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Abstract

In this thesis we describe an ambulance location optimization model that minimizes
the number of vehicles needed to ensure a specific service level. In addition to this, we
do not consider any predetermined set of base stations and we optimize over all possible
placements. The model measures service level as the fraction of calls processed within
a given critical time and considers response time to be composed of a random pre-trip
delay and random travel time. Moreover we incorporate a probabilistic approach to the
ambulance availability when requested to serve demands. The stochastic response time
and unavailability of vehicles are critical issues to designing valid models corresponding
with real life emergency medical service system. Models that do not account for the
uncertainty in all of these components may overestimate the possible coverage for a
given number of ambulances or underestimate the number of ambulances needed to
provide a specified coverage. We illustrate the application of the model using recent
data from the Agglomeration of Amsterdam. Our main target is to design an optimal
net of base stations and propose a reallocation of currently used vehicles to provide
higher coverage.
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Chapter 1

Introduction

In recent years there has been an important evolution in the development of ambu-
lance location and relocation models. Since time is fateful in emergency situations, it
is critical that vehicles are located so as to ensure an adequate coverage and a quick
response time. There are also high costs involved in obtaining and maintaining emer-
gency medical service (EMS) equipment and employing highly qualified staff, therefore
it is important to make sure that the resources are used efficiently.

The design of EMS systems involves several interconnected strategic decisions, such
as the number and locations of ambulance stations, the number and locations of the
vehicles, and the dispatch system used. In this paper we focus on the optimal allocation
of ambulance stations along with determining the number of vehicles settled in each
one. The service area of an EMS system is often modeled by defining a network
consisting of a set of geographical nodes (for instance postal codes), where each node
represents a source of requests for response emergency vehicles.

The first models (deterministic models) were very basic and did not take into ac-
count the fact that some coverage is lost when an ambulance is dispatched to a call.
Nevertheless, these early models served as a sound basis for the development of all
subsequent models. Probabilistic models work with the busy fraction of vehicles or
random demand. The latest models are dynamic. They can be used to periodically
update ambulance positions throughout the day.

In this thesis we explore probabilistic models. The stochastic nature of emergency ser-
vice requests and the unavailability of emergency vehicles when intervening are critical
issues in constructing efficient models. In real life situations, the future emergency ser-
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vice requests from demand sites are not known with certainty. Furthermore, due to the
various constraints, such as budget or capacity, pre-allocated emergency vehicles may
not be sufficient to cover all demand in the service area within an acceptable time.
Since unmet demands in emergency situations may result in loss of life, it is critical
to design systems that guarantee target levels of coverage, which are quantified using
risk measures on random unmet demand. These target levels are specified in advance
based on the previous experience. We consider an EMS system design problem of
locating the response facilities (ambulance stations) and determining the number of
vehicles to allocate to each facility.

Coverage is determined by the response time to calls, which is generally defined as
the time from when a call for ambulance service arrives until paramedics reach the
patient. The most obvious and significant component of the response time is the travel
time between the ambulance station and the demand location. The majority of the
existing operations research literature on ambulance location focuses on travel times,
but this is not the only component of the response time. It also includes any delays
prior to the trip. Such delays can consist of time spent on the phone obtaining the
address and establishing the seriousness of the call, time spent deciding which ambu-
lance to dispatch, time to contact the paramedic crew, time needed for reaching and
preparing the vehicle and start the drive. These delays are significant. Furthermore,
the response time for a given emergency call can be affected by the availability of the
ambulances because sometimes the closest ambulance is busy and another ambulance
must respond. Queueing delays (when no ambulances are available) can also occur,
but in practice with real systems, they occur infrequently. In the rare situations when
all ambulances are busy, incoming calls are typically responded using some type of
backup system, such as supervisor vehicles or fire engines.

The model we develop in this thesis is supposed to be applied on ambulance location
in the urban area. In rural areas, ambulance availability will be less of a concern
and geographical coverage will be of greater concern. In our research we provide the
extension of the main model to overcome this difficulty. Our work is motivated by
real-world ambulance location projects for the Agglomeration of Amsterdam.

The thesis is organized as follows. In Section 2 we provide an overview of literature
relevant to our work, mainly we focus on the papers dealing with coverage mod-
els. In Section 3 we analyze the problem of designing an EMS system and we pro-
pose a stochastic formulation which includes probabilistic constraints. We present two
stochastic models together with their exact solution method. Section 4 is devoted
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to analysis of available data and verification of model assumptions, in particular we
prove that all statements about stochastic distributions are reasonable. In Section 5
we present the computational results and discuss extensive numerical results collected
on a large set of test problems. Conclusions are stated in Section 6. In Appendix A
we recall important definitions from probability theory that are relevant for our work.
Appendix B contains tables and figures that either relate to geographical issues of our
formulations or expand the part of computational results. The list of references can
be found at the end of this thesis.
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Chapter 2

Literature review

Historical overview

The first models were unsophisticated integer linear programming formulations, which
dealt with the static and deterministic location problem and they ignored stochastic
considerations. The weakness of these formulations has been recognized in the early
1980s, when the issue of server congestion began to be handled in a deterministic
setting through backup coverage. Probabilistic models were later introduced in order
to cope with server congestion in a stochastic setting. Most of the probabilistic EMS
literature extends classical deterministic location problems by additionally focusing
on server congestion. The aim is to guarantee an adequate service level with respect
to server availability when demands arise. A variety of models has been introduced
so far. They differ in the area of focus such as vehicle availability maximization,
coverage maximization, cost minimization, temporal coverage, disaster preparedness.
Typical recommendations provided by the different models are the numbers and types
of vehicles, the locations of vehicle base stations, types and capacities of vehicle base
stations.

There exists a rich literature on emergency vehicles setting models. The survey by
Marianov and ReVelle (1995) provides an overview of the most important models
published until that date. The Brotcorne, Laporte and Semet (2003) review is less
general since it focuses on ambulance services, but it inevitably covers some of the
same material, albeit with a different emphasis. This article also provides a brief
introduction to dynamic relocation models. For other extensive reviews we refer to
Goldberg (2004). Stochastic programming formulations using probabilistic constraints,
also called chance constraints, are widely applied in stochastic EMS design models.
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Comprehensive reviews on facility location under uncertainty can be found in Owen
and Daskin (1998), and Snyder (2006).

Maximum expected covering models

The maximum expected covering location model (MEXCLM) suggested by Daskin
(1983) can be considered as the basis of subsequent research in the area of coverage
models, since the majority of the others are extensions. The MEXCLM model stems
from the seminal work of Chapman and White (1974) and Adel and White (1978).
They embedded probabilistic constraints in a classical set covering location model
(SCLM), first formulated by Toregas, Swain, ReVelle and Bergman (1971), in order to
take into account the randomness of service availability. Nevertheless, their model was
never implemented due to mathematical difficulties. MEXCLM developed by Daskin
(1983) simplifies the model of Chapman and White (1974) assuming independence
and common busy probabilities among servers. The model maximizes the expected
value of population coverage given that a fixed number of facilities have to be placed
in a network. Daskin (1983) developed an exchange-based heuristic that approximates
the solution of the problem for all values of the probability of a vehicle being busy.
As a generalization of the maximum covering model, ReVelle and Hogan (1989) pro-
pose chance constrained stochastic models which maximize the demand covered with
a given probability value. Earlier studies performed by Daskin (1983) and Revelle
and Hogan (1989) assumed server independence and a system-wide server business
probability. Although calls for service may arrive independently, the assumption of
independence among service providers may not be justified. Batta, Dolan and Krish-
namurthy (1989) proposed some corrective terms to handle unrealistic situations of
independence between servers.

An important model that provides more realism (i.e., uses fewer simplifying assump-
tions) is a hypercube model suggested by Larson (1974). This model allows busy
fractions to vary between ambulances and can accommodate ambulances responding
to calls outside their assigned districts. The most relevant source to our research is
paper by Ingolfsson, Budge and Erkut (2008) where they used an extension of the
approximate hypercube model that allows multiple servers at a station. Although this
article forms the basis of our research, there are some significant differences between
the models. Mainly Ingolfsson, Budge and Erkut (2008) consider response times to
be composed of a random delay and deterministic travel times in their computational
experiments, our model considers both components of response time to be random.
For more information about modeling travel time variability we refer to Ingolfsson,
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Budge and Erkut (2008), Marianov and ReVelle (1996), Daskin (1987) or Goldberg
and Paz (1991).

Non-covering models

Although our model is from the family of coverage models, there are several non-
covering models that influenced our work. We point out the paper Noyan (2010) which
inspired us to use a scenario approach in the implementation. Noyan described two
types of stochastic programming formulations that determine the optimal location
and allocation decisions minimizing the total cost while meeting the target service
level. The level of service is measured by keeping the unmet demand values below
some prescribed target values. The model is based on stochastic versions of the classi-
cal capacitated fixed charge facility location problem (CFLP) introduced by Beraldi,
Bruni and Conforti (2004) and Beraldi and Bruni (2009). They assume that the main
uncertainty is due to the stochastic call arrival process, and they propose stochastic
programming formulations under probabilistic constraints to ensure that all requests
are served with a prescribed high probability. Uncertainty has been computationally
incorporated in different ways. In Noyan (2010) and Beraldi and Bruni (2009) as well
as in our work the scenario planning techniques are applied. Handling a larger set of
scenarios is significant in modeling uncertainties of real life. Beraldi and Bruni (2009)
also introduce a two-stage stochastic programming problem, where the second stage
decision variables are associated with scenarios to represent the assignment of vehicles
to demand nodes under each scenario.

13



Chapter 3

Problem formulation, properties

and exact solution approach

3.1 General dispatch procedure

The chain of events leading to the intervention of an ambulance vehicle to the scene
of an accident includes the following four steps: accident detection and reporting, call
screening, vehicle dispatching, actual intervention by paramedics. The entire time to
tackle the accident is often called operating time.

When a call arrives to the call center, the operator (dispatcher) has to enter important
information, estimate the sincerity of the emergency call, and labels it with a priority.
The call center operator also gives instructions to tide over until an EMS vehicle arrives
to take over the first aid. There are also cases when the situation does not require
EMS care. Making a decision on the type and number of ambulances to dispatch is
of highest importance. If EMS intervention is necessary, the dispatcher contacts an
available EMS vehicle according to certain guidelines, and sends it to the location
where the call originates from. The time a call is handled together with the time
needed for mobilization of an ambulance crew is called the pre-trip delay. Obviously
this time should be modeled as a random variable since we cannot know with certainty
its exact value.

An other important part of the operating time is the travel time to a patient. In
all EMS models it is important to know the travel time between each two locations.
It would be impossible to make good operational decisions if the travel times for
EMS vehicles were unknown. Many previous researches showed that treating driving
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times as deterministic values can underestimate expected coverage (for instance see
Ingolfsson, Budge and Erkut (2008)). Therefore in our research we consider the travel
time as a random variable. Intuitively, the distribution of the travel time also depends
on the period of the day (at least the parameters of the distribution differ). One
possible approach is to provide required coverage for the busiest period (when the
average travel time prolongs and more vehicles are needed) and for the rest of the
periods just reduce the number of operating vehicles.

The pre-trip delay together with the travel time to the patient is called the response
time. This time is always random, nevertheless national governments set specific stan-
dards. For example in the US in urban areas, 95% of requests should be served within
10 minutes; in rural areas, they should be served within 30 minutes.

Service time includes also time spent by the paramedics crew treating the patient at
his location. The crew also makes a decision whether to transport the patient to a
hospital or not. The travel time to a hospital matches the same travel time model as
the travel time to a patient. The time necessary for conveying the patient to medics
in the hospital cannot be known in advance and is therefore treated as a random
variable. As soon as the paramedics crew is not needed in the hospital, it returns to a
base station. The whole operating time is illustrated in Figure 3.1.

Figure 3.1: Operating time of an EMS system.

3.2 Problem formulation

Our aim is to design a system that minimizes the number of ambulances needed to
provide a specified service level. We extend the ambulance location modeling paradigm
by incorporating uncertainty in ambulance availability and in response times. The
majority of covering models that we listed in the literature review use deterministic
(average) travel times. In practice, the driving time varies depending on the time of
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the day or the day of the week. In this study we have several driving time models
available for different time periods of the day (rush hours, off-peak hours and night
hours). Our models can be first used to solve the problem of determining the facility
locations and the number of vehicles allocated to each facility according to a selected
driving time model (we will choose the busiest period of the day). Then, given the
optimal number of facilities and the allocation of the emergency stations, modified
versions of the first model, we can optimize the number of operating vehicles at every
time period. The optimal allocation decisions for each time period would provide us
with the number of vehicles required at each facility for each time period according
to the specified risk preferences.

The assumption made by early covering models is that if an ambulance is available
within a specified maximum distance of a demand point, then the demand point is
covered. EMS systems typically measure performance based on the fraction of calls
responded to within a specified time standard. However, for a given ambulance location
and a demand point, it is not possible to know with certainty whether the call will
be responded within the time standard. It depends on the pre-trip delay and the
travel time as well as the availability of the ambulance, which cannot be predicted
with certainty. Moreover, delays are usually not explicitly treated in papers dealing
with coverage models, although it is easy to incorporate a constant (average) delay
into all coverage models by simply subtracting the delay from the specified maximum
response time. In our research we will estimate a distribution function of the delay and
incorporate it as a random variable. Our model does not rely solely on average response
times, and hence it is not limited by the resulting strict classification of demand points
as covered or not covered. It allows incorporation of randomness in pre-trip delays, and
computes an expected coverage for each demand point, given the ambulance locations
and estimates of the ambulance availabilities. Traditional models assign 1 or 0 to each
demand point, i.e., if the point can be reached within the specified time standard then
1 is assigned or else 0 is assigned. As suggested in Ingolfsson, Budge and Erkut (2008)
we increase the model realism by replacing the 0-1 sequences by real numbers, which
are better estimates of the fraction of calls related to different demand points that can
be reached within the specified time standard.

We also incorporate some extensions suggested in Ingolfsson, Budge and Erkut (2008).
We add limits for the number of ambulances settled at each station and introduce new
variables to decide which stations to open. Exclusion of these variables causes that
the optimal solution is found with respect to predetermined station location.
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3.3 Model formulation

In this subsection we present our assumptions and notation, and describe the model
properties. First we start with a simpler model where the number and the exact
locations of ambulance stations are given. The objective of our interest is to set the
optimal number of vehicles settled in those stations as to ensure an adequate coverage.
Afterwards we expand the model by including the second type of decision variables to
involve the decision on the optimal number and locations of ambulance stations. Since
both of the models are from the family of coverage models, it is crucial to understand
well what this term means, therefore we first give the exact definition. We say that a
demand node is covered by a facility location if the time needed to reach the node is
less than or equal to an acceptable value, which is known as a response time standard.

In the following part we state the model’s inputs and decision variables.

Inputs

• M : finite set of m candidate facility locations indexed by i, i.e., places where
stations can be located.

• N : finite set of n demand nodes indexed by j.

• bi: the maximum number of ambulances at station i.

• dj: total demand generated at node j.

• α, δ: parameters which specify the coverage objective; the calls should be re-
sponded to in at most δ time units with probability of at least α.

• wij: the probability that the response time is less than or equal to δ time units,
provided that the call arrives from node j and the i-th station responds, i.e.,
wij = P(Rij ≤ δ), where Rij is a random response time composed of random
pre-trip delay and random travel time.

• ρi: the busy fraction for an ambulance at station i, i.e., the probability that an
ambulance at station i is not available to respond to calls.

Decision variables

• xi: number of vehicles located at station i.
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We stress that we do not monitor how available vehicles are assigned to particular
emergency calls, i.e., we do not consider any dispatching procedure. The probability
wij can be interpreted as the fraction of vehicles located at station i that responds
to the demand generated at node j. However, these vehicles are not determined to
respond to calls at node j in real life dispatching problems. As soon as the number
of vehicles located at each facility is determined, different models may be utilized to
find the solution for the dispatching and reallocating procedure.

We consider the whole problem formulation related to a certain amount of time. The
length of this time period is taken as a reasonable time relevant to the service time,
i.e., the time required for an ambulance crew to intervene at the patient location and
to return to the original location before responding to another service request. Similar
to other papers, as Beraldi, Bruni (2009) or Noyan (2010), we consider the time unit
to be equal to one hour.

Let us denote x as an m-dimensional vector whose elements express the number of
vehicles located at each station. Then we arrive the following optimization problem:

(P1) maximize c(x) =
∑

j∈N

djcj(x) (3.1)

subject to
∑

j∈N

djcj(x) ≥ α
∑

j∈N

dj, (3.2)

xi ≤ bi, ∀i ∈M, (3.3)

z(x) ≡
∑

i∈M

xi = b, (3.4)

xi ∈ Z+, ∀i ∈M, (3.5)

where
cj(x) =

∑

i∈M

(1− ρi)wijxi, ∀j ∈ N. (3.6)

This model maximizes the expected coverage c(x), subject to a constraint on the total
number of ambulances z(x) given by Equation (3.4). For the time being, we assume b
to be a given fixed number, but in the next subsection we will introduce an algorithm
for how to overcome this simplification and change b into a decision variable. The
objective function maximizes the system wide coverage c(x) which is computed as the
sum of a coverage that can be provided to the individual node by the whole system,
cj(x), multiplied by the total demand generated at this node, dj. Constraint (3.2)
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ensures that the specific fraction of demand is covered. Constraint (3.3) is a capacity
constraint, it guarantees that the number of vehicles located at each station does not
overflow its capacity. Constraint (3.5) is the integrality and nonnegativity constraint.

Now assume that the number of vehicles at the i-th station is equal to xi and define a
random variable Xi as the number of ambulance vehicles at the i-th station that are
available to respond to a call. Then the probability that Xi equals k, k = 0, . . . , xi can
be expressed as:

P(Xi = k) =

(

xi

k

)

(1− ρi)
kρxi−k

i .

Thus Xi has Binomial distribution Bi(xi, (1− ρi)). Taking the expected value of Xi,
i.e., EXi = (1− ρi)xi, we arrive to Formula (3.6).

The total demand generated at each demand node j, dj, is not known in advance,
therefore the model formulated as (P1) cannot be used straight away. In the spirit of
Noyan (2010), we introduce the scenario approach. We assume that we are given a
discrete set of scenarios, a set of realizations of service requests generated in the whole
system. Generating of scenarios is described in Section 4.3. Let S be the finite set of
scenarios and denote as πs the probability that the exact scenario s ∈ S is generated.
Then dsj becomes the realization of demand from node j under scenario s. Thus we
can reformulate the previous model as follows:

(P2) maximize c(x) =
∑

s∈S

πs
∑

j∈N

dsjc
s
j(x) (3.7)

subject to
∑

s∈S

πs
∑

j∈N

dsjc
s
j(x) ≥ α

∑

s∈S

πs
∑

j∈N

dsj , (3.8)

xi ≤ bi, ∀i ∈M,

z(x) ≡
∑

i∈M

xi = b,

xi ∈ Z+, ∀i ∈M,

where
csj(x) =

∑

i∈M

(1− ρsi )wijxi, ∀j ∈ N. (3.9)

The reason why the busy fractions are dependent on scenarios will be clear as soon as
we introduce the initial estimation of busy fraction in Subsection 4.2.6.
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Now let us introduce the extended version of the previous model by taking into ac-
count the decision on facility locations. We will use the following inputs and decision
variables:

Inputs

• M : finite set of m candidate facility locations indexed by i.

• N : finite set of n demand nodes indexed by j.

• bi: the maximum number of ambulances at station i.

• β: the maximum number of ambulance stations in the whole system.

• dj: total demand generated at node j.

• α, δ: parameters which specify the coverage requirements.

• wij: the probability that the response time to a call generated at node j and
responded from the station at node i is less than or equal to δ time units.

• ρi: the busy fraction for an ambulance at station i.

Decision variables

• xi: number of vehicles located at station i.

• yi: binary indicator, i.e., yi equals 1 if a facility is located at node i, equals 0
otherwise.

Then the optimization problem is:

(P3) maximize c(x) =
∑

j∈N

djcj(x)

subject to
∑

j∈N

djcj(x) ≥ α
∑

j∈N

dj,

∑

i∈M

yi ≤ β (3.10)

xi ≤ biyi, ∀i ∈M, (3.11)

z(x) ≡
∑

i∈M

xi = b,
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xi ∈ Z+, ∀i ∈M,

yi ∈ {0, 1}, ∀i ∈M,

where
cj(x) =

∑

i∈M

(1− ρi)wijxi, ∀j ∈ N.

Let us argue in detail the significance of the labeled constraints (3.10). Assume the
problem of designing the optimal net of station locations in the whole system. We allow
set M to be equal to set N , i.e., any node is considered as a possible location for a
station. Then we can get the optimal solution as a densely settled net of stations, each
being operated by a low number of vehicles. Intuitively, this solution is not a suitable
one, since establishing and maintaining new stations involves high costs. Therefore
constraint (3.10) replaces the budget limitation that is not included in our model and
ensures adequate expenses for creating a new system. Constraint (3.11) is the version
of a capacity constraint introduced in the first model. It guarantees that the number
of vehicles located at the particular station cannot exceed its capacity in case that the
facility location is opened.

We hereby state the scenario approach of the extended model:

(P4) maximize c(x) =
∑

s∈S

πs
∑

j∈N

dsjc
s
j(x)

subject to
∑

s∈S

πs
∑

j∈N

dsjc
s
j(x) ≥ α

∑

s∈S

πs
∑

j∈N

dsj ,

∑

i∈M

yi ≤ β

xi ≤ biyi, ∀i ∈M,

z(x) ≡
∑

i∈M

xi = b,

xi ∈ Z+, ∀i ∈M,

yi ∈ {0, 1}, ∀i ∈M,

where
csj(x) =

∑

i∈M

(1− ρsi )wijxi, ∀j ∈ N, s ∈ S.

In the next section we focus on the exact solution method that can be applied to solve
the above stated models.
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3.4 Exact solution approach

The assumption that the busy fractions ρi are exogenous parameters is not realistic,
since they depend on the number of ambulance vehicles in the stations. As the objective
of the optimization, they cannot be known in advance. To overcome this limitation, we
propose to use an algorithm that iterates between solving the location optimization
problem and estimating the busy fractions. The exact value of the busy fractions at
each step is influenced by the actual number of vehicles in the system which follows
the bisection algorithm. Assume that the set of scenarios is given, then the algorithm
of finding the optimal solution for the first model proceeds as follows:

Algorithm 1

STEP 1. Set n equal to 1. Choose an initial value for the total number of ambu-
lances, b1. We propose to set b1 =

∑

i∈M bi, i.e., the maximum acceptable number of
ambulances in the system. Set the initial values of the lower and upper bounds of the
number of ambulances in the system as b1lower = 0, b1upper =

∑

i∈M bi and the initial
solution of the optimization problem with the number of ambulances equal to b1upper
as x1

upper = (b1, . . . , bm).

STEP 2. Attempt to maximize coverage with bn ambulances as follows:

STEP 2a. Set the busy fraction ρsi to an initial estimate of the busy fraction
(using Formula (4.2)) corresponding to bn ambulances in the system.

STEP 2b. Using the busy fractions ρsi , find the solution xn of the modified
version of optimization problem (P2):

(P5) maximize c(x) =
∑

s∈S

πs
∑

j∈N

dsjc
s
j(x)

subject to xi ≤ bi, ∀i ∈M,

z(x) ≡
∑

i∈M

xi = bn,

xi ∈ Z+, ∀i ∈M,
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where csj(x) is defined as

csj(x) =
∑

i∈M

(1− ρsi )wijxi, ∀j ∈ N, s ∈ S.

STEP 3. If the condition
c(x) ≥ α

∑

s∈S

πs
∑

j∈N

dsj

is satisfied then set the new values of parameters bupper, blower and xupper as follows:

bn+1
upper ←− bn,

bn+1
lower ←− bnlower,

xn+1
upper ←− xn,

otherwise

bn+1
upper ←− bnupper,

bn+1
lower ←− bn,

xn+1
upper ←− xn

upper.

Set the new value of b equal to

bn+1 =

⌊

1

2

(

bn+1
upper + bn+1

lower

)

⌋

.

If bn+1 = bn+1
lower and n = 1 then the problem has no solution. If bn+1 = bn+1

lower and n > 1
then stop the algorithm. The optimal solution is given by the vector xn+1

upper and the
corresponding optimal number of ambulances in the system is equal to bn+1

upper. If the

condition bn+1 = bn+1
lower is not satisfied then increase the value of n by one and go to

STEP 2.

Remark. The algorithm of finding the optimal solution of the extended model, i.e.,
the one which includes decision variables yi, i ∈ M , proceeds analogously except for
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replacing the problem (P5) by the following one:

(P5) maximize c(x) =
∑

s∈S

πs
∑

j∈N

dsjc
s
j(x)

subject to
∑

i∈M

yi ≤ β,

xi ≤ biyi, ∀i ∈M,

z(x) ≡
∑

i∈M

xi = bn,

xi ∈ Z+, ∀i ∈M,

yi ∈ {0, 1} ∀i ∈M,

In this case the initial values for the total number of ambulances b1 is derived as
follows: assume the permutation χ of set M such that

bχ1
≥ bχ2

≥ · · · ≥ bχm
.

That is, the stations are arranged in descending order of their capacities. Then we
define b1 as:

b1 =

β
∑

i=1

bχi
.

We emphasize that the algorithm does not guarantee to converge to an unique solution.
Sometimes two or more similar systems can be designed. In such cases, the planner can
compare them in terms of another criteria, for instance, the number of active stations
which highly influences the costs involved in maintaining the system.
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Chapter 4

Data description and analysis

4.1 Data description

Our data set consists of 49,426 EMS calls and their properties received in 2010 in
the Amsterdam region. The first information are enrolled at the dispatching center.
The date, day of the week, and exact time when the call was generated are regis-
tered immediately. Then the dispatching operator records the type of the call. Not
all of the entries are emergency calls, sometimes ambulance vehicles transfer patients
between different hospitals, or transport them home from the hospital respectively.
These planned transfers make part of our database, but their number is negligible
in comparison with emergency calls, the planned transport creates only 5.86% of all
records. Since we want to design a system for providing the first aid, all information
about planned calls is irrelevant and therefore removed from the database. The oper-
ator has to estimate the sincerity of the accident and label it on the given scale. In
Amsterdam the calls are divided into two groups, A1 for more urgent accidents re-
quiring fast intervention and A2 for the less serious ones. The rest of the information
is registered by the paramedics crew. Every vehicle is equipped with a special mobile
device which is determined to log exact events like the time when the crew is informed
about a new accident, time when it leaves the station or any base location, time it
arrives at the patient location to provide the first aid. After having treated the patient
paramedics have to inform the call center if the transport to a hospital is necessary or
not. If it is so, they log the exact time when they leave the patient location and time
when they arrive at the hospital. The last information collected by the crew is the
time when the vehicle is free again. Scarce mistakes that occur during the recording
process were removed from the data set when apparent. There are given standards
which specify the time limit of every action depending on the urgency level, for the
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boundaries see Table B.1 in Appendix B. Further we have the information about the
postal code where the intervening vehicle was located when announcing the EMS call
and also the postal code of the hospital where the patient was eventually transported.

First we considered each of 103 postal codes in the Amsterdam region as a demand
node. However the diversity throughout these areas, originating from large differences
between interarrival rates of accidents, caused instability in obtained results. Probabil-
ities of particular scenarios were highly influenced by the regions that had extremely
low presence of accidents and the optimal solution of base stations locations varied
depending on the generated scenarios. Therefore we decided to use the splitting of
the Amsterdam region into 19 larger districts and treat each district as a demand
node. The list of the districts with graphical illustration is displayed in Table B.2 and
Figure B.1 in Appendix B.

Beside the database of EMS calls the travel time model makes the indispensable input
for our computations. The travel time model is a square matrix whose elements express
the average travel time between every two pairs of postal codes in the Amsterdam
region (the calculation of the matrix is out of the scope of this paper). However in
the real life situation the travel times between nodes are not deterministic values,
therefore we endowed the travel time modeling with a parameter that compensates
the deviation between the theoretical and real travel time. Naturally we also had to
adjust the matrix with respect to the partition of the region into 19 districts. We were
provided with the mapping from the set of the districts to the set of the postal codes,
each district was assigned a central postal code. This mapping enabled us to reduce
the original travel time matrix in the spirit of the districts taking the time distances
between the central postal codes.

According to our computational experience it is necessary to divide the day into several
homogeneous periods, in which the number of accidents per hour is approximately
similar, and make every analysis for each period separately. Assuming the independent
arrival process with the same parameter during all day will lead to disapproving a
fitted distribution for the interarrival time by statistical tests, although the fitted
distribution abstracting the parameter would be correct. The histogram in Figure 4.1
reflects the difference between the number of accidents during day time. While at 4
a.m. and 5 a.m. there are around 1,200 EMS calls received, in the afternoon at 1 p.m.
and 2 p.m. there are nearly 4,000 calls. Therefore we suggest to divide the day into
three periods as indicated in Figure 4.1 and Table 4.1. The adequacy of such a division
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Figure 4.1: Histogram of received EMS calls.

will be proved in the following section.

period time

night hours 0:00 - 8:00
rush hours 8:00 - 18:00
off-peak hours 18:00 - 0:00

Table 4.1: Day periods.

4.2 Problem data

Before running the optimization solver itself we need to estimate or set the following
parameters:

• M set of m station locations (indexed by i), N a set of n demand nodes (indexed
by j). We have already indicated the choice of the set of demand nodes and the
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choice of the set M is discussed in the next chapter where we summarize the
obtained results for the concrete model.

• bi, β, the maximum number of ambulances at station i, the maximum number
of stations in the whole system respectively. These values will be specified in
Chapter 5.

• Parameters δ and α. In our computational experiment we use the common values
introduced in Chapter 5.

• λj the positive arrival rate of calls generated at demand node j, whose estimation
is discussed in Subsection 4.2.1. Knowledge of interarrival rates is crucial when
generating scenarios.

• Travel time distribution between the i-th station and the j-th node, or the j-th
station and the assigned hospital respectively, based on the travel time model.
Modeling of the travel time distribution is presented in Subsection 4.2.3.

• The probabilities wij, the probabilities that the response time is less than or
equal to δ time units, provided that the call arrives from node j and a vehicle
from the i-th station responds. Subsection 4.2.4 is devoted to the calculation of
these probabilities.

• An assignment of a particular hospital to each demand node which is discussed
in Subsection 4.2.5.

• The initial estimation of busy fraction ρi for the ambulances at station i, de-
scribed in Subsection 4.2.6.

Remark. All calculations presented in the next subsections were performed in Microsoft
Office Access (2007), Microsoft Excel (2010) and R (version 2.12.1).

4.2.1 Estimation of the arrival rates

We want to estimate a positive arrival rate λj for each demand node j. We assume
independent Poisson arrival processes at the nodes (for a definition of the Poisson pro-
cess see Appendix A), i.e., interarrival times for each demand node are exponentially
distributed with parameter λj. We denote the system wide arrival rate with λ. Then
the following relation has to hold:

λ =
∑

j∈N

λj.
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Computational experience

To illustrate the accuracy of the assumption on arriving process of accidents we present
in detail results obtained by analyzing data of events reported during rush hours.
The overview of other results (off-peak and night hours) can be found in Table B.3
in Appendix B. First we will demonstrate that the interarrival time between two
accidents happened at different demand nodes has the exponential distribution. Then
we will show that the interarrival time between accidents for each demand node is
exponentially distributed as well. In this case the average of individual rates should
approach the overall rate.

We analyzed data of all rush hours EMS calls received in 2010, which is a set of more
than 26,000 observations. Our aim was to find a distribution that would best fit the
available data. There are several methods for fitting a distribution, in our case the
maximum likelihood was applied. Figure 4.2 displays the empirical distribution of the
interarrival time, which is well approximated by the exponential distribution.
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Figure 4.2: Empirical distribution of the interarrival time in rush hours and the fitted
exponential distribution.
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The accuracy of the exponential distribution was verified by a two-sided Kolmogorov
-Smirnov test and Anderson-Darling test. Note that both of them test suitability of
concrete distribution, i.e., the rate of exponential distribution has to be specified (we
set this value equal to the estimated interarrival rate 7.22). We tested the null hypoth-
esis that interarrival times are exponentially distributed on the confidence level 0.05.
Both tests ran ten times on different random samples of size 20. Table 4.2 summarizes
the obtained results. Kolmogorov-Smirnov accepted the null hypothesis in all tests
and Anderson-Darling in 9 tests out of 10.

No. p-value No. p-value

1 0.5108 6 0.9606
2 0.9784 7 0.4705
3 0.5635 8 0.7762
4 0.7872 9 0.9598
5 0.6599 10 0.5870

No. p-value No. p-value

1 0.0011 6 0.1567
2 0.7494 7 0.6703
3 0.1755 8 0.6661
4 0.7878 9 0.6445
5 0.8178 10 0.6773

Table 4.2: P-values of Kolmogorov-Smirnov tests (left) and Anderson-Darling tests
(right) of the exponential distribution of the interarrival time in rush hours.

The interarrival times ranged from 0 seconds to 30.09 hours with a sample mean of
0.1385, i.e., accidents appear every 8 minutes and 30 seconds on average. The rate
of the fitted distribution is equal to 7.22, which is exactly the reciprocal value of the
sample mean. This number can be interpreted as the average number of accidents
recorded every hour. Table B.3 in Appendix B summarizes obtained results when
analyzing night hours and off-peak hours. At this point let us stress an important
result. The interarrival rate of rush hours is the highest one, i.e., rush hours are the
busiest, therefore in further modeling our aim is to cover firstly the demand generated
during this period and then reduce the number of ambulances needed to operate in
night hours and off-peak hours.

Nevertheless, in our model we assume independent Poisson arrival processes at each
node, therefore the analysis of demand nodes is crucial for us. However the previous
results can be used as feedback, since the overall rate should equal the sum of the
individual rates. Indeed, the sum of the individual rates equals 7.15 which is close
to the value of the overall rate (7.22). For each demand node we first estimated the
interarrival rate between the succeeding accidents based on fitting an exponential
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distribution based on maximum likelihood method, then the distribution was verified
by the Kolmogorov-Smirnov and the Anderson-Darling test. We state the complete
list of interarrival rates for all districts and periods in Table B.4 accompanied by the
graphical illustration in Figures B.2, B.3 and B.4 all in Appendix B. Here we want
to demonstrate the suitability of the exponential distribution. From the set of 19
demand nodes the Kolmogorov-Smirnov test approved the exponential distribution as
a suitable distribution in all 19 cases and the Anderson-Darling test in 17 cases (all
testing was carried out on the confidence level 0.95).

To illustrate the procedure of the individual approach we display only results for a
randomly chosen node as all of them were treated similarly (the district of Amsterdam
Nieuw-West was chosen). The number of observations registered at this node is equal to
3,852. The rate of the fitted exponential distribution equals to 1.0356, which negligibly
differs from the reciprocal value of the sample mean (1.0358). Figure 4.3 displays the
empirical distribution of the interarrival time, which is approximated by the exponecial
distribution.
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Figure 4.3: Empirical distribution of the interarrival time in rush hours at a demand
node and the fitted exponential distribution.
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The accuracy of the exponential distribution was verified again by the two-sided
Kolmogorov-Smirnov test and Anderson-Darling test. As in the previous case, the
tests were repeated ten times on different random samples of size 20. From Table
4.3 we can draw the conclusion that the assumption of independent Poisson arrival
processes at the node is satisfied.

No. p-value No. p-value

1 0.2066 6 0.6496
2 0.0110 7 0.1081
3 0.2813 8 0.8419
4 0.2075 9 0.4087
5 0.0824 10 0.9997

No. p-value No. p-value

1 0.1047 6 0.5760
2 0.0102 7 0.1076
3 0.0611 8 0.6974
4 0.1039 9 0.1157
5 0.0708 10 0.9962

Table 4.3: P-values of Kolmogorov-Smirnov tests (left) and Anderson-Darling tests
(right) of the exponential distribution of the interarrival time in rush hours at a
demand node.

4.2.2 Estimation of the distribution function of the pre-trip

delay

In this subsection we discuss estimation of the distribution function for the pre-trip
delay. The estimation of the distribution function requires some simplifying assump-
tions. In particular, we assume that pre-trip delays do not depend on nodes where the
calls are generated or on a particular ambulance station. We also exclude dependence
on the day time periods. These arguments sound reasonable since the first part of the
pre-delay is caused by operators in the call center and the second by a dispatched
crew which needs several minutes to be able to set off from the station. Both of them
try to reduce the time required to fulfill their tasks so that they can provide first aid
as soon as possible.

Computational experience

We analyzed data from the Amsterdam region to illustrate the significance of pre-
trip delays. We used the a data set consisting of more than 45,000 (45,668) of EMS
calls received in one year regardless of distinguishing between nodes where the calls
were generated, times when they were announced and the station which responded.
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Figure 4.4 displays the empirical distribution of the pre-trip delays, which is well ap-
proximated by the lognormal distribution. We again applied the maximum likelihood
method.
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Figure 4.4: Empirical distribution of the pre-trip delay and the fitted lognormal dis-
tribution.

The accuracy of the lognormal distribution was verified by the two-sided Kolmogorov
-Smirnov test and the Shapiro-Wilk test for normality applied on logarithmic values of
the data. We tested the null hypothesis that pre-trip delays are lognormally distributed
on the confidence level 0.05. The tests ran ten times on different random samples of size
20 of the original data, or their logarithmic values respectively. Table 4.4 summarizes
the obtained results. In the first case, we applied the Kolmogorov-Smirnov test, the
lognormal distribution was confirmed as a relevant distribution by each test, in the
second case, the Shapiro-Wilk test, the lognormal distribution was confirmed by 8
tests out of 10, therefore we conclude that the pre-trip delays can be modeled as a
random variable with lognormal distribution.
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No. p-value No. p-value

1 0.7428 6 0.3715
2 0.8407 7 0.6609
3 0.2757 8 0.8983
4 0.7676 9 0.2957
5 0.6121 10 0.3986

No. p-value No. p-value

1 0.0265 6 0.9271
2 0.0216 7 0.1531
3 0.3395 8 0.3858
4 0.1030 9 0.7928
5 0.0674 10 0.1308

Table 4.4: P-values of Kolmogorov-Smirnov tests (left) and Shapiro-Wilk tests (right)
of the lognormal distribution of the pre-trip delay.

The delays ranged from 10 second to 2088 seconds (which is approximately 35 min-
utes), with an average of 243.99 seconds and a standard deviation 135.92 seconds. The
variation in the delay is too large (the standard deviation is more than 55% of the
sample mean) which endores modeling the pre-trip delays as a random variable instead
of considering it as a constant. The fitted distribution has mean equal to 242.81 and
a standard deviation of 164.54. Note that these values are very close to the sample
mean and the sample standard deviation.

4.2.3 Estimation of the distribution function of the travel

time

We will model the travel time similarly as Marionov ReVelle (1996), i.e., they assumed
the travel time from station i to node j as normally distributed with known mean and
variance. As the mean we set the value tij given by the travel time model. We will
assume that the variance parameter σ2 does not depend on the distance between the
station and the node. One could argue that treating this parameter as a constant
independent of the distance is a limiting assumption, since a longer distance or per-
manent traffic barriers (crossing river, channels) involve a higher delay. However this
fact is already incorporated when constructing the travel time model. Therefore we
can assume σ2 to be a constant for each station-node pair, which describes only ran-
dom fluctuations around the mean. The distribution of the travel time from the i-th
station to the j-th node can be written as:

Tij = tij +K,

where K is a random variable with normal distribution N(0, σ2).
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Computational experience

We will present in detail the results obtained by analyzing rush hours. The results for
night hours and off-peak hours are stated in Table B.5 in Appendix B. We have at
our disposal travel times realizations between nodes and stations, nodes and hospitals
respectively, which include more than 23,000 items. Analyzing the distribution of the
travel time is equivalent to analyzing the distribution of fluctuations K. Figure 4.5
displays the empirical distribution and the empirical density of fluctuations in rush
hours. The fluctuation is well fitted by a normal distribution with standard deviation
σ̂ which equals to 438.46 (and a mean equal to 0). Note that the sample mean µ is not
equal to 0 (237.6), this fact causes that σ̂ is always bigger than the sample standard
deviation σ (368.51).
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Figure 4.5: Empirical distribution of the fluctuation in rush hours and the fitted normal
distribution.

The accuracy of the fitted normal distribution was verified by the Kolmogorov-Smirnov
and the Shapiro-Wilk tests. Note that the Kolmogorov-Smirnov test examines suit-
ability of the normal distribution with specific parameters, on the other hand the
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Shapiro-Wilk test serves to testing normality without any specified parameters. In the
case of the fluctuation in rush hours, Shapiro-Wilk approved the normal distribution
on the level of 0.05 in 9 tests out of 10, the Kolmogorov-Smirnov test in 7 cases out
of 10, see Table 4.5.

No. p-value No. p-value

1 0.0259 6 0.1662
2 0.1611 7 0.2163
3 0.0124 8 0.0834
4 0.0157 9 0.1526
5 0.0734 10 0.0541

No. p-value No. p-value

1 0.9161 6 0.2596
2 0.4608 7 0.6155
3 0.0843 8 0.1592
4 0.4131 9 0.2351
5 0.0074 10 0.6627

Table 4.5: P-values of Kolmogorov-Smirnov (left) and Shapiro-Wilk tests (right) of a
normal distribution of the fluctuation.

4.2.4 Calculation of probabilities wij

In our computation of values wij we use one of the methods suggested by Ingolfsson,
Budge and Erkut (2008). The probability wij is defined as the probability that the
response time is less than or equal to a given constant δ. The response time is composed
of two random variables (the travel time and the delay). Suppose that the distribution
function Hij(t) of the travel time Tij from the i-th station to node j as well as the
distribution function F (t) for the delay are available. Moreover assume that the travel
time and the delay are independent. Now we can use the convolution theorem (see
Appendix A) to calculate the probabilities wij, i.e.,

wij = P(Rij ≤ δ) =

∫ δ

0

Tij(δ − x) dF (x). (4.1)

Note that we use an adaption of the convolution theorem since in our case we integrate
over the interval (0, δ) instead of (−∞,∞) (pre-trip delays and travel times cannot
take negative values).

4.2.5 Determining the assignment of a hospital to each de-

mand node

Let us denote as H(j) a function that assigns to the j-th node a particular hospital
and as tjh the average travel time from the j-th node to the h-th hospital. Note that
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tjh are the values provided by the travel time model. We will assume the following
order:

H(j) = argmin
h∈H

tjh,

where H is a set of regions where the hospitals are located. In other words, the j-th
node is always assigned to the nearest hospital. At this point we stress that we made
a simplifying assumption that each hospital has unlimited capacity.

4.2.6 Initial estimation of the busy fraction

We assume that the average fraction of time an ambulance is busy (not available
to respond to calls) is given by the average server utilization for the z-server queue-
ing system, assuming that the number of lost calls due to queueing is negligible,
i.e., ρi = λτi/z. Here we consider an ambulance vehicle as a server and the z-server
queueing system as a system consisting of z ambulance vehicles. The estimation of
parameter λ was already described in Subsection 4.2.1. Provided that the patient,
after being treated at the primary location, is taken to a hospital, the average service
time τ (during which an ambulance is linked to a call) can be broken down to the
average travel time to the call from the i-th station ET to call

i , the average on-scene
time ET on scene, and the average time spent traveling to and remaining at a hospital
ET to hospital, ET at hospital, respectively. In case the patient is just treated at his/her
location and not taken to a hospital, the average service time τ reduces to the sum
of the average travel time to the call from the i-th station ET to call

i , and the on-scene
time ET on scene (for illustration see Figure 4.6 and Figure 4.7). Note that the average
on-scene time and the time spent traveling to and remaining at a hospital do not
depend on the initial location of ambulance, i.e., on index i.

Figure 4.6: Service time provided that the patient is taken to a hospital.
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Figure 4.7: Service time provided that the patient is treated at his/her location.

Assume that the probability that a patient is taken to a hospital equals p ∈ (0, 1),
then the average fraction of time an ambulance is busy is given as

ρi =
λ

z

(

ET to call
i + ET on scene + p

(

ET to hospital + ET at hospital
))

.

The average travel time to a call and the average travel time to a hospital can be
expressed as:

ET to call
i =

∑

j∈N

hjETij

ET to hospital =
∑

j∈N

hjETjh

This leads to the following formula for approximating ρi as a function of x:

ρi(x) =
λ

z(x)

(

∑

j∈N

hj

(

ETij + p ET h
j

)

+ ET on scene + p ET at hospital

)

, (4.2)

where hj defined as

hj =
dj

∑

j∈N dj
, j ∈ N,

is the fraction of the total demand generated at the demand node j.

First we want to emphasize that the number of servers z(x) is a variable. The validity
of this formula requires some approximations. In particular, we exclude the time spent
traveling back to a station from a hospital or from a patient location from the average
service time since the ambulance is available to respond to incoming calls during this
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time. On the other hand, we assume that an ambulance always sets off from a station
and turns back to the same station.

Remark. When applying the exact solution approach, hj becomes scenario dependent
and according to Formula (4.2) ρi are scenario dependent as well. Therefore we used
notation ρsj in Chapter 3.

Computational experience

Estimations of the random travel times Tij between the i-th station and the j-demand
node, and T h

j between the j-th demand node and the assigned hospital were discussed
in Subsection 4.2.3. Estimations of the average time spent on scene, at hospital respec-
tively, are based on the sample mean of realizations of the random variable T on scene,
T at hospital respectively. The parameter p, the probability that a patient is taken to the
hospital, is simply computed as the number of calls when the patient was transported
to the hospital divided by the overall number of calls. Based on the available data we
obtained the following results:

ET on scene = 1, 273.21,

ET at hospital = 1, 140.19,

p = 0.69.

Remark. Note that the previous results are stated in seconds. All the travel times
needed for computing busy fractions have to be converted into hours.

4.3 Scenario generating

Assume that λj, the interarrival rate of calls for each demand node, is a known param-
eter (their estimations were described in Subsection 4.2.1). We know that accidents
at each demand node appear according to an independent Poisson process, i.e., the
interarrival time between two successive accidents is exponentially distributed and the
number of accidents in an interval of length of one unit of time (one hour) obeys a
Poisson distribution. When modeling the hourly situation at each demand node we
use the following algorithm:
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Algorithm 2

STEP 1. Set the initial value for the total number of accidents appeared at demand
node j, dj equal to 0.

STEP 2. Generate the first value x of a random variable with exponential distribution
with parameter λj and set an auxiliary variable t equal to x mod 1.

STEP 3. Repeat the procedure described in STEP GENERATE while t < 1.

STEP 4. If t ≥ 2 stop the algorithm and return the current value dj. Otherwise
increase the value of dj by one and apply STEP GENERATE. Repeat this procedure
until t ∈ [1, 2).

STEP GENERATE. Generate a new value of x of a random variable with expo-
nential distribution with parameter λj. Set the new value of t as t+ x.

Since we assumed the independent Poisson arrival process at each node, the probability
that the number of accidents at demand node j is equal to the simulated value dj is
given by (see Appendix A):

P(Nj(1) = dj) =
λ
dj
j

dj!
exp(−λj).

We observed that λj belongs to interval (0,1) for each j ∈ N , in other words there
is no node with more than one accident per hour on average. Therefore the most
common value of dj will be 0 and 1. Moreover we will assume that accidents at a
particular node appear independently of accidents happened at the others. The pre-
vious assumption allows us to generate scenarios piecewise, i.e., first we model the
situation for each demand node separately and then we group the obtained results
into the overall scenario. Finally we arrive to the formula expressing the probability
of a concrete scenario πs which has the form:

πs =
∏

j∈N

P(Nj(1) = dsj) =
∏

j∈N

λ
dsj
j

dsj !
exp(−λj).
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The assumption of independent behavior for each demand was already confirmed in
Subsection 4.2.1 where we showed that the sum of the individual interarrival rates is
approximately equal to the overall interarrival rate.

In the majority of our computational experiment presented in the next chapter we
handled the set of scenarios of cardinality 5,000. We presume that this set is large
enough to model the real-life situation.

41



Chapter 5

Computational results

This section is devoted to the presentation and discussion of the computational exper-
iments carried out to assess and validate our models. In the first part we discuss the
solution of the model formulated as (P2) with a predetermined set of facility locations,
the second part deals with the model formulated as (P4). In order to demonstrate the
computational performance of our methods, we display results obtained for rush hours.
Here we would like to point out that solving the same issue for off-peak hours and
night hours is not our main concern as we use another approach for these periods. In
the Section 5.3 we present illustrative results to give some insight about the variance
of solutions of problems (P2) and (P3). Section 5.4 provides the analysis of overall
solution of designing EMS system taking into account the changes due to different
time periods.

Remark. All calculations were carried out using R (version 2.12.1), in particular pack-
age lpsolve which is dedicated to solve linear, integer and mixed integer problems.

5.1 Optimizing with the predetermined set of base

station locations

In order to assess the contemporary situation, we have first considered the problem
with predetermined locations of the base stations, i.e., we apply the model formulated
as (P2). In fact, the set of location points is assumed to be equal to the existing base
station locations which are displayed in Table B.7 in Appendix B. As far as capacity of
a station is concerned, we considered the same value for the capacity for each candidate
facility, i.e., bi = γ for all i ∈M . Beside specifying the base station locations we need
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to have the information about the positions of hospitals as to be able to assign the
nearest hospital to each demand node. The list of hospitals and their locations can be
also found in Appendix B in Table B.6.

5.1.1 Numerical results

The first set of experiments was carried out to demonstrate the results for the usual
choice of the critical time δ and the system-wide confidence level α and design the
real-life EMS system. The other computations were aimed to confirm the presump-
tion about the system behavior when these parameters exceed their common values.
For instance, it seems reasonable that with decreasing value of the critical time δ,
the diversification of ambulance vehicles between the base stations is more significant.
Equally we could state that with the higher system-wide confidence level α the di-
versification should not change whereas the number of vehicles in each station should
raise.

As indicated in Section 4.2, we assume that each demand node has a circular coverage
area and we consider two common values to define the critical time δ of the coverage
radius: 10 and 15 minutes. In order to show the influence of the system-wide confidence
level on the problem’s solution, we have set the value of parameter α equal to 0.95
and 0.99. Finally, each case has been solved for different values of the station capacity
γ: 5, 20. In all the tests we have carried out a large number of scenarios (5,000) to
ensure the stability of the solution. Table 5.1 summarizes the obtained results for
each combination of the above mentioned parameters. Particularly we were interested
in the total number of vehicles that satisfy the minimum coverage condition and
their exact distribution between the base station locations, further we recorded the
number of iterations of the bisection algorithm (denoted as ν) and the fraction of the
expected coverage (denoted as φ). Note that φ has to be always equal to or larger
than α. The table shows that locating the ambulance vehicles to the base station
in region 8 (Amsterdam Zuid) is the most profitable choice in order to increase the
system coverage. Indeed, region 8 has the highest interarrival rate of accidents among
all regions considered as the base station locations, moreover it is situated in the
middle of the agglomeration, therefore the average reaching distance (expressed in
time units) for any EMS call is the shortest. Maintenance of the base stations in
regions 11 (Amsterdam Zuidoost), 3 (Amstelveen) and 1 (Kudelstraat, Kalslagen and
Aalsmeer) seems to be inconvenient. This fact can be explained in the case of regions
11 and 3 by the close presence of the base station in the region 8, and in the case of the
region 1 by a low interarrival rate and its outskirt position. The results show that the
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optimal solution for both values of the parameter α coincide. Nevertheless we observed
that this behavior is symptomatic for the most common choice of the parameters δ
and γ, for extremely low values of these parameters the influence of α on the optimal
solution is visible (this statement will be proved in the Subsection 5.1.2). The table
also shows that the higher is the critical time δ, the lower is the number of required
vehicles to ensure the specified fraction of the expected coverage. As expected, the
upper bound on the number of vehicles that can be allocated to base stations has a
significant effect on the number of facilities to be opened. When the capacity variable
γ is set to be a low value the model results in more facilities, concretely the station in
region 4 (Amsterdam Centrum) is opened. Since region 4 has lower interarrival rate of
accidents than region 8 and is situated closer to the borderline of the agglomeration,
the provided coverage decreases with disaggregation of the vehicles.

α δ γ
Number of vehicles

φ ν
Reg. 4 Reg. 8 Reg. 11 Reg. 3 Reg. 1

0.95 10 5 3 5 0 0 0 1.09 6
0.95 10 20 0 8 0 0 0 1.12 8
0.99 10 5 3 5 0 0 0 1.09 6
0.99 10 20 0 8 0 0 0 1.12 8
0.95 15 5 2 5 0 0 0 1.04 5
0.95 15 20 0 7 0 0 0 1.07 7
0.99 15 5 2 5 0 0 0 1.04 5
0.99 15 20 0 7 0 0 0 1.07 7

Table 5.1: Optimal number and location of ambulance vehicles for different values of
parameters α, δ, γ when locations of the base stations are predetermined.

Let us now pass to prove the stability of the proposed solving method, i.e., we want to
show that the optimal solution does not depend on the set of generated scenarios (we
used again the set of cardinality 5,000). As can be seen from Table 5.2, the particular
set of scenarios influences negligibly the provided coverage ν whereas the total number
of vehicles and their distribution stay constant. We remark that the other parameters
were kept fixed on values α = 0.95, δ = 15 min., γ = 20. In our initial computations
where we assumed the set of demand nodes to be equal to all postal codes in the
Agglomeration Amsterdam this was not the case.
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Number of vehicles
φ ν

Reg. 4 Reg. 8 Reg. 11 Reg. 3 Reg. 1

1 0 7 0 0 0 1.05 7
2 0 7 0 0 0 1.07 7
3 0 7 0 0 0 1.06 7
4 0 7 0 0 0 1.06 7
5 0 7 0 0 0 1.05 7
6 0 7 0 0 0 1.05 7
7 0 7 0 0 0 1.06 7
8 0 7 0 0 0 1.06 7
9 0 7 0 0 0 1.07 7
10 0 7 0 0 0 1.06 7

Table 5.2: Stability of the optimal solution when locations of the base stations are
predetermined.

5.1.2 Solution sensitivity to input parameters

In order to provide an insight on about the sensitivity of the model to changes in
input parameters, we present in the following section several graphical illustrations.
The values of only a certain type of parameters are changed while the remaining ones
are kept fixed. Namely, we were interested in investigating dependence of the optimal
solution on the number of generated scenarios, the system-wide confidence level α, the
critical time δ and the capacity of the base stations γ.

Let us first discuss the sensitivity of the optimal solution on the number of scenar-
ios. We altered the number of scenarios from 0 to 5,000 with a step 20 while keeping
the other parameters fixed on the values: α = 0.95, δ = 15 min. and γ = 20. Fig-
ure 5.1 displays the total number of active stations and vehicles in the system, the
ratio between the expected and provided coverage and the number of iterations of
the bisection algorithm associated with the concrete number of scenarios. The total
number of stations together with the total number of vehicles assigned to cover de-
mand as well as the number of iterations are consistent, whereas the the ratio between
the expected and provided coverage stabilizes around the value 1.058 as soon as the
number of scenarios exceeds 1 500. For smaller values we observed significant changes
in the ratio φ. Therefore we can conclude that the method converges to the unique
optimal solution.
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Other experiments were carried out to analyze the effect of the system-wide confi-
dence level on the optimal results. Figure 5.2 reports the total number of stations
and vehicles, ratio φ and the number of iterations ν versus the confidence level α.
The calculation of the optimal solution was realized for each element of the uniform
sequence in the interval [0.1, 1] with step size 0.01 while the other parameters were
kept fixed on values: δ = 2 min., γ = 20 and the number of scenarios equal to 5,000.
As expected, the higher the required reliability value α is, the higher is the number
of vehicles needed to ensure the emergency medical case, moreover the dependence
is almost linear. Since we restricted the capacity γ to the value of 20, the number of
active stations raises with higher number of vehicles in the system. The fraction φ
traces exactly the value of parameter α. This behavior can be explained by keeping
parameter δ fixed on a very low value. In this case the overall number of vehicles in
the system is in general much higher for any confidence level α (in comparison with
previous computations where δ was equal to 10 or 15 minutes), therefore the number
of vehicles which influences the ratio φ is more sensitive to the variation of the reliabil-
ity value. The number of iterations fluctuates between 7 and 8, thus we can conclude
that ν does not depend on the parameter α.

The next figure (5.3) displays the behavior of the optimal solution in relation to
parameter δ. We compared the results for nearly 120 different values of δ, we started
at the value of 1 minute and raised it with every new computation by 15 seconds up
to the value of 30 minutes. For the other parameters we chose standard values, i.e.,
α = 0.99, γ = 20 and we involved 5,000 scenarios. We can observe that for very low
values of δ the optimization problem does not have any solution. As soon as δ exceeds
the threshold of 2 minutes, a network that satisfies all conditions can be designed.
However, the number of vehicles in such a system is enormously high. The higher δ is,
the lower number of vehicles is required to respond to emergency calls and the total
number of active stations increases as well. Now let us focus on the explanation of
the shape of the curve of the ratio φ. As it was mentioned in the previous paragraph,
in the case of low δ the optimal number of vehicles is extremely high and even small
changes in the critical time leads to amending the number of ambulances. Jumps of
the ratio φ exactly reflect the changes in the number of vehicles. Therefore for smaller
values of δ they occur frequently whereas for higher sparsely. The total number of
iterations again remained independent of the parameter δ.

Finally, we compared the results for different bounds of the capacity of stations γ. As
we can observe from Figure 5.4, the optimal solution for the parameter γ lower than
3 does not exist (the rest of the system parameters were set as: α = 0.95, δ = 5 min.
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and we again used 5,000 scenarios). If we solve the optimization problem with such
specified parameters and unlimited capacity of stations we arrive at 11 vehicles needed
to ensure the required medical care. Therefore when the capacity γ is set to be equal
to or higher than 11 ambulances per station the optimal solution remains stable, i.e.,
all vehicles are settled in one particular station (in our case it is the station in region
8). For other values of γ (3, 4, . . . , 11) a distribution between stations is required, thus
we can observe either higher number of vehicles in the system or a lower ratio φ. In
contrast with previous computations, we can conclude that the number of iterations
of the bisection algorithm depends on the capacity γ. This behavior can be explained
by setting the initial value of vehicles in the system b1 introduced in Algorithm 1 as
a sum of the station capacities, i.e., the higher γ is, more iterations are necessary to
find the optimal solution.
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Figure 5.1: Sensitivity of the total number of active stations and vehicles, the coverage
and the number of iterations to the number of scenarios when locations of the base
stations are predetermined.
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Figure 5.2: Sensitivity of the total number of active stations and vehicles, the coverage
and the number of iterations to the parameter α when locations of the base stations
are predetermined.
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Figure 5.3: Sensitivity of the total number ofactive stations and vehicles, the coverage
and the number of iterations to the parameter δ when locations of the base stations
are predetermined.
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Figure 5.4: Sensitivity of the total number of active stations and vehicles, the coverage
and the number of iterations to the capacity γ of the base station when locations of
the base stations are predetermined.
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In the previous part we discussed sensitivity of the optimal solution on the input
parameters, in particular we observed changes in the optimal number of vehicles, in
the ratio φ and in the number of iterations ν. However we did not mention how the
distribution of vehicles between stations differs with varying these parameters. First
let us focus on the case of the system-wide confidence level α. In order to draw a
conclusion about behavior of the optimal solution we set the parameter δ equal to 2
minutes and combined different values of α and γ. It seems reasonable that the higher
is the reliability level α, the higher is the number of ambulances in the system, but
their locations should remain consistent. Indeed, Table 5.3 gives the evidence of the
previous statement. The algorithm first fulfills the capacity of the facility location that
maximizes the provided coverage and as soon as the boundary is met it targets on the
other base stations. The other experiment was carried out to investigate changes in the
vehicle location depending on the critical time δ. Unlike the previous case, one would
assume that the lower δ is, the vehicles scatter throughout the net of the base stations.
Nevertheless the results that are stated in Table 5.4 do not confirm our presumptions
(we remark that for each instance we used the confidence level equal to 0.95). With
increasing value of δ the number of vehicles descends though the distribution does
not change dramatically. When we applied the same experiment on the model where
we divided the region of Amsterdam according to its postal codes instead of using
partition on 19 districts, we observed a variation in distribution of vehicles. The lower
the critical time was, the more facility locations were dedicated to serve as the base
stations even though the capacity of none of them was fully filled. We can conclude
that distribution of ambulances highly depends on the partition of the examined region
and on the diversity in the interarrival rates.

γ α
Total number Number of vehicles
of vehicles Reg. 4 Reg. 8 Reg. 11 Reg. 3 Reg. 1

100

0.80 45 0 45 0 0 0
0.85 47 0 47 0 0 0
0.90 50 0 50 0 0 0
0.95 52 0 52 0 0 0
1.00 54 0 54 0 0 0

50

0.80 45 0 45 0 0 0
0.85 47 0 47 0 0 0
0.90 50 0 50 0 0 0
0.95 53 3 50 0 0 0
1.00 55 5 50 0 0 0
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20

0.80 52 20 20 0 12 0
0.85 57 20 20 0 17 0
0.90 62 20 20 2 20 0
0.95 68 20 20 8 20 0
1.00 74 20 20 14 20 0

Table 5.3: Distribution of ambulance vehicles for different values of α when locations
of the base stations are predetermined.

γ
δ Total number Number of vehicles

(min) of vehicles Reg. 4 Reg. 8 Reg. 11 Reg. 3 Reg. 1

100

1.65 110 10 100 0 0 0
1.7 96 0 96 0 0 0
1.8 77 0 77 0 0 0
2.5 28 0 28 0 0 0
10 8 0 8 0 0 0

50

1.65 127 50 50 0 27 0
1.7 100 50 50 0 0 0
1.8 79 29 50 0 0 0
2.5 28 0 28 0 0 0
10 8 0 8 0 0 0

20

1.65 no solution
1.7 no solution
1.8 no solution
2.5 28 8 20 0 0 0
10 8 0 8 0 0 0

Table 5.4: Distribution of ambulance vehicles for different values of δ when locations
of the base stations are predetermined.
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5.2 Optimizing throughout unlimited base station

locations

In the following section we present and discuss the computational results carried out
to assess and validate the model formulated as (P4), i.e., we want to design a system
with optimal base station locations and assign them an adequate number of vehicles.
We assume that a station can be established in any region, in other words we defined
the set of the facility locations to be the same as the set of demand nodes. The choice of
capacities for potential base stations is up to the system planner who might also impose
different restrictions for the different location points according to the geographical and
construction conditions. For simplicity in our calculations we considered the same value
of the capacity for each facility location (we again used the notation γ). We remark
that the set of hospitals remained the same and thus the assignment of the nearest
hospital to each demand node did not change.

5.2.1 Numerical results

In the first subsection we present a design of the system for common choice of input
parameters. We again observed the results for all instances where α = 0.95, 0.99,
δ = 10 or 15 min. and γ = 5, 20. In each of the instances we utilized 5,000 of scenarios
and restricted the maximal number of stations in the system β to 10. We refer to
Table 5.5 to view the obtained results. In the column Optimal number and locations
of stations we first display the number of operating stations, in the second row we
state the serial number corresponding to the region where the stations are supposed
to be established. The next column summarizes the overall number of ambulance
vehicles and their exact distribution between the stations underneath. In addition we
were interested in the number of iterations of the bisection algorithm ν and the ratio
between provided and expected coverage φ. We can conclude that establishing a base
station in region 8 (Amsterdam Zuid) is again the most profitable in the sense of
increasing the system coverage. When the capacity of this station is fully filled and
the target level of the emergency medical service is not met, a station on the second
prefered position (a station in region 4) comes to use. It is worthwhile to emphasize
that the current system takes into account stations in regions 4 and 8, and assigns
them the majority of operating vehicles. The accuracy of this approach was confirmed
by our computations. Moreover we demonstrated that stations in regions 1, 3 and 11
are dispensable for an efficient system since they did not appear in the results. As we
discussed in the previous part of computational results, the higher the critical response
time δ is, less ambulances are involved to ensure the specified fraction of the expected
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coverage. The number of base stations that should be opened is highly influenced by
the upper bound on the number of vehicles that can be settled at each facility location,
i.e., when γ is relatively low, the model results in more operating stations.

α δ γ
Optimal number Optimal number

φ ν
and locations of stations of vehicles

0.95 10 5 2 8 1.08 7
(4, 8) (3, 5)

0.95 10 20 1 8 1.11 9
(8) (8)

0.99 10 5 2 8 1.08 7
(4, 8) (3, 5)

0.99 10 20 1 8 1.11 9
(8) (8)

0.95 15 5 2 7 1.04 6
(4, 8) (2, 5)

0.95 15 20 1 7 1.06 8
(8) (7)

0.99 15 5 2 7 1.04 6
(4, 8) (2, 5)

0.99 15 20 1 7 1.06 8
(8) (7)

Table 5.5: Optimal number and location of ambulance vehicles for different values of
parameters α, δ, γ.

As in the previous part we give an evidence that the solution does not depend on the
set of generated scenarios. We kept the input parameters fixed on values α = 0.95,
δ = 15 min., γ = 20 and β = 10, we simulated 5,000 scenarios and recorded the
results. Afterwards we repeated this procedure several times. Table 5.6 shows that
different set of scenarios only causes negligible deviation in the ratio φ whereas the
optimal solution remains the same.
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Optimal number Optimal number
φ ν

and locations of stations of vehicles

1 1 7 1.06 8
(8) (7)

2 1 7 1.07 8
(8) (7)

3 1 7 1.06 8
(8) (7)

4 1 7 1.06 8
(8) (7)

5 1 7 1.06 8
(8) (7)

6 1 7 1.05 8
(8) (7)

7 1 7 1.06 8
(8) (7)

8 1 7 1.07 8
(8) (7)

9 1 7 1.06 8
(8) (7)

10 1 7 1.05 8
(8) (7)

Table 5.6: Stabiltiy of the optimal solution.

5.2.2 Solution sensitivity to input parameters

In order to give an idea about the sensitivity of the model to changes in input parame-
ters, we again present several graphical illustrations. As in Subsection 5.1.2, we investi-
gated dependence of the optimal solution on the number of scenarios, the system-wide
confidence level α, the critical respond time δ, the capacity of the base station γ and
additionally we add sensitivity analysis to the maximal acceptable number of stations
in the system β. Beside the optimal number of vehicles, the fraction φ and the number
of iterations ν we also recorded for each instance the total number of base stations in
the system. Since the large share of the experiments arrived to the same conclusion
as in Subsection 5.1.2, we discuss here mainly differences and supplementary observa-
tions.
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First of all we focus on the sensitivity of the optimal solution on the number of
scenarios. We generated sets of scenarios of different cardinality ranged from 0 to
5 000 with a step 20 whereas the other parameters remained on values: α = 0.95,
δ = 15 min., γ = 20 and β = 10. As we can observe from Figure 5.5 in all cases
one base station with consistent number of vehicles is required to cover the specified
fraction of demand. Also in this case the number of scenarios influences the ratio φ
which converges to its optimal value as the number of scenarios goes to infinity. We
can again confirm that the number of iterations does not depend on the number of
scenarios as it did not change during the whole experiment.

In the second experiment we were interested in the effect caused by changes in the
system-wide confidence level. Figure 5.6 displays the obtained results. We solved the
optimization model for all α starting at the value of 0.1, raising it by 0.01 in each
step till the value of 1, while the other parameters were equal to δ = 2 min., γ = 20,
β = 10 and the number of scenarios was equal to 5,000. As before, the higher the
required reliability value α is, the higher is the number of vehicles needed to ensure
the emergency medical care. Moreover, as we set the maximal capacity of the station
equal to 20, the number of operating stations raises with increasing values of α. The
ratio φ again follows the values of the system-wide confidence level, this behavior
was already explained in Subsection 5.1.2. In conclusion we note that the number of
iterations did not depend on the value of α.

Further we observed the behavior of the optimal solution in relation to the critical
time. We ranged δ from 1 minute to 30 minutes with a step of 15 seconds. For the
other parameters we chose standard values (α = 0.99, γ = 20, β = 10 and the number
of scenarios equal to 5 000). The Figure 5.7 shows that for very low values of δ there is
no optimal solution. As soon as δ is higher than 2, a network that would provide the
requested level of service can be designed. However the number of vehicles in such a
system is extremely high and the boundary for the maximal number of stations in the
network is met. The higher this parameter is, the lower number of vehicles is involved
and the number of base stations reduces as well. The changes of the ratio φ were
already explained in detail before and therefore we refer reader to Subsection 5.1.2.

The next figure (Figure 5.8) illustrates dependence of the optimal solution on the
maximal capacity of base stations. The parameter γ took values 1, 2, . . . , 100 whereas
the other ones were kept fixed, α = 0.95, δ = 5 min., β = 10 and number of scenarios
equal to 5 000. The conclusions are nearly identical as in the Subsection 5.1.2. However
in this case the optimal solution exists even for γ = 2 which is reasonable result with
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respect to the fact that the total number of active stations in the system can be as
high as 10. The number of stations and vehicles gradually increases till the capacity
γ reaches the value of 11, then the solution stabilizes on one optimal station with 11
vehicles.

In addition we attach the sensitivity analysis which deals with the dependence of the
optimal solution on the maximal number of stations in the network β. We examined
all possible values of these parameter limited by the number of considered districts,
i.e., up to the 19 facility locations. The other parameters were set as follows: α = 0.95,
δ = 2 min., γ = 10, the number of scenarios 5,000. Figure 5.9 shows that the optimal
solution for such specified values of parameters required 65 vehicles and thus we need
to have at least 7 stations in the network to able to base them. Therefore when β ≤ 6
there is no optimal solution. It is worthwhile to remark that in the case when δ is low
(2 min.) we can observe that the vehicles are optimally based in 13 stations whose
capacities are not filled. In other words the ambulances are spread over the network to
ensure the adequate medical care. The total number of vehicles in the system together
with the ratio φ stabilizes on the optimal value as soon as the problem has any solution.
The number of iterations in order to reach the optimal solution increase as β raises
which is a reasonable behavior with respect to the choice of the initial estimation of
number of vehicles b1 defined in Section 3.4.
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Figure 5.5: Sensitivity of the total number of stations and vehicles, the coverage and
the number of iterations to the number of scenarios.
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Figure 5.6: Sensitivity of the total number of stations and vehicles, the coverage and
the number of iterations to the parameter α.
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Figure 5.7: Sensitivity of the total number of stations and vehicles, the coverage and
the number of iterations to the parameter δ.
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Figure 5.8: Sensitivity of the total number of stations and vehicles, the coverage and
the number of iterations to the capacity of the base station.
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Figure 5.9: Sensitivity of the total number of stations and vehicles, the coverage and
the number of iterations to the parameter β.
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In the last part of this subsection we explore the distribution of vehicles throughout
the network related to low value of the critical respond time. Results in Tables 5.7
and 5.8 are not surprising, we observed the same interpretation in the case where
the base stations set was predetermined. In the first experiment we defined the value
of δ equal to 2 minutes, β equal to 10 and we took different combinations of α and
γ. As the first mentioned table shows, the higher α is, the higher is the number of
ambulances but their distribution between stations does not change. The other table
gives evidence that with lower δ, the vehicles scatter throughout the net of the base
stations. In all instances the algorithm fills the capacity of the facility location that
maximizes the ratio φ. As soon as the boundary has met it targets on the other base
stations. We want to highlight that the third prefered facility location is station in
region 7 (Amsterdam Nieuw-West) which is not in the list of current stations. Our
computations proved that establishing a station in region 7 instead of maintaining any
station in region 1, 3, or 11 would improve the provided medical care.

γ α
Optimal number Optimal number

and locations of stations of vehicles

100

0.80 1 46
(8) (46)

0.85 1 48
(8) (48)

0.90 1 51
(8) (51)

0.95 1 53
(8) (53)

1.00 1 56
(8) (56)

50

0.80 1 46
(8) (46)

0.85 1 48
(8) (48)

0.90 2 51
(4, 8) (1, 50)

0.95 2 53
(4, 8) (3, 50)

1.00 2 56
(4, 8) (6, 50)
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20

0.80 3 48
(4, 7, 8) (20, 8, 20)

0.85 3 50
(4, 7, 8) (20, 10, 20)

0.90 3 53
(4, 7, 8) (20, 13, 20)

0.95 3 56
(4, 7, 8) (20, 16, 20)

1.00 3 59
(4, 7, 8) (20, 19, 20)

Table 5.7: Diversification of ambulance vehicles for different values of the parameter
α.

γ δ
Optimal number Optimal number

and locations of stations of vehicles

100

1.65 2 110
(4, 8) (10, 100)

1.7 1 97
(8) (97)

1.8 1 77
(8) (77)

2.5 1 28
(8) (28)

10 1 8
(8) (8)

50

1.65 3 115
(4, 7, 8) (50, 15, 50)

1.7 2 100
(4, 8) (50, 50)

1.8 2 79
(4, 8) (29, 50)

2.5 1 28
(8) (28)

10 1 8
(8) (8)
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20

1.65 8 142
(3, 4, 6, 7, 8, 9, 10, 13) (2, 20, 20, 20, 20, 20, 20, 20)

1.7 6 115
(4, 6, 7, 8, 9, 13) (20, 20, 20, 20, 20, 15)

1.8 5 84
(4, 6, 7, 8, 9) (20, 20, 20, 20, 4)

2.5 2 28
(4, 8) (8, 20)

10 1 8
(8) (8)

Table 5.8: Diversification of ambulance vehicles for different values of the parameter
δ.

5.3 Discussion on the current EMS system

The following section addresses the assessment of the contemporary EMS system in
the Agglomeration of Amsterdam. Here we focus only on the instance of rush hours.
Although the same procedure could be applied to off-peak hours and night hours, as
it was mentioned in the previous part, our approach to those periods is different and
it will be discussed in detail in the last part of this chapter.

Nowadays there are 5 base stations (Table B.7 Appendix B) where 31 ambulance
vehicles are settled during rush hours. However only a fraction of them is dedicated
to respond the emergency calls, the rest serves to so-called planned transport, i.e.,
transport of patients between hospitals or their home, relocating of vehicles under the
dispatching logistics. Due to our aim of designing and assessment of the EMS system
we take into account just the part of vehicles operating as emergency, thus we arrive at
a number 12. The exact distribution of those vehicles between the stations is stated in
Table B.8 in Appendix B). At this point we remark that our partition of the day into
3 periods slightly differs from the one made by the current system planner, anyway in
further computations we relax this fact.

We have carried out 3 experiments, reaching the optimal solution in all the cases in an
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exact way. With the first one we intended to show that a mere redistribution of current
number of vehicles in the system (12) increases the provided coverage and therefore
leads to designing a more reliable net of EMS system. In our test we applied the model
formulated as (P2) with fixed number of vehicles in the system equal to 12, we solved
this optimization problem without running the bisection algorithm. We refer to the
first experiment as Problem 1. In the second experiment (Problem 2) we basically
used the same solution method as in the first part of this chapter. We predetermined
the set of optimal base stations to be the same as the current locations of stations and
found the minimal number of ambulances providing specified fraction of the coverage.
The objective of the test was to prove that by a mere reduction of the overall number
of vehicles one can achieve the requested coverage. The third experiment (Problem 3)
refers to Section 5.2 where we deal with the optimal solution in the spirit of optimal
station locations.

Table 5.9 and Figure 5.10 summarize the results of the experiments. In all the compu-
tations the system parameters were specified as follows: the confidence level α = 0.95,
the critical time δ = 15 min., the capacity of base stations γ = 20 and maximal al-
lowed number of stations in the system in Problem 3 β = 10. In each case we used
a set of scenarios of cardinality 5,000. From the first solution we can conclude that
the number of 12 vehicles served to EMS calls is overestimated since the provided
coverage multiple times exceeds (4.27 times) the expected coverage. Nevertheless, the
figure shows that redistributing (or rather gathering of all vehicles into the station in
region 8) results in a better EMS scheme. Problem 2 and Problem 3 provide us with
the same solution as the most convenient location for a station (region 8) is included
in the predetermined set of facility location in the second experiment. In this case

Optimal number Optimal number
φ

and locations of stations of vehicles

Problem 1 5 12 4.27
(4, 8, 11, 3, 1) (0, 12, 0, 0, 0)

Problem 2 5 7 1.05
(4, 8, 11, 3, 1) (0, 7, 0, 0, 0)

Problem 3 1 7 1.05
(8) (7)

Table 5.9: Comparison of different optimization models.
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we can conclude that the stations in regions 1, 3, 4 and 11 seem to be redundant for
emergency medical care.

Figure 5.10: Fraction of expected coverage related to different optimization models.

5.4 Optimization throughout the day

In the following section we focus on adaptation of the optimal locations of stations and
vehicles to variable conditions throughout the day which are caused by different stan-
dard deviations of the fluctuation K in travel time modeling and mainly by difference
in the interarrival rates. In the real-life system the planner determines the reference
time (for instance rush hours) and designs the optimal system based on requirements
related to this period. Afterwards the current system is adjusted to conditions specific
for other periods, usually the number of vehicles operating in a less busy period is
reduced or some of the stations can be temporarily out of service. Indeed, Table B.8
shows the number of operating vehicles in each period of the day in the Agglomeration
of Amsterdam. Notice that their number is highest during rush hours. Moreover, a
decreasing trend for the majority of base stations can be observed for the other pe-
riods. In our calculations we chose as the reference period the rush hours, since the
overall interarrival rate of accidents is the highest and therefore the highest number
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of ambulance vehicles is involved to respond all emergency calls. As soon as we design
the optimal system for rush hours, we adjust the number of vehicles in the stations
operating in off-peak hours and night hours. In words of our mathematical models,
we first compute the optimal solution for rush hours, the model formulated as (P4)
where the facility locations are not specified. In the second step, we declare the set
of the base stations to be given by the optimal solution in the previous step, and we
apply the model formulated as (P2) to off-peak hours and night hours.

Table 5.10 summarizes the optimal solution for the parameters α = 0.95, δ = 15 min.,
γ = 20, β = 10 and the number of scenarios equal to 5 000. In rush hours 7 vehicles
settled in the station in region 8 are required to provide the first aid, during off-peak
hours one vehicle is redundant and in night hours we can drop another 2 ambulances.
Figure 5.11 provides the comparison of obtained optimal solutions with the current
situation. In all three cases we can conclude that the coverage provided by the actual
net of stations and vehicles is excessively higher than requested fraction.

Optimal number Optimal number
φ

and locations of stations of vehicles

rush hours 1 7 1.06
(8) (7)

off-peak hours 1 6 1.09
(8) (6)

night hours 1 4 1.14
(8) (4)

Table 5.10: Optimal solution for each period of the day.
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Figure 5.11: Comparing the optimal solution with the current situation for each period
of the day.
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Chapter 6

Conclusion and future work

In this thesis, it has been shown that the problem of designing and planning emergency
medical service can be effectively posed as a stochastic programming problem. We
have presented optimization models for allocating base stations and determining the
number of vehicles so as to maximize system-wide expected coverage. Our models
differ from previous related work mainly by considering pre-trip delays together with
travel times as random variables. All models were linked to a specific risk level in
order to consider the variability in the system and to reflect the decision makers’ risk
preference.

We carried out numerous experiments based on data collected in the Agglomeration
of Amsterdam 2010. The presented numerical results illustrate how the location and
allocation solutions change with respect to the different system-wide confidence level,
the critical respond time and the constraints determined for facility locations. Finally,
we paid special attention to the assessment of the current system design.

The future research will focus on developing similar a stochastic model which considers
other feature of an EMS system, such as evaluating urban, industrial and rural areas
with respect to population density by varying the risk parameters. In fact, according
to the risk level specified for the given areas, the planner can choose different levels of
reliability, achieving the balance between saving costs and guaranteeing a high quality
of service.
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Appendix A

Probability theory

Definition 1 (Poisson process) The Poisson process can be defined in three different
(but equivalent) ways:

1. Poisson process is a pure birth process: In an infinitesimal time interval dt there
may occur only one arrival. This happens with the probability λdt independent of
arrivals outside the interval.

2. The number of arrivals N(t) in a finite interval of length t obeys the Poisson dis-
tribution with parameter λt,

P(N(t) = n) =
(λt)n

n!
exp(−λt).

Moreover, the number of arrivals N(t1, t2) and N(t3, t4) in non-overlapping inter-
vals (t1 ≤ t2 ≤ t3 ≤ t4) are independent.

3. The interarrival times are independent and obey the exponential distribution with
parameter λ:

P(interarrival time > t) = exp(−λt).

Theorem 2 (The convolution theorem) Let X and Y be independent random variables
with distribution functions FX and FY . Then the distribution function of a random
variable Z = X + Y is given as:

FZ(t) =

∫

∞

−∞

FX(t− x) dFY (x) =

∫

∞

−∞

FY (t− x) dFX(x), t ∈ R. (A.1)
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Appendix B

Attached tables and figures

The following attachment contains tables and figures that are related to our EMS
system design. Their references and explanations can be found in the text therefore
they are stated without any description.

fraction of service time urgency upper bound (min)

time handling a call A1 10
A2 20

time for mobilizing the vehicle crew A1 10
A2 20

travel time to patient A1 30
A2 60

time on scene A1, A2 60
travel time to hospital A1 30

A2 60
time spent in hospital A1, A2 60
travel time to base station A1, A2 60

Table B.1: Service time restriction.
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District no. District name

1 Kudelstraat, Kalslagen and Aalsmeer
2 Oosteinde
3 Amstelveen
4 Amsterdam Centrum
5 Amsterdam Westpoort
6 Amsterdam West
7 Amsterdam Nieuw-West
8 Amsterdam Zuid
9 Amsterdam Oost
10 Amsterdam Noord
11 Amsterdam Zuidoost
12 Diemen Zuid
13 Diemen Centrum
14 Diemen Noord
15 Ouder-Amstel
16 Thamerdal
17 Zijdelwaard
18 Meerwijk
19 De Kwakel

Table B.2: List of districts in the Agglomeration of Amsterdam

data size range 1/µ λ

rush hours 26 853 0; 30.09 7.22 7.22
night hours 9 322 0; 24.45 3.133 3.133
off-peak hours 13 248 0; 18.45 5.936 5.936

Table B.3: List of interarrival rates for different day periods.
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District no. λrush hours
j λoff-peak hours

j λnight hours
j

1 0.1240 0.0819 0.0484
2 0.0482 0.0369 0.0150
3 0.5996 0.4236 0.2108
4 0.9434 0.9903 0.6565
5 0.2740 0.1807 0.0963
6 0.7352 0.6594 0.3364
7 1.0356 0.8007 0.3830
8 1.0072 0.7975 0.3849
9 0.7741 0.6353 0.3195
10 0.7184 0.5578 0.2681
11 0.5418 0.4139 0.2303
12 0.0575 0.0507 0.0249
13 0.0543 0.0573 0.0217
14 0.0181 0.0186 0.0154
15 0.0983 0.0680 0.0294
16 0.0384 0.0359 0.0172
17 0.0643 0.0358 0.0222
18 0.0211 0.0153 0.0093
19 0.0003 0.0004 0.0003

Table B.4: List of interarrival rates per district for different day periods.

data size range σ̂ µ σ

rush hours 23 718 -1262; 2972 438.47 237.60 368.51
off-peak hours 10 417 -1189; 2589 370.33 169.78 329.12
night hours 7 471 -1141; 2166 340.95 141.31 310.28

Table B.5: List of fluctuations for different day periods.
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Name Address District

Academisch Medisch Centrum Meibergdreef 9 Amsterdam Zuidoost
1105 AZ, Amsterdam
Zuidoost

BovenIJ Ziekenhuis Statenjachtstraat 1 Amsterdam Noord
1034 CS, Amsterdam

Onze Lieve Vrouwe Gasthuis Oosterpark 9 Amsterdam Oost
1091 AC, Amsterdam

Slotervaartziekenhuis Louwesweg 6 Amsterdam Nieuw-West
1066 EC, Amsterdam

St. Lucas Andreas Ziekenhuis Jan Tooropstraat 164 Amsterdam West
1061 AE, Amsterdam

VU Medisch Centrum de Boelelaan 1117 Amsterdam Zuid
1081 HV, Amsterdam

Ziekenhuis Amstelland Laan van de Helende Amstelveen
Meesters 8, 1186 AM,
Amstelveen

Table B.6: List of hospitals located in the Agglomeration of Amsterdam

Station no. Address District

1 Karperweg 19-25 Amsterdam Zuid
1075 LB, Amsterdam

2 Meibergdreef 9 Amsterdam Zuidoost
1105 AZ, Amsterdam Zuidoost

3 Spinnerij 15 Amstelveen
1185 ZN, Amstelveen

4 Valckenierstraat 9-21 Amsterdam Centrum
1018 XB, Amsterdam

5 Zwarteweg 77A Kudelstraat, Kalslagen
1431 VJ, Aalsmeer and Aalsmeer

Table B.7: List of stations located in the Agglomeration of Amsterdam
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Station no. District name
Number of vehicles

rush hours off-peak hours night hours

1 Amsterdam Zuid 5 4 3
2 Amsterdam Zuidoost 2 1 1
3 Amstelveen 1 1 1
4 Amsterdam Centrum 3 4 2
5 Kudelstraat, Kalslagen 1 1 1

and Aalsmeer

Table B.8: Current number and location of ambulance vehicles in the Agglomeration
of Amsterdam
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Figure B.1: Graphical illustration of districts in the Agglomeration of Amsterdam.
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Figure B.2: Graphical illustration of interarrival rates in rush hours.
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Figure B.3: Graphical illustration of interarrival rates in off-peak hours.
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Figure B.4: Graphical illustration of interarrival rates in night hours.
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