By some algebra we
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obtain the following results with respect to a general expression for ζn.

ζ2 = [
2

µ2
2

+
2

µ2
1

+ 2
1

µ2

1

µ1

,
2

µ2
2

]

ζn(n) =
2

µ2
n

ζn(n − 1) =
2

µ2
n

+
2

µ2
n−1

+ 2
1

µn

1

µn−1

It is important to obtain the full expression for this, since this will enable
us to broaden the extended algorithm from Wang (1999) to arbitrary µ.

A.3 Multidimensional Minimization Function

fminsearchbnd

In order to compute optimal schedules we use the Matlab routine
fminsearchbnd. This routine is an extension to the build in routine
fminsearch. It is made by John D’Errico, (D’Errico, 2005) and approved by
Mathworks. We explain here how this routine is able to extend the standard
routine.

Since fminsearch does not allow bounds and constraints, the trick is to
insert a wrapper function around the user supplied objective function. The
arguments are identical to that which fminsearch uses, with as extra argu-
ments a set of bounds. Let LB,UB, x, z ∈ R

n. There are several classes of
bounds and constraints one might consider. Simple lower bound:

LB(i) ≤ x(i).

Upper bounds:
x(i) ≤ UB(i).

Dual constraints
LB(i) ≤ x(i) ≤ UB(i).

The bounded variables are transformed such that fminsearch itself sees a
fully unconstrained problem. For example, in the case of a variable bounded
on the lower end by LB(i), the used transformation is:

x(i) = LB(i) + z(i)2.
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The variable z(i) is fully unconstrained, but since the square of z(i) is always
non-negative (for z ∈ R), x(i) must necessarily be always greater than or
equal to LB(i). Likewise, a pure upper bound constraint is implemented as

x(i) = UB(i) − z(i)2.

Clearly, x(i) in this case can never rise above UB(i). And finally, the dual
bounded variable is handled by a trigonometric transformation:

x(i) = LB(i) + (UB(i) − LB(i)) ∗ (sin(z(i)) + 1)/2.

In this last case, the requirement that LB(i) ≤ x(i) ≤ UB(i) is absolutely
enforced.

The tolerances on the parameters are not fully translated yet. The nonlinear
transformations mean that fminsearch itself will see only the transformed
parameters, not the parameters in their real domain. The Matlab routine
fminsearchbnd is an overlay to fminsearch itself, hence, there is no simple
way to provide explicit control over the variable tolerances without re-writing
fminsearch.

You cannot provide general linear/nonlinear equality or inequality constraints,
as are provided by fmincon, or lsqlin. Only simple bound constraints are
allowed.

A.4 Steady State of Queue

In the Sections 4.1.3 and 4.2.3 we consider the situation of i.i.d. jobs, and
the number of jobs being large. In this case service times are exponentially
distributed with parameter µ. Thus the queue we have is an D|M|1 queue.
Let x be the interarrival time between two customers. Note that we need
x > 1

µ
(= EB), such that the occupation rate (ρ) is smaller than 1. The

distribution of the steady-state waiting time, W, is given through Tijms
(1986) and Asmussen (2003):

P(W < y) = 1 − ρ(x)e−(1−ρ(x))y/EB, y > 0. (A.1)

This result is for G|M|1 queues, with ρ the occupation rate as stated
before. In our case EB = 1/µ and ρ := ρ(x), with ρ ∈ (0, 1) the unique
solution of

e−µ(1−ρ)x = ρ. (A.2)
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Now we are able to compute ES:

ES = EB + EW, (A.3)

=
1

µ
+

∫ ∞

0

yρ(x)µ(1 − ρ(x))e−µ(1−ρ(x))dy,

=
1

µ(1 − ρ(x))
.

Similarly:

ES2 = EB2 + EW 2 + 2EBEW =
2

µ2(1 − ρ(x))2
. (A.4)

These results are used to derive the limiting properties of the D|M|1 queue
with a particular loss function.

A.5 Convexity

The main result from the paper of Kaandorp and Koole (2007) is that the
objective function is multimodular, i.e., a L-convex function. In other words
a local optimum in the objective function is a global optimum. The objec-
tive function they worked with consisted of the weighted sum of the average
expected patient waiting time, the idleness of the doctor during the session
length, and the tardiness. The tardiness is the probability that the session
exceeds the planned finishing time multiplied by the average excess. For
further details we refer to Kaandorp and Koole (2007). Begen et al. (2011)
has also proven convexity for the objective function, i.e., the loss function.
The consequence of this convexity is that a local minimum is a global min-
imum. Below we sketch the results from these papers using intuitive ar-
guments. We will sketch the result of the loss function having a unique
minimum.

We give our sketch for the weighted loss function, with 0 < α < 1 and equal
moments of idle and waiting time. Hence for:

LF (x1, . . . , xn−1) =
n

∑

i=2

(

αE[Ik
i (x1, . . . , xi−1)] + (1 − α)E[W k

i (x1, . . . , xi−1)]
)

,

k ∈ N+.
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Since both α > 0 and (1 − α) > 0, it suffices to show for the unweighted
case.

For arbitrary arrival times the following holds:

lim
ti→∞

EIk
i (t1, . . . , ti) = ∞,

lim
ti→∞

EW k
i (t1, . . . , ti) = 0,

lim
tiցti−1

EIk
i (t1, . . . , ti) = EIk

i (t1, . . . , ti−1, ti−1) = 0,

lim
tiցti−1

EW k
i (t1, . . . , ti) = E(Wi−1(t1, . . . , ti−1) + Bi−1)

k.

Hence,

lim
ti→∞

EIk
i (t1, . . . , ti) + EW k

i (t1, . . . , ti) = ∞,

lim
tiցti−1

EIk
i (t1, . . . , ti) + EW k

i (t1, . . . , ti) = EIk
i (t1, . . . , ti−1, ti−1)

+EW k
i (t1, . . . , ti−1, ti−1),

= E(Wi−1(t1, . . . , ti−1) + Bi−1)
k.

To arrive at the same time as your predecessor is certainly not optimal. If
we would take ti = ti−1 + ǫ instead of ti = ti−1 we get:

EIk
i (t1, . . . , ti−1, ti−1) + EW k

i (t1, . . . , ti−1, ti−1) > EIk
i (t1, . . . , ti−1, ti−1 + ǫ)

+EW k
i (t1, . . . , ti−1, ti−1 + ǫ).

Recall that, EIk
i (t1, . . . , ti−1, ti) + EW k

i (t1, . . . , ti−1, ti) = E[(Si−1 − xi−1)
k
+].

This is again equal to E[(Si−1 + ti−1 − ti)
k
+].

So, using the previous equation, we know that ∃t∗, ti−1 < t∗ < ∞, such that:

E[(Si−1 + ti−1 − ti−1)
k
+] > E[(Si−1 + ti−1 − t∗)k

+]

E[(Si−1 + ti−1 −∞)k
+] > E[(Si−1 + ti−1 − t∗)k

+]

This shows already that there is an optimal arrival time for patient i such
that the objective is minimal. Also by continuity and convexity of the power
function, one can imagine that this arrival time is unique. Rewriting the
previous equations we get:

E[(Si−1 + ti−1 − ti−1)
k
+] + E[(Si−1 + ti−1 −∞)k

+]

2
> E[(Si−1 + ti−1 − t∗)k

+].
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This applies for one specific t∗. This is not a proof for convexity, but
one can imagine that, by continuity and convexity of the power function,
E[(Si−1 + ti−1 − ti)

k
+] has only one minimum.

So we can conclude that LFi(x1, . . . , xi−1) as a function of xi−1, has a unique
minimum. Along the same arguments we also have that LFj(x1, . . . , xj), as
a function of xi−1, has a unique minimum, for j > i − 1. We can apply this
argument for the other arrivals as well.

The intuition behind this sketch shows the dynamics of appointment schedul-
ing. We refer to the aforementioned articles in this section for complete
proofs of convexity and hence, the existence of a unique minimum.

A.6 Lag Order III Expressions

The complete derivation of the expressions of the first and second moment
of the waiting times for lag order III with general service time distributions
(not necessarily i.i.d.) is shown here. We use these expressions in Chapter
6.

E[W3] =

∫ ∞

0

E[W3|B1 = u1]fB1(u1)du1,

=

∫ t2

0

E[W3|B1 < t2]fB1(u1)du1 +

∫ t3

t2

E[W3|t2 < B1 < t3]fB1(u1)du1

+

∫ ∞

t3

E[W3|t3 < B1]fB1(u1)du1,

=

∫ t2

0

(∫ ∞

0

E[W3|B1 < t2, B2 = u2]fB2(u2)du2

)

fB1(u1)du1

+

∫ t3

t2

(∫ ∞

0

E[W3|t2 < B1 < t3, B2 = u2]fB2(u2)du2

)

fB1(u1)du1

+

∫ ∞

t3

(∫ ∞

0

E[W3|t3 < B1, B2 = u2]fB2(u2)du2

)

fB1(u1)du1,
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=

∫ t2

0

(∫ ∞

0

(u2 − t3)
+fB2(u2)du2

)

fB1(u1)du1

+

∫ t3

t2

(∫ ∞

0

(u2 − (t3 − u1))
+fB2(u2)du2

)

fB1(u1)du1

+

∫ ∞

t3

(∫ ∞

0

((u1 − t3)
+ + u2)fB2(u2)du2

)

fB1(u1)du1,

=

∫ t2

0

(∫ ∞

t3−t2

(u2 − (t3 − t2))fB2(u2)du2

)

fB1(u1)du1

+

∫ t3

t2

(∫ ∞

t3−u1

(u2 − (t3 − u1))fB2(u2)du2

)

fB1(u1)du1

+

∫ ∞

t3

(∫ ∞

0

((u1 − t3)
+ + u2)fB2(u2)du2

)

fB1(u1)du1,

=

∫ x1

0

fB1(u1)du1

∫ ∞

x2

(u2 − x2)fB2(u2)du2

+

∫ x1+x2

x1

∫ ∞

x1+x2−u1

(u2 − (x1 + x2 − u1))fB2(u2)du2fB1(u1)du1

+

∫ ∞

x1+x2

(u1 − (x1 + x2) + EB2)fB1(u1)du1,

E[W 2
3 ] =

∫ t2

0

(∫ ∞

t3−t2

(u2 − (t3 − t2))
2fB2(u2)du2

)

fB1(u1)du1

+

∫ t3

t2

(∫ ∞

t3−u1

(u2 − (t3 − u1))
2fB2(u2)du2

)

fB1(u1)du1

+

∫ ∞

t3

(∫ ∞

0

((u1 − t3)
+ + u2)

2fB2(u2)du2

)

fB1(u1)du1,

=

∫ x1

0

fB1(u1)du1

∫ ∞

x2

(u2 − x2)
2fB2(u2)du2

+

∫ x1+x2

x1

∫ ∞

x1+x2−u1

(u2 − (x1 + x2 − u1))
2fB2(u2)du2fB1(u1)du1

+

∫ ∞

x1+x2

[

(u1 − (x1 + x2))
2 + 2(u1 − (x1 + x2))EB2 + EB2

2

]

fB1(u1)du1.
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A.7 Simulation

To be able to evaluate schedules with service time distributions other than
the exponential distribution we use simulation. In the function we display
here, the input argument is an appointment schedule, the output is the
loss of this schedule. This can be the (weigthed) quadratic or linear loss,
but can also include the systems completion time. The mayor advantage of
simulation is the freedom to choose any service time distribution and also
any loss function. In the function the user is free to change the number of
iterations. The current value of 100000 is used to evaluate schedules. This
comes down to a confidence interval of ≈1% for the schedules we evaluated.

One can also use this function to derive the optimal appointment schedule by
minimizing it with fminsearchbnd. This is what we call ‘simulated optimal’
in Chapters 6 and 7. For this we use less iterations, 10000. This is because
every iteration of fminsearchbnd needs 10000 iterations of the simulation
function. Due to less simulation iteration the confidence interval grows and
fminsearchbnd is less effective. There is a trade off between the number of
simulation iterations and the number of fminsearchbnd iterations.

For this function we use a lag order sub optimal schedule as a start value
for fminsearchbnd.

function [obj]=simulation(x)

%this function simulates an appointment schedule

%and computes the quadratic loss function

k = length(x); %aantal klanten

it = 100000; % aantal simulaties

eb2 = 5/4;mu = -log(eb2)/2;sigma = sqrt(log(eb2));

kappa = 2;lambda = 1/gamma(3/2);

leeg=0;

for j=1:it

propgenerator=zeros(1,k);

for i =1:k

%propgenerator(i)=exprnd(1);

%propgenerator(i) = lognrnd(mu,sigma);

propgenerator(i) = wblrnd(lambda,kappa);
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end

idle(1)=0;wait(1)=0;

for i=2:k+1

idle(i)=max(x(i-1)-(wait(i-1)+propgenerator(i-1)),0);

wait(i)=max(wait(i-1)+propgenerator(i-1)-x(i-1),0);

%recall the expressions from section 3.2

end

for i =1:k

simul(1,i) = idle(i+1)^2;

simul(2,i) = wait(i+1)^2;

%simul(3,i) = simul(1,i) + simul(2,i);

end

leeg(j) = sum(simul(1,1:k)) + sum(simul(2,1:k));

end

%kies hier uit mean of confidence interval

obj = mean(leeg);

%obj(1)= mean(leeg)-1.98*std(leeg)/sqrt(it);

%obj(2)= mean(leeg)+1.98*std(leeg)/sqrt(it);

end

A.8 Tau

This thesis supports the Tau Manifesto, τ is defined as:

τ :=
C

r
,

with C the circumference and r the radius of a circle. Hence, τ is related to
π via:

π =
τ

2
.
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The advantages of the usage of τ over π are that the former is more intuitive
for young children when explaining radians. When using τ a quarter of a
circle is 1

4
τ instead of the non-logic 1

2
π. Next, it is more common to find 2π

in equations and expressions than π all by itself. See www.tauday.com for
more information on the Manifesto.

A.9 Sensitivity Analysis
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(a) Lag Order II
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(b) Lag Order III
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(c) Lag Order IV

Figure A.1: Sensitivity analysis of lag order II, III and IV schedules per
slot. Quadratic loss, n=21, i.i.d. exponential (µ=1) service times. The star
is the actual value of the interarrival time. On the x-axis the value of the
interarrival time and the quadratic loss on the y-axis.
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