
Machine Learning with Applications 9 (2022) 100351

J
J
a

b

c

A

K
A
D
N
H
P

1

t
c
F
a
i
i
E
f
f
s
a
a
t
4

i
A
d
e
w

(

h
R
A
2
(

Contents lists available at ScienceDirect

Machine Learning with Applications

journal homepage: www.elsevier.com/locate/mlwa

asmine: A new Active Learning approach to combat cybercrime
an Klein a,∗, Sandjai Bhulai b, Mark Hoogendoorn c, Rob van der Mei a

Department of Stochastics, Centrum Wiskunde & Informatica, Science Park 123, 1098XG, Amsterdam, The Netherlands
Department of Mathematics, Vrije Universiteit, De Boelelaan 1111, 1081HV, Amsterdam, The Netherlands
Department of Computer Science, Vrije Universiteit, De Boelelaan 1111, 1081HV, Amsterdam, The Netherlands

R T I C L E I N F O

eywords:
ctive Learning
ynamic query function
etwork intrusion detection
uman oracle
artially labeled

A B S T R A C T

One of the reasons that the deployment of network intrusion detection methods falls short is the lack of
realistic labeled datasets, which makes it challenging to develop and compare techniques. It is caused by the
large amounts of effort that it takes for a cyber expert to classify network connections. This has raised the
need for methods that learn from both labeled and unlabeled data which observations are best to present to
the human expert. Hence, Active Learning (AL) methods are of interest.

In this paper, we propose a new hybrid AL method called Jasmine. Firstly, it uses the uncertainty score
and anomaly score to determine how suitable each observation is for querying, i.e., how likely it is to enhance
classification. Secondly, Jasmine introduces dynamic updating. This allows the model to adjust the balance
between querying uncertain, anomalous and randomly selected observations. To this end, Jasmine is able
to learn the best query strategy during the labeling process. This is in contrast to the other AL methods
in cybersecurity that all have static, predetermined query functions. We show that dynamic updating, and
therefore Jasmine, is able to consistently obtain good and more robust results than querying only uncertainties,
only anomalies or a fixed combination of the two.
. Introduction

The fight against cybercrime has become a priority for many coun-
ries. This is with good reason, because the average cost of a single
yberattack in Europe is around 50 thousand euros, as estimated by
orrester Consulting and Hiscox (Consultancy.eu, 2020). Most common
ttacks were mostly targeted on companies and even governmental
nstitutes. For example, 68% of Dutch firms reported at least one cyber
ncident in 2019. Therefore, the amount of money that the surveyed
uropean companies invested in cybersecurity has increased by 39%
rom 1.3 million to 1.8 million euros. In academia, the awareness
or research in the field of cybersecurity has also grown. For in-
tance, Mouloua, Ferraro, Mouloua, Matthews, and Copeland (2019)
nalyzed the articles published in the Proceedings of the Human Factors
nd Ergonomics Society (HFES) from 1980 to 2018. They showed
hat 73% of articles related to cybersecurity published in that almost
0-year span were written in the last nine years.

Since most cyberattacks are aimed at companies and countries, it
s important to know how networks of computers can be protected.

Network Intrusion Detection System (NIDS) is software designed to
etect unusual, malicious events in a computer network. There are sev-
ral types of systems with each having their own set of challenges for
hich several solutions have been proposed (Sommer & Paxson, 2010;

∗ Corresponding author.
E-mail addresses: j.g.klein@cwi.nl (J. Klein), s.bhulai@vu.nl (S. Bhulai), m.hoogendoorn@vu.nl (M. Hoogendoorn), r.d.van.der.mei@cwi.nl

R. van der Mei).

Sultana, Chilamkurti, Peng, & Alhadad, 2019; Zamani & Movahedi,
2013). However, there are some broader challenges in cybersecurity
research. Most importantly, Xin et al. (2018) and Yang, Ren, Zhu, and
Zhang (2018) argue that not much consideration is given to deployment
efficiency. This means that little is practically done with published re-
search, because of time complexity of the techniques and the efficiency
of detection in actual networks. The latter is due to the lack of realistic
datasets, since it takes a lot of time and effort for a human to classify
network connections correctly. Moreover, cyber analysts have to label
many redundant connections just to construct a representative dataset.
This loads the experts with tedious work and leads to an underuse
of their capabilities. Therefore, it would be beneficial to only present
‘informative’ network connections to the cyber analyst. This can be
realized in Active Learning (AL), in which the model chooses from
which unlabeled data instances it wants to learn and then queries their
labels (Kumar & Gupta, 2020; Settles, 2009).

Several AL methods have been proposed in intrusion detection re-
search. Many of them focus on querying uncertain data, i.e., requesting
the label of observations about which the model is not sure how to
classify them (Görnitz, Kloft, Rieck, & Brefeld, 2009; Guerra Torres,
Catania, & Veas, 2019; Li & Guo, 2007). Adding these observations with
their correct label is expected to enhance classification performance
ttps://doi.org/10.1016/j.mlwa.2022.100351
eceived 6 September 2021; Received in revised form 12 November 2021; Accepte
vailable online 8 June 2022
666-8270/© 2022 The Author(s). Published by Elsevier Ltd. This is an open acces
http://creativecommons.org/licenses/by/4.0/).
d 2 June 2022

s article under the CC BY license

https://doi.org/10.1016/j.mlwa.2022.100351
http://www.elsevier.com/locate/mlwa
http://www.elsevier.com/locate/mlwa
http://crossmark.crossref.org/dialog/?doi=10.1016/j.mlwa.2022.100351&domain=pdf
mailto:j.g.klein@cwi.nl
mailto:s.bhulai@vu.nl
mailto:m.hoogendoorn@vu.nl
mailto:r.d.van.der.mei@cwi.nl
https://doi.org/10.1016/j.mlwa.2022.100351
http://creativecommons.org/licenses/by/4.0/

J. Klein, S. Bhulai, M. Hoogendoorn et al. Machine Learning with Applications 9 (2022) 100351
Fig. 1. Illustration of Active Learning framework (Settles, 2009).

more quickly than randomly selecting observations. Other studies con-
sider different query strategies or combine several query approaches to
make the AL procedure more robust (Yin, Wang, & Fan, 2018). Stokes,
Platt, Kravis, and Shilman (2008) query both uncertain and anomalous
instances. The latter are observations that behave vastly differently
than expected, which could indicate malicious activities. Although
combining query types increases prediction performance, the optimal
balance of the types depends on, for example, the dataset. Moreover,
the balance has to be determined beforehand and is still up for debate.

In our research, we propose a novel AL method called Jasmine
that introduces 𝛼-dynamic updating. This allows our method to adjust
the balance between querying different types of observations such that
the right types are proposed to the human expert at the right time.
This makes sense, because the structure of the labeled set (on which
the classifier is trained) changes during the labeling procedure. Hence,
Jasmine is able to learn the best query strategy during the process.
The types of instances that Jasmine considers potentially informative
are uncertain, anomalous and randomly selected observations. Jasmine
is able to dynamically change the balance between the three types to
ensure that the most informative observations to the intrusion detec-
tion model are queried. This sets our method apart from existing AL
methods, because (to our knowledge) Jasmine is the only method that
allows for this. Our contributions are:

• We propose a new AL method called Jasmine that introduces
dynamic updating of the balance between querying uncertain,
anomalous and randomly selected unlabeled data.

• We present the mathematical formulation of Jasmine and explain
why it can find a good balance given the current labeling state.

• We apply Jasmine to two commonly used network intrusion
detection datasets and use them in different experimental settings.
We show that Jasmine obtains good results and is more robust
than static query approaches. Moreover, it performs even better
in the case of highly imbalanced data. Therefore, Jasmine is more
reliable to use, because it can adapt itself to different situations.

The rest of the paper is organized as follows. In Section 2, we
explain the AL paradigm and what methods have been proposed in in-
trusion detection. Section 3 introduces the mathematical notation used
in the AL framework. In Section 4, we propose our method Jasmine
and explain how it works. The experiments that we execute to validate
our method are discussed in Section 5. Section 6 subsequently shows
the results of these experiments and their interpretations. Finally, in
Section 7, we draw conclusions about this study and make suggestions
for further research.

2. Related work

Active Learning is a subfield of machine learning in which the
premise is that only a small part of the data is labeled, while the labels
for the rest of the data are not specified. The AL procedure is illustrated
in Fig. 1. Firstly, an ML model is trained on the labeled set and ap-
plied to the unlabeled observations to obtain output predictions. Then,
2

interesting observations from the unlabeled part are selected and an
oracle is asked to provide the actual labels. Subsequently, these query
observations are added to the labeled set and the procedure continues.
An important advantage of AL is that the model needs less train data
to learn better (Kumar & Gupta, 2020; Settles, 2009). For instance, it
has been used to improve performance in the diagnosis and treatment
of diseases (Budd, Robinson, & Kainz, 2021), in the personalization
and hybridization of recommender systems (Elahi, Ricci, & Rubens,
2016), and in community detection (Gadde, Gad, Avestimehr, & Ortega,
2016). Moreover, AL is especially beneficial in domains in which it is
laborious to label data. Examples of such fields are speech recognition,
information extraction (person names from texts, annotation of genes,
etc.), classification of files (relevant or irrelevant documents, images,
etc.) (Settles, 2009) and network intrusion detection. The diversity
among these examples shows the broad application capability of AL.

2.1. Query strategies

There are multiple ways to query the oracle, but we focus on pool-
based sampling. Here, the decision to query certain observations is based
on some informativeness measure that is calculated for all instances
in the unlabeled pool (or a subset thereof). This approach to querying
has been applied to many real-world problems, including many of the
application domains mentioned before. It works well with a human
oracle and when it is relatively easy to compute the informativeness
of all observations at once. A commonly used measure for this is the
uncertainty score. This score is used to query observations about which
the model is the least certain on how to predict their label (Lewis
& Gale, 1994). This is a simple informativeness measure, because no
new models have to be trained and only the output of the classifier is
required to determine the uncertainty of each observation.

2.2. Active Learning in network intrusion detection

Which specific query strategy and ML technique are used depends
on the AL application. In network intrusion detection, several AL
methods have been proposed. These approaches mostly rely on uncer-
tainty sampling. To illustrate this, Li and Guo (2007) use Transductive
Confidence Machines for K-Nearest Neighbors for supervised intrusion
detection with uncertainty sampling and query by committee; Görnitz
et al. (2009) use a Support Vector Domain Description (SVDD) for
anomaly detection with uncertainty sampling as the AL component;
and Guerra Torres et al. (2019) make use of Random Forests for
prediction and query uncertain observations. These studies show that
a method with AL obtains better results than one without it, or that
the proposed query strategy performs better than randomly presenting
observations to the oracle. Though, the diversity in considered query
approaches is low since uncertainty sampling is often chosen. Both Gu
and Zydek (2014) and Yang et al. (2018) present overview of multiple
other query strategies for intrusion detection, but the authors ultimately
choose for uncertainty sampling too. Yet, literature does show that this
common query approach performs well.

However, there is room for significant improvement. For example,
what happens when more than one informativeness measure is con-
sidered for query selection? There are studies that incorporate two
measures to improve classification performance. Stokes et al. (2008)
propose to combine uncertainty sampling with querying anomalous
data, thus presenting instances that behave vastly differently than
expected to the oracle. Yin et al. (2018) combine the uncertainty
informativeness measure with density information as the query ap-
proach. More specifically, the distance of an observation to its nearest
neighbor is calculated and instances residing in high density areas are
more likely to be queried. These two studies show that using multiple
informativeness measures further improves performance, because more
characteristics of the data are used to determine which unlabeled
observations would improve predictions the most if they were labeled.

J. Klein, S. Bhulai, M. Hoogendoorn et al. Machine Learning with Applications 9 (2022) 100351

s
o
q
i
b
a
f
r
s
b
t
T
I
b
i
F
(
t
g
o

r
a
d
t
a
t

u

3

i
F
n
L
𝑦
t
t
s
s

i
b
r
o
a
t
𝑈
𝐿
e
t
i
l
𝑓
o
w
e
U
t
p

4

I
d
a
t
t
a
q
t
c
i
p
f
T
i
H
q

o
c
s
o
m
t

Fig. 2. Schematic representation of an ALADIN iteration (Stokes et al., 2008).

The common factor in the aforementioned research is that all pro-
posed query functions are static in nature. From the start, it is exactly
known how the set of query observations is constructed and this
approach cannot be changed. This means the contribution of each
informativeness measure in the selection of the query observations
has to be fixed beforehand. However, the optimal balance of these
contributions depends on the overall structure of the data and also
on the current state of the labeling process. Therefore, we consider a
dynamic query approach to address these problems. To this end, the
balance can be adapted during the procedure to best fit the data. More
specifically, the method learns the distribution of query types that is
expected to increase prediction performance the most given the current
state.

2.3. ALADIN

The AL methodology for network intrusion detection that we use
as a starting point was developed by Stokes et al. (2008) and is
called ALADIN. It was chosen because it combines two important
informativeness measures: the (i) uncertainty score and (ii) anomaly
core. On the one hand, by querying selected anomalies, new classes
f network traffic can be found within the data. On the other hand, by
uerying uncertainties, the accuracy of the classifier should increase
n the next time step when the correct classes have been provided
y the human expert. ALADIN combines both Pelleg’s algorithm for
nomaly detection (Pelleg & Moore, 2004) and Almgren’s algorithm
or intrusion detection (Almgren & Jonsson, 2004). In the first algo-
ithm, an anomaly detection model is constructed for each data class,
o one for the benign class and one for the malicious class in the
inary case. How unlikely an unlabeled observation is according to
he model of its (predicted) class, determines how anomalous it is.
he less likely an instance is, the more interesting it is for querying.
n the second algorithm, observations that lie close to the decision
oundary of the trained classifier are deemed uncertain, and hence,
nteresting for querying. The description of ALADIN is illustrated in
ig. 2. On the 1999 KDD-Cup dataset (Stolfo et al., 1999), Stokes et al.
2008) show that ALADIN achieved high accuracy in predicting known
raffic classes. Moreover, it was able to detect previously unknown cate-
ories quickly. This shows that incorporating anomalous and uncertain
bservations in the query set led to favorable results.

ALADIN uses simple machine learning techniques such as logistic
egression and naive Bayes to be able to scale well. However, the
uthors mention that the benign class in the KDD-Cup dataset is very
iverse, meaning that this class may not be easily predicted with
he logistic regression classifier. In our research, we consider more
dvanced machine learning techniques that are better able to capture
he diversity of network traffic. More importantly, in ALADIN, half
3

of the queried observations are anomalous, while the other half is
uncertain. This fixed 50/50 split is not motivated by the authors.
Hence, model performance can improve when the proportion between
querying anomalies and uncertainties is changed depending on the
considered dataset and within the process. This leads to our 𝛼-dynamic
pdating.

. Preliminaries

Before we provide the mathematical formulation of Jasmine, we
ntroduce some notation to describe the AL framework in general.
irstly, we assume to have a dataset 𝐗 ∈ R𝑀×𝐾 , with 𝑀 ∈ N the
umber of observations and 𝐾 ∈ N the number of features or attributes.
et 𝐱𝑖 ∈ R𝐾 be the feature vector of observation 𝑖 ∈ {1,… ,𝑀} and let
𝑖 ∈ {0, 1, ∗} be its corresponding response value. Here, ‘0’ represents
he benign class and ‘1’ the malicious class. The symbol ‘*’ means that
he class or label is missing. In AL, it is assumed that only a (possibly
mall) part of the data is labeled, while the rest is unlabeled. The
et of labeled observations (𝑡) and the set of unlabeled observations
(𝑡) depend on the iteration or time step 𝑡 = 1,… , 𝑇 , where 𝑇 ∈ N

s a predetermined maximum number of iterations. Since more labels
ecome available when the iteration procedure progresses, the vector of
esponse values of all the instances 𝐲(𝑡) = (𝑦1(𝑡),… , 𝑦𝑀 (𝑡)) is dependent
n time. Now, for all iterations it holds that (𝑡) and  (𝑡) are disjoint
nd their union is the complete dataset (𝐗, 𝐲(𝑡)) with labels up to
ime 𝑡. Let 𝐿(𝑡) ∶= |(𝑡)| be the number of labeled observations and
(𝑡) ∶= | (𝑡)| the number of unlabeled instances at time 𝑡. Note that
(𝑡+1) > 𝐿(𝑡), while 𝑈 (𝑡+1) < 𝑈 (𝑡), because every iteration the human
xpert adds labels to previously unlabeled observations. (0) contains
he instances that are labeled from the start, while  (0) consists of all
nitially unlabeled observations. In iteration 𝑡, a supervised machine
earning technique 𝑓𝑡 ∶ R𝐾 → [0, 1] is trained on (𝑡−1). This classifier
𝑡 is then applied to  (𝑡−1) to obtain predictions for the actual classes
f the unlabeled observations. Then, a query function 𝜓 determines
hich instances from  (𝑡− 1) are selected to be queried to the human
xpert. Let (𝑡) ⊆  (𝑡−1) be the constructed set of query observations.
sually, this set has fixed size 𝑄 ∶= |(𝑡)|. Then, the expert provides

he labels 𝑦𝑞(𝑡) ∈ {0, 1} for the observations 𝑞 ∈ (𝑡). Note that in the
revious iteration their labels were still unknown: 𝑦𝑞(𝑡 − 1) = ‘*’.

. Methods

In this section, we introduce our Active Learning method Jasmine.
ts key component is 𝛼-dynamic updating, which allows the model to
ynamically adjust the balance between querying anomalous, uncertain
nd random observations during the procedure. The adjustment of
he balance comes in two flavors. Firstly, the initial proportions of
he three types of query observations are determined. Based on the
vailable initially labeled data (0), it can be beneficial to start with
uerying 60% anomalous, 15% uncertain and 25% random observa-
ions, for example. Secondly, the balance between the types can be
hanged during the labeling process, because it may be better to query
ncreasingly more anomalous instances when more and more labels are
rovided by the oracle. This leads to dynamically updating the query
ractions. Moreover, we also consider querying random observations.
his may seem counter-intuitive in the AL setting, because its premise

s not to bother the human expert with labeling redundant observations.
owever, when (0) is not a good representation of the entire dataset,
uerying some random observations could be beneficial.

The complete Jasmine procedure is illustrated in Fig. 3. It consists
f two consecutive phases. In Phase 2, the actual Active Learning
omponent of Jasmine is executed given the results of Phase 1. More
pecifically, the classifier is trained on (𝑡) and applied to  (𝑡) to
btain malicious probabilities (Section 4.3). Then, the informativeness
easures of the unlabeled observations are calculated (Section 4.4) and

he query sample is constructed based on these measures (Section 4.5).

J. Klein, S. Bhulai, M. Hoogendoorn et al. Machine Learning with Applications 9 (2022) 100351

N
c
b
s
b
l
p
o
t
S
s

4

i
s
a
a
i
r
A
n
u

F
t
a
b
a
o
m
e
t
&

4

J

Fig. 3. Schematic representation of complete Jasmine procedure. The numbers of the form ‘4.x’ denote in which subsection the corresponding component is explained.
D
o
u
f
u
D
t
W
p
𝐻
m
L
a
t
t

w
r

4

i
m
t
a
b
i
J

ext, the actual labels are provided by the human oracle. Then, the
rucial part of Jasmine is performed by updating the query fractions
ased on the results obtained during the iteration (Section 4.6). Con-
equently, the query set of the next iteration should have a better
alance of anomalous, uncertain and random observations. Finally, the
abeled query observations are added to (𝑡 + 1) (Section 4.7) and the
rocedure continues. In Phase 1, good values of the hyperparameters
f the classifier are determined (Section 4.2). Also, good values of
he Jasmine-specific parameters are chosen in this phase (Section 4.8).
ince tuning of the Jasmine parameters is a reduced version of the
econd phase, we explain the latter first in this section.

.1. Classification and anomaly detection techniques

The supervised machine learning technique used as the classifier
n Jasmine is the Gradient Boosting Machine (GBM), which was de-
igned by Friedman (2001). As described by Caruana, Karampatziakis,
nd Yessenalina (2008), Ogutu, Piepho, and Schulz-Streeck (2011)
nd Natekin and Knoll (2013) one of the main merits of the GBM is
ts flexibility and robustness with respect to the number of hyperpa-
ameters. It can easily be customized for different practical purposes.
nother advantage of the GBM is its interpretability. Since the tech-
ique is an ensemble of multiple simple models, it can be easily
nderstood.

The anomaly detection method used in Jasmine is the Isolation
orest (IF), which was developed by Liu, Ting, and Zhou (2008). Just as
he GBM, it is a tree-based ensemble machine learning technique. Most
nomaly detection models try to construct a representation of normal
ehavior, but the IF aims to isolate the anomalous observations. The
uthors use two important properties of anomalies: (i) there are few
f them, and (ii) they have distinctly different characteristics than the
ajority of observations. Because these properties hold, it is relatively

asy to isolate them from the rest. The main advantage of the IF
echnique is that it is fast and relatively easy to interpret (Liu, Ting,

Zhou, 2012).

.2. Tuning GBM hyperparameters

The GBM has hyperparameters that are determined beforehand. In
asmine, good values are found via hyperparameter tuning (Claesen &
4

e Moor, 2015). This is done on the set (0), because by definition the
bservations in this set are the only ones with labels from the start. We
se 𝑘-fold cross validation such that each observation is both utilized
or training and evaluating the model. This is desirable, because (0) is
sually rather small, so we want to effectively use each provided label.
uring tuning, also the computation time is taken into account, because

he GBM is retrained each AL iteration and training times quickly stack.
e want to find hyperparameters that yield good performance in both

redictive ability and computation time. To this end, assume there are
hyperparameter combinations yielding a sequence of performance

etrics ℎ1,… , ℎ𝐻 and a sequence of computation times 𝑡1,… , 𝑡𝐻 .
et ℎ∗ ∶= max{ℎ1,… , ℎ𝐻} be the best performance and let 𝑗∗ ∶=
rg max{ℎ1,… , ℎ𝐻} be the combination yielding this performance. If
here are several combinations resulting in the best performance metric,
hen 𝑗∗ is the one with the smallest computation time 𝑡𝑗∗ . Also, if

there is a combination yielding a performance of almost ℎ∗, but with a
much smaller computation time than 𝑡𝑗∗ , then we prefer to go for that
combination. In that case, combination 𝑗 is chosen as the optimal one
whenever

𝑑𝑗 ∶=
ℎ𝑗∗ − ℎ𝑗
𝑡𝑗∗ − 𝑡𝑗

< 𝜀,

here 𝜀 > 0 is some predefined threshold. If several 𝑗 satisfy this
equirement, then the one with the smallest 𝑑𝑗 is chosen.

.3. Training, evaluating and predicting

The classification is done by means of a GBM, which we described
n Section 4.1. The hyperparameter values for this technique are deter-
ined by tuning, as described in Section 4.2. In iteration 𝑡, the GBM is

rained with 𝑘-fold cross validation on (𝑡−1), yielding the classifier 𝑓𝑡
nd some threshold probability 𝜃 ∈ (0, 1). This 𝜃 represents the border
etween predicting an instance as 0 (benign) or as 1 (malicious), and
s the value that maximizes some performance metric on (𝑡 − 1). In
asmine, we are interested in how confident 𝑓𝑡 is in its predictions.

The closer the predicted probability is to 𝜃, the less certain the model is.
Intuitively, a value of 0.5 can be seen as the least certain probability for
a binary classifier, because it is precisely between 0 and 1. Therefore, 𝜃
is transformed to be 0.5 and the probabilities are changed accordingly.

J. Klein, S. Bhulai, M. Hoogendoorn et al. Machine Learning with Applications 9 (2022) 100351

4

t
c

𝑧

f
t
c
a
p
b
d

t
c



N
s
m
o

𝑎

T
f

4

f
T
a
t
a
o
a

o
s
(

a
c

c

4

4


r
r
o
𝑐
s
t
h
a
a
m
o
t
t
a
m
f
n
𝛿

𝛿

N
r
i
a
p
F
F
f
t
t
t
𝛿
t
m

𝛿

a
t

f
a

𝛥

I
t
m
a

We provide more reasoning why this is done in Section 4.4. The
function 𝜑𝜃 ∶ [0, 1] → [0, 1], defined as

𝜑𝜃(𝑦) =
(1 − 𝜃)𝑦

(1 − 2𝜃)𝑦 + 𝜃
,

is applied to all predicted probabilities to transform them. We chose
this function, because it has the following necessary and desirable
properties: (i) 𝜑 is continuously differentiable, (ii) 𝜑𝜃(0) = 0, (iii)
𝜑𝜃(𝜃) = 0.5, (iv) 𝜑𝜃(1) = 1, and (v) 𝜑′

𝜃(𝑦) ≥ 0. Note that the probabilities
do not change when 𝜃 is already 0.5: 𝜑𝜃=0.5(𝑦) = 𝑦 for all 𝑦 ∈ [0, 1].

After this, 𝑓𝑡 is applied to the unlabeled set  (𝑡 − 1) to obtain
predicted probabilities 𝑦̂𝑢(𝑡) ∈ [0, 1] (which have been transformed by
𝜑𝜃) for each 𝑢 ∈  (𝑡 − 1). Consequently, the predicted class 𝑐𝑢(𝑡) is 0 if
𝑦̂𝑢(𝑡) < 0.5 and 1 if 𝑦̂𝑢(𝑡) ≥ 0.5.

.4. Calculating certainty score and anomaly score

In the next step, the measures needed for the query function 𝜓Jas

o determine which unlabeled observations to present to the expert are
alculated. These measures are the certainty score and anomaly score.

The certainty score 𝑧𝑢(𝑡) ∈ [0, 1] is defined as

𝑢(𝑡) ∶= 2
|

|

|

|

𝑦̂𝑢(𝑡) −
1
2
|

|

|

|

, (1)

or each 𝑢 ∈  (𝑡 − 1). The lower this score, the more uncertain
he trained model 𝑓𝑡 is about the predicted label of 𝑢. Eq. (1) is the
ommonly used definition for the certainty score in AL methods, such
s in ALADIN. It also shows why we transformed the raw predicted
robabilities by 𝜑𝜃 . Now, the distance from 1

2 can be at most 0.5 in
oth the benign direction (corresponding to 𝑦̂𝑢(𝑡) ↓ 0) and the malicious
irection (𝑦̂𝑢(𝑡) ↑ 1), making 𝑧𝑢(𝑡) a symmetric score.

The IF technique that we described in Section 4.1 is used to de-
ermine the anomaly score 𝑎𝑢(𝑡) for each 𝑢 ∈  (𝑡 − 1). Firstly, the
lass-specific observation sets are defined for each 𝑐 ∈ {0, 1} by
(𝑐)(𝑡 − 1) ∶= {𝑙 ∈ (𝑡 − 1) ∶ 𝑦𝑙 = 𝑐},

 (𝑐)(𝑡) ∶= {𝑢 ∈  (𝑡 − 1) ∶ 𝑐𝑢(𝑡) = 𝑐}. (2)

ow, one IF is trained on the set (0)(𝑡 − 1) ∪  (0)(𝑡) and one on the
et (1)(𝑡 − 1) ∪  (1)(𝑡), yielding a benign IF 𝐼 (0)𝑡 ∶ R𝐾 → [0, 1] and a
alicious IF 𝐼 (1)𝑡 ∶ R𝐾 → [0, 1], respectively. Then, the anomaly score

f 𝑢 ∈  (𝑡 − 1) is defined as

𝑢(𝑡) ∶= 𝐼 (𝑐𝑢(𝑡))𝑡 (𝐱𝑢). (3)

his is the output value that the appropriate IF produces when the
eature vector 𝐱𝑢 is fed into it.

.5. Constructing query sample (𝑡)

An important component of Jasmine is the way in which the query
unction 𝜓Jas determines how the query sample (𝑡) is constructed.
here are three types of query observations: anomalies, uncertainties
nd random instances. Which part of (𝑡) should be allocated to which
ype is given by the anomaly fraction 𝛼𝑎(𝑡), uncertainty fraction 𝛼𝑧(𝑡)
nd randomness fraction 𝛼𝑟(𝑡). For each class 𝑐 ∈ {0, 1}, the unlabeled
bservations in  (𝑐)(𝑡) (see (2)) are sorted from most anomalous to least
nomalous. Then, the top 1

2𝛼𝑎(𝑡) ⋅ 𝑄 (rounded to the nearest integer)
observations are taken as the anomalous query instances for predicted
class 𝑐. The uncertainties are selected in a similar way: the observations
in  (𝑐)(𝑡) are sorted from least certain to most certain for each class 𝑐.
Then, the top 1

2𝛼𝑧(𝑡) ⋅ 𝑄 instances are selected for the uncertain query
bservations for predicted class 𝑐. The random query observations are
elected in a simple way: a sample of size 𝛼𝑟(𝑡) ⋅ 𝑄 is taken from  (𝑡)
without the already selected anomalous and uncertain observations).

There are some important technicalities in constructing (𝑡). First of
ll, it is possible that there are not enough observations for a specific
lass. Then, observations from the other class are added to reach the
 a

5

number of required anomalies or uncertainties. Secondly, there can be
an overlap between the most anomalous and least certain instances:
some observations can be both anomalous and uncertain, and hence,
we select them for both query types.

Ultimately, when the query observations have been determined, the
query set (𝑡) is shown to the human expert and they provide the
orrect label 𝑦𝑞 for each 𝑞 ∈ (𝑡).

.6. 𝛼-Dynamic update

.6.1. Constructing update parameters
The query set (𝑡) obtained in Section 4.5 can be decomposed in

𝑎(𝑡), 𝑧(𝑡) and 𝑟(𝑡), which are the sets of anomalous, uncertain and
andom queries, respectively. Also, let 𝑄𝑎(𝑡), 𝑄𝑧(𝑡) and 𝑄𝑟(𝑡) be their
espective sizes. Furthermore, let 𝑦𝑞 ∈ {0, 1} be the real label of query
bservation 𝑞, 𝑦̂𝑞(𝑡) ∈ [0, 1] its predicted malicious probability and
̂𝑞(𝑡) ∈ {0, 1} its predicted label. In practice, the real label is available
ince the cyber expert provides it. We want to construct a metric for
he anomalous queries and one for the uncertain queries that describes
ow much information the observations of those types can potentially
dd to the model. We do this by looking at the false negatives (FNs)
nd false positives (FPs) in (𝑡). The reasoning is that when there are
any FNs and FPs, then the model was bad at predicting the real classes

f those unlabeled observations. Hence, adding these observations to
he labeled set (𝑡) could yield a lot of information for the classifier
rained in the next iteration. In short, we consider the fraction of FPs
nd FNs in (𝑡), but also take a look at how convincing they are. If the
odel is fairly certain that an observation is malicious while it is in

act benign, then this FP obtains a larger weight than if the model is
ot that sure. Consequently, we define the anomaly information metric
𝛽
𝑎 (𝑡) as follows:

𝛽
𝑎 (𝑡) ∶=

∑

𝑞∈𝑎(𝑡) |𝑦̂𝑞(𝑡) − 𝑦𝑞| ⋅
(

𝛽 ⋅ 𝟏{𝑐𝑞=0,𝑦𝑞=1} + 𝟏{𝑐𝑞=1,𝑦𝑞=0}
)

𝑄𝑎(𝑡) + (𝛽 − 1) ⋅ |{𝑞 ∈ 𝑎(𝑡) ∶ 𝑦𝑞 = 1}|
. (4)

ote that the first indicator function in (4) corresponds to an FN: the
eal label is 1, but the predicted label is 0. Equivalently, the second
ndicator function corresponds to an FP. If the query observation 𝑞 is
n FN, it gets weighted by some parameter 𝛽 > 0. This enables us to
ut more (𝛽 > 1) or less (𝛽 < 1) emphasis on the FNs compared to the
Ps. Thus, if 𝑞 is an FN, then it obtains value 𝛽|𝑦̂𝑞(𝑡) − 𝑦𝑞|; if it is an
P, it obtains |𝑦̂𝑞(𝑡) − 𝑦𝑞|. The farther the predicted probability 𝑦̂𝑞(𝑡) is
rom 0 or 1 (thus the less certain the model is about the prediction),
he larger the assigned value for 𝑞 becomes. The denominator ensures
hat the value of 𝛿𝛽𝑎 (𝑡) is at most 1. When there are no FPs and FNs,
hen the value of the metric is 0. Consequently, 𝛿𝛽𝑎 (𝑡) ∈ [0, 1]. The larger
𝛽
𝑎 (𝑡) is, the more information the anomalies convey, because we expect
hat incorrectly predicted observations add relevant information to the
odel if they are added to the train set with the correct labels.

Similarly, we define the uncertainty information metric

𝛽
𝑧 (𝑡) ∶=

∑

𝑞∈𝑧(𝑡) |𝑦̂𝑞(𝑡) − 𝑦𝑞| ⋅
(

𝛽 ⋅ 𝟏{𝑐𝑞=0,𝑦𝑞=1} + 𝟏{𝑐𝑞=1,𝑦𝑞=0}
)

𝑄𝑧(𝑡) + (𝛽 − 1) ⋅ |{𝑞 ∈ 𝑧(𝑡) ∶ 𝑦𝑞 = 1}|
, (5)

s a measure on how much information the uncertain observations in
he query set add on average. Also, 𝛿𝛽𝑧 (𝑡) ∈ [0, 1].

Next, the difference between the information metrics that we de-
ined in (4) and (5) describes whether anomalies or uncertainties could
dd more information to the model. We define this difference 𝛥(𝑡) as

(𝑡) ∶= 𝛿𝛽𝑎 (𝑡) − 𝛿
𝛽
𝑧 (𝑡) ∈ [−1, 1].

t is used to determine how the query fractions of anomalies and uncer-
ainties are updated. If 𝛥(𝑡) > 0, then the queried anomalies could add
ore information on average, and hence, preferably, more anomalies

re selected the next iteration. If 𝛥(𝑡) < 0, then the uncertainties could
dd more information, and so, more uncertainties are selected.

J. Klein, S. Bhulai, M. Hoogendoorn et al. Machine Learning with Applications 9 (2022) 100351

1

1
1

1

1
1
1

u
c
𝛾
q
a

i

l
s
c
v
o
o

t
o
a

m
T
p
d
p
i
c
𝑗

Now, we want the possibility to put more or less emphasis on bigger
or smaller values of 𝛥(𝑡). Hence, we introduce a non-linearity governed
by 𝛾 > 0 to obtain 𝛥𝛾 (𝑡). To this end, we define the update factor as

𝛥𝛾 (𝑡) ∶= sgn(𝛥(𝑡)) ⋅ |𝛥(𝑡)|1∕𝛾 . (6)

When 𝛾 = 1, then (6) reduces to the linear case 𝛥𝛾 (𝑡) = 𝛥(𝑡). If 0 < 𝛾 < 1,
then |𝛥𝛾 (𝑡)| ≤ |𝛥(𝑡)|, so the update factor is relatively smaller. On the
other hand, if 𝛾 > 1, then |𝛥𝛾 (𝑡)| ≥ |𝛥(𝑡)| and the factor is relatively
larger.

4.6.2. Defining query fractions
The update factor 𝛥𝛾 (𝑡) is used to determine whether more anoma-

lies or uncertainties should be queried in the next iteration. The updates
𝛼𝑎(𝑡 + 1) and 𝛼𝑧(𝑡 + 1) have the forms

𝛼𝑎(𝑡 + 1) = 𝜆𝑡+1
(

𝛼𝑎(𝑡) +𝑤(1)
𝑎 (𝑡) ⋅max{0, 𝛥𝛾 (𝑡)} +𝑤(2)

𝑎 (𝑡) ⋅min{0, 𝛥𝛾 (𝑡)}
)

,

(7)

and

𝛼𝑧(𝑡 + 1) = 𝜆𝑡+1
(

𝛼𝑧(𝑡) +𝑤(1)
𝑧 (𝑡) ⋅max{0,−𝛥𝛾 (𝑡)} +𝑤(2)

𝑧 (𝑡) ⋅min{0,−𝛥𝛾 (𝑡)}
)

,

(8)

respectively. Here, the 𝑤 variables are non-negative constants that we
need to ensure that the fractions stay within the correct bounds for time
step 𝑡. Moreover, 𝜆𝑡+1 denotes a linear function which guarantees that
the updated fractions are also within the bounds for time step 𝑡+1. Let
us examine (7) in a bit more detail: the new fraction 𝛼𝑎(𝑡 + 1) is based
on the old value 𝛼𝑎(𝑡) plus some value when 𝛥𝛾 (𝑡) > 0 or minus some
value when 𝛥𝛾 (𝑡) < 0. In other words, when the anomalies add more
information on average than the uncertainties, then 𝛼𝑎(𝑡 + 1) becomes
larger. Otherwise, 𝛼𝑎(𝑡 + 1) becomes smaller. The update dynamics are
the other way around for (8). We provide the explicit mathematical
definitions of the 𝑤 variables and 𝜆𝑡+1 in Appendix. It is important
to mention that they depend on the hyperparameters 𝛼(0)𝑎 and 𝛼(0)𝑧 ,
which are the initial query fractions of anomalies and uncertainties,
respectively.

The fraction of random observations that we want to query relates to
the number of available labeled observations 𝐿(𝑡). If 𝐿(0) is small, then
(0) is less likely to be a good representation of the complete labeled
dataset (𝐗, 𝐲). In that case, we want to query relatively more random
instances at the start to be able to obtain a representative train set for
the GBM classifier to learn from. As 𝐿(𝑡) increases, we want to query
less and less random observations and let Active Learning take over in
the sense of querying anomalies and uncertainties. Therefore, let 𝛼𝑟(𝑡)
be an exponentially decreasing function in 𝑡. More specifically,

𝛼𝑟(𝑡) = 𝛼max
𝑟 ⋅ 2−𝜏⋅𝐿(𝑡), (9)

with 𝜏 > 0 the decrease speed and 𝐿(𝑡) = 𝐿(0)+𝑄⋅𝑡. Note that this func-
tion is determined beforehand. Hence, how the fraction of randomly
queried observations changes, is fixed during the Jasmine procedure.
The value of 𝛼max is directly determined by the hyperparameters 𝛼(0)𝑎
and 𝛼(0)𝑧 .

It is important to see that executing the 𝛼-dynamic update step
does not take much computation time. No additional machine learning
models have to be trained and only relatively simple operations are
performed to determine the values of the query fractions for the next
time step.

4.7. Final iteration updates

The last steps that Jasmine has to perform are rather simple, the
labeled query set (𝑡) is added to the current labeled set (𝑡 − 1) and
removed from the current unlabeled set  (𝑡 − 1). More specifically,
(𝑡) ∶= (𝑡−1)∪(𝑡) and  (𝑡) ∶=  (𝑡−1)⧵(𝑡). The complete Jasmine

procedure is summarized in Algorithm 1.

6

Algorithm 1 Jasmine procedure
Require: Labeled set (0), unlabeled set  (0), number of iterations 𝑇 ,

query function 𝜓Jas

1: Tune parameters of GBM on (0) (Section 4.2)
2: Tune Jasmine-specific hyperparameters (𝛼(0)𝑎 , 𝛽, 𝛾, 𝜏) on (0) (Sec-

tion 4.8) and determine 𝛼(0)𝑧 by normalization
3: for 𝑡 = 1 to 𝑇 do
4: Train GBM 𝑓𝑡 with tuned parameters on (𝑡 − 1)
5: Apply 𝑓𝑡 to  (𝑡 − 1) to obtain predictions 𝑦̂𝑢(𝑡)
6: Assign each 𝑢 ∈  (𝑡 − 1) to its most likely class
7: Calculate each 𝑧𝑢(𝑡) as defined in (1)
8: Construct one IF for each class (Section 4.4).
9: Compute each 𝑎𝑢(𝑡) as defined in (3)
0: Compose (𝑡) using query function 𝜓Jas as described in Sec-

tion 4.5
1: Obtain actual classes 𝑦𝑞 of 𝑞 ∈ (𝑡) by human expert
2: Use 𝑦𝑞 and predictions 𝑦̂𝑞(𝑡) to determine 𝛿𝛽𝑎 (𝑡), 𝛿

𝛽
𝑧 (𝑡) and 𝛥𝛾 (𝑡)

with (4), (5) and (6), respectively.
3: Update query fractions to obtain 𝛼𝑎(𝑡+1) and 𝛼𝑧(𝑡+1) (Section 4.6)

4: (𝑡) ⇐ (𝑡 − 1) ∪(𝑡) and  (𝑡) ⇐  (𝑡 − 1) ⧵(𝑡)
5: end for
6: return

4.8. Tuning jasmine hyperparameters

Chronologically speaking, tuning of the Jasmine-specific hyperpa-
rameters takes place in Phase 1 before the actual Active Learning
procedure in Phase 2, as we illustrated in Fig. 3. To be more specific,
Jasmine tuning occurs after tuning the hyperparameters for the GBM,
and thus, directly after Section 4.2. Recall that the hyperparameters
are (i) 𝛼(0)𝑎 and 𝛼(0)𝑧 , the starting fractions of querying anomalous and
ncertain observations, respectively; (ii) 𝛽, the parameter assigning a
ertain weight to an FN compared to an FP, given in (4) and (5); (iii)
, the update magnitude, given in (6); and (iv) 𝜏, the decrease speed in
uerying random observations, given in (9). Using normalization, 𝛼(0)𝑎
nd 𝜏 completely determine 𝛼(0)𝑧 , so the latter does not have to be tuned.

To determine appropriate values for these hyperparameters, the
nitially labeled set (0) is randomly partitioned into the sets 𝐽 (0),
𝐽 (0) and 𝐽 . During Jasmine tuning, 𝐽 (0) is taken as the initially

abeled set, 𝐽 (0) as the initially unlabeled set and 𝐽 as the evaluation
et. Let  be the set with hyperparameter values that we want to
onsider for tuning. Thus, an element 𝑗 ∈  is a four-dimensional
ector of the form (𝛼(0)𝑎 , 𝛽, 𝛾, 𝜏). Let 𝑄𝐽 be the number of unlabeled
bservations that should be queried in each iteration. Ideally, the value
f 𝑄𝐽 is close to 𝑄, but we do want to perform some iterations before
𝐽 (𝑡) reaches the size of (0). The number of iterations in Jasmine

uning is given by 𝑇𝐽 ∶= ⌈

𝑈𝐽 (0)
𝑄𝐽

⌉−1, where 𝑈𝐽 (0) ∶= |𝐽 (0)|. The minus
ne is because the last unlabeled observations are the least informative,
nd hence, not of interest to query.

Let 𝑗 ∈  be some hyperparameter combination. Then a GBM
odel is trained on 𝐽 (0), similar to what we described in Section 4.3.
his model is then applied to the evaluation set 𝐽 resulting in some
erformance metric 𝑝𝑗 (0). Then the rest of the AL procedure, as we
escribed in Section 4.4 to 4.7, is executed. After all iterations are
erformed, the sequence of performance measures {𝑝𝑗 (𝑡 − 1)}{𝑡=1,…,𝑇𝐽 }
s obtained. We use this sequence to determine which hyperparameter
ombination works best, since such a sequence is obtained for each
∈  .

Because stochasticity is involved, we repeat Jasmine tuning 𝑆𝐽
times. Each simulation, the set (0) is randomly divided in the sets
𝐽 (0), 𝐽 (0) and 𝐽 . Also, each simulation yields a sequence of perfor-
mance metrics for each hyperparameter combination. Then the combi-
nation that yields the best performance over the simulations is taken as
(relatively) optimal for 𝛼(0), 𝛽, 𝛾 and 𝜏.
𝑎

J. Klein, S. Bhulai, M. Hoogendoorn et al. Machine Learning with Applications 9 (2022) 100351

n
t
s
(
o
o
t

(

5. Experimental setup

We conducted several experiments to determine whether our AL
method Jasmine performed better than ALADIN and to decide if 𝛼-
dynamic updating yielded significant improvements over baseline query
functions. In this section, firstly, we discuss the datasets on which the
experiments were performed. These sets are fully labeled, so the labels
for the observations in the ‘unlabeled’ set were hidden until they were
queried by Jasmine. After that, we explain the steps taken to execute
the procedures. These include which hyperparameters were tuned over
which ranges and how the different AL methods were evaluated.

5.1. Data

Yavanoglu and Aydos (2017) and Ferrag, Maglaras, Moschoyiannis,
and Janicke (2020) provided overviews of publicly available security-
related datasets commonly used in intrusion detection research. The
sets that were discussed span from 1999 to 2018, showing that even
old network datasets are still used to benchmark intrusion detection
techniques. However, this is mostly due to the lack of public data,
as discussed in Section 1. Here, firstly, we used the NSL-KDD dataset
for assessing the considered AL methods, since it is the most used for
evaluation in the field of cybersecurity. Secondly, we considered the
UNSW-NB15 dataset. This set is cited often too, and is much more
recent than the popular NSL-KDD data. Moreover, it has several more
realistic aspects, which are discussed later. Henceforth, these datasets
were used to assess the performance of the discussed AL methods and
to compare the obtained results for different data.

5.1.1. NSL-KDD
The NSL-KDD dataset was developed by Tavallaee, Bagheri, Lu, and

Ghorbani (2009) and is an improvement on the KDD-Cup-99 dataset.
The latter was prepared by Stolfo, Fan, Lee, Prodromidis, and Chan
(2000) and consists of a train set and a test set. These two sets
were constructed such that they do not have the same underlying
distribution. Each observation in KDD-Cup-99 is made up of a 41-
dimensional feature vector and an output label with the attack type.
There are four global types of actual attacks and a ‘normal’ type,
indicating a benign connection. Within the attack types, there can
be several distinct attack scenarios. The test set contains scenarios
from the train set as well as new scenarios. As mentioned before, the
NSL-KDD dataset is a revision of the KDD-Cup-99 data and addresses
many of the problems. What these problems are and how the data was
revised is described by Tavallaee et al. (2009). Finally, the total number
of train observations in NSL-KDD is 125,972 and the number of test
instances is 22,544. We removed the categorical features Protocol_type,
Service, Flag, Difficulty_level, because Jasmine is based on numerical
techniques. Moreover, since Jasmine expects binary output labels, all
attack types obtained value 1 (the malicious class), while the normal
type obtained value 0 (the benign class). 46.5% of the train instances
are malicious, while 56.9% are malicious in the test set.

5.1.2. NSL-KDD-rand
Besides considering the NSL-KDD data as provided by Tavallaee

et al. (2009), we also considered the dataset we call NSL-KDD-rand.
We constructed this set by combining the train and test set of the NSL-
KDD dataset. Now, 48.1% of all observations are malicious. During the
experiments, each time a new train and test set were chosen. These new
sets are expected to have the same underlying distribution, in contrast
to the provided train and test set of the NSL-KDD data.

5.1.3. UNSW-NB15
The UNSW-NB15 dataset was constructed by Moustafa and Slay
(2015), partially to address some problems of the NSL-KDD data.

7

The UNSW-NB15 dataset contains 2,540,047 observations with each
etwork connection consisting of a 47-dimensional feature vector and
wo output attributes. The first output is the specific attack type and the
econd is a binary value indicating whether the observation is benign
0) or malicious (1). Nine attack types are present in the dataset, but we
nly used the second output attribute, since Jasmine expects a binary
utput label. We reduced the number of predictive features from 47
o 36 by removing srcip, sport, dstip, dsport, proto, state, service,
stcpb, dtcpb, Stime and Ltime, because they directly determine the
output label, are categorical or have no predictive use. Furthermore,
there are several missing values in UNSW-NB15 which we chose from
context to be 0. Finally, 12.6% of the observations correspond to
attacks. This lower fraction of malicious traffic is one of the reasons
why this dataset is closer to reality than the NSL-KDD data. More
information about UNSW-NB15 is given by Moustafa and Slay (2015).

Although the attack balance is more realistic, there are still rela-
tively many malicious observations. Therefore, we also constructed a
dataset in which the attacks were downsampled to 1.0% to see how
Jasmine performs on highly unbalanced data.

5.2. Experiments

5.2.1. Query functions
We considered several query functions in the experiments. First of

all, we regarded Jasmine with its characteristic 𝛼-dynamic query func-
tion 𝜓Jas (as described in Section 4.5) as the main focus of this research
jas.main). Furthermore, we examined some simpler query functions

for the Jasmine procedure: only querying anomalies (jas.anom), only
querying uncertainties (jas.uncert), and only querying random observa-
tions (jas.rand). For these three query functions, 𝛼-dynamic updating
is not involved. Note that the uncertainty query approach in jas.uncert
corresponds to many of the studies discussed in Section 2. Also, the
query strategies in jas.anom and jas.rand have ties to related work.
Naturally, we also considered the full ALADIN procedure of Stokes
et al. (2008) (ala.main), just as the incomplete Jasmine procedure with
ALADIN’s query function of querying anomalies and uncertainties in
a fixed 50/50 split (jas.basic). Consequently, we compared Jasmine to
five different AL methods.

5.2.2. Global parameters
The global parameters are the variables defined before any compu-

tation took place. These include the initial size of the labeled set 𝐿(0),
the initial size of the unlabeled set 𝑈 (0), the size of the evaluation set
𝐸 and the query set size 𝑄. Moreover, 𝑁 is the maximum number of
observations that were to be queried to the human expert during the
process. Together with 𝑄, the parameter𝑁 determines the total number
of iterations: 𝑇 ∶= ⌊𝑁∕𝑄⌋. Finally, since Jasmine is an inherently
stochastic procedure, we repeated the experiments 𝑆 times. This was
done to analyze how our method behaved on average and in what range
its performances resided. Note that, for each repetition, the sets (0)
and  (0) were newly constructed. For the NSL-KDD-rand and UNSW-
NB15 datasets, the evaluation set  was also freshly sampled. This was
not necessary for the NSL-KDD data, since  is a provided fixed set.

The values chosen for the global parameters for the experiments are
presented in Table 1. As the table shows, two different values 𝐿(0) were
considered, because we were interested in how the initially labeled
set size influenced the performance of the AL methods. Furthermore,
we chose 𝑄 to be 40, as we deemed this a good balance between
allowing for the query fractions to update not too erratically (needing 𝑄
to be large) and allowing for relatively small updates to the classifier
(needing 𝑄 to be small). Also, we chose 𝑁 to be 15,000 because we
saw from exploratory studies that the models do not drastically change
anymore when more labels were provided. Finally, for the NSL-KDD-
rand and UNSW-NB15 datasets, we chose 𝐸 to be 5,000, to obtain a
representative test set without using too many observations only for
evaluation.

J. Klein, S. Bhulai, M. Hoogendoorn et al. Machine Learning with Applications 9 (2022) 100351

o
t
t

Table 1
Values for global parameters.

Data 𝐿(0) 𝑈 (0) 𝐸 𝑄 𝑁 𝑆

NSL-KDD 125 125,848 22,544 40 15,000 30
NSL-KDD 250 125,723 22,544 40 15,000 30
NSL-KDD-rand 125 146,392 5,000 40 15,000 30
NSL-KDD-rand 250 146,267 5,000 40 15,000 30
UNSW-NB15 125 2,534,922 5,000 40 15,000 30
UNSW-NB15 250 2,534,797 5,000 40 15,000 30
c
t
c

6

o
K
c
c
a
p
s
o
J
a
r

6

6

m
s

Table 2
Tuning ranges for hyperparameters in h2o.gbm (csr = ‘col_sample_rate’).

Distribution Histogram_type Learn_rate_annealing
Bernoulli RoundRobin {0.95, 0.99, 0.999}

max_depth sample_rate ntrees
{6, 12, 24} {0.60, 0.78, 1.0} {250, 500, 1,000}

nbins csr learn_rate
{10, 16, 25} {0.84, 0.92, 1.0} {0.02, 0.05, 0.125}

min_rows csr_per_tree csr_change_per_level
{6, 8, 10} {0.40, 0.64, 1.0} {0.94, 1.0, 1.06}

Table 3
Tuning ranges for Jasmine parameters.
𝛼(0)𝑎 𝛽 𝛾 𝜏 𝑆𝐽
{

1
4
, 1
2
, 3
4

} {

1
2
, 1, 2

} {

1
2
, 1, 2

} {

1
800
, 1
400
, 1
200
, 1
100

}

4

5.2.3. Hyperparameter tuning GBM
As mentioned in Section 4.2, good values for the GBM were found

by tuning on the initially labeled set (0) with 𝑘-fold cross validation.
We used the study by Tama and Rhee (2019) and exploratory research
to determine which hyperparameters to tune and over what range to
tune them. The parameters that were not selected for tuning obtained
their default settings as given by the h2o.gbm function of the H2O.ai
package, which we used in the R programming language. The values
or tuning ranges of the parameters are shown in Table 2. Since the
number of possible hyperparameter combinations is large (more than
177 thousand), tuning was performed using a random search over
all combinations for a maximum of 4 h. The combination with the
best trade-off between performance metric and computation time was
chosen. We considered the 𝐹1 score as the performance metric and we
chose the threshold 𝜀 to be 10−4.

5.2.4. Jasmine tuning
The relevant hyperparameters for the Jasmine tuning phase, as we

described in Section 4.8, are the initial anomaly query fraction 𝛼(0)𝑎 ,
the FN weight factor 𝛽, the update magnitude 𝛾 and the decrease speed
in querying random instances 𝜏. The ranges that the parameters were
tuned over are shown in Table 3, yielding 108 possible combinations.
We chose the ranges for 𝛼(0)𝑎 , 𝛽 and 𝛾 to be symmetric around the ‘unity
value’. For 𝛼(0)𝑎 , this is 1

2 , since then the initial number of anomalous
bservations was equal to the number of uncertain instances. For 𝛽,
his is 1, because then the FNs and FPs were weighed equally. For 𝛾,
his is also 1, since then 𝛥(𝛾)(𝑡) reduced to the linear difference 𝛥(𝑡).

During Jasmine tuning, we wanted to choose 𝑄𝐽 as close to 𝑄 as
possible, but also perform at least three iterations. Hence, we defined
the tuning query size as 𝑄𝐽 ∶= min{𝑈𝐽 (0)∕4, 𝑄}. The initially unlabeled
set size was divided by 4 (= 3 + 1), since the last iteration was
not performed. This is because we deem the last unlabeled observa-
tions the least informative. Each Jasmine parameter combination 𝑗
yielded a performance metric for every time step. This produced the se-
quence {𝑝𝑗 (𝑡)}{𝑡=0,…,𝑇𝐽−1}. Again, this metric was the 𝐹1 score. After the
iterations were performed, the area underneath the (𝑡, 𝑝𝑗 (𝑡)){𝑡=0,…,𝑇𝐽−1}-
‘curve’ was calculated. This is an example of a learning curve, which
is commonly used in the AL paradigm to assess the quality of a
method (Kumar & Gupta, 2020; Settles, 2009). The larger this area,
 c

8

the better parameter combination 𝑗 is. As there is stochasticity in
the techniques used in Jasmine, the tuning phase was repeated 𝑆𝐽
times. The combination with the largest average area was chosen as
the hyperparameter setting for Jasmine in the actual AL procedure.
Note that the Jasmine-specific parameters were tuned on (0), and so,
Jasmine did not get an unfair advantage by seeing more data in advance
than the other AL methods, which did not need to execute Jasmine
tuning.

5.2.5. Evaluation of AL methods
To evaluate the six different AL methods, we utilized the evalu-

ation set  that was set aside each simulation. The quality of the
predictions of an AL method on  was determined by the performance
metric 𝑝(𝑡) (in this case the 𝐹1 score) for every iteration 𝑡. After
some reference value 𝑡ref of iterations were performed (0 ≤ 𝑡ref ≤
𝑇), a sequence of performance metrics {𝑝(𝑡)}{𝑡=0,…,𝑡ref} was obtained.
Similar to Jasmine tuning, we took the area 𝐴(𝑡ref) underneath the
(𝑡, 𝑝(𝑡)){𝑡=0,…,𝑡ref}-learning curve as a measure of performance. Briefly
said, the higher 𝐴(𝑡ref), the better the method is up to the iteration step
𝑡ref. However, since there is stochasticity involved, we repeated each
complete AL procedure 𝑆 times. During simulation 𝑠, (0) and  (0)
were randomly chosen (for NSL-KDD-rand and UNSW-NB15 also  was
randomly sampled) and all six procedures were provided the same
initial sets. Consequently, this led to the vector (𝐴(1)

𝑠 (𝑡ref),… , 𝐴(6)
𝑠 (𝑡ref))

of paired area metrics. Next, we statistically compared the area metrics
of the Jasmine 𝛼-dynamic method with the metrics of the other meth-
ods. This was done by the Wilcoxon signed-rank test (with significance
threshold of 0.05) to determine whether

𝐻 (𝑚)
0 (𝑡ref) ∶ median

𝑠=1,…,𝑆

{

𝐴(1)
𝑠 (𝑡ref)

}

< median
𝑠=1,…,𝑆

{

𝐴(𝑚)
𝑠 (𝑡ref)

}

(10)

ould be rejected for method 𝑚 = 2,… , 6. When this was the case,
hen 𝛼-dynamic querying performed significantly better than the other
onsidered query functions and AL techniques.

. Results

In this section, the results of our research are presented. They were
btained by performing the steps explained in Section 5 on the NSL-
DD, NSL-KDD-rand and UNSW-NB15 data. First of all, the learning
urve of 𝐹1 scores is shown for each of the six AL methods that we
onsidered. This curve gives an insight in how well the classifier of
specific method performed on the evaluation set throughout the AL

rocess. Secondly, the 𝑝-values of the Wilcoxon signed-rank test are pre-
ented for predetermined specific iteration steps. Thirdly, the dynamics
f the query fractions 𝛼𝑎(⋅), 𝛼𝑧(⋅) and 𝛼𝑟(⋅) are shown to illustrate how
asmine adjusted the balance between querying anomalous, uncertain
nd random observations. Finally, we discuss the implications of these
esults per dataset.

.1. Results on NSL-KDD

.1.1. Learning curves
Fig. 4 shows the average learning curves for each of the six AL

ethods on the fixed evaluation set NSL-KDD- for initially labeled set
izes 𝐿(0) = 125 and 𝐿(0) = 250. Each simulation yielded a learning
urve, hence we took the average of the curves over all simulations.

J. Klein, S. Bhulai, M. Hoogendoorn et al. Machine Learning with Applications 9 (2022) 100351

t
T

w

6

t
f
a

Table 4
𝑝-values Wilcoxon test jas.main vs. . . .with 𝐿(0) = 125.
𝑡ref 𝐿(𝑡ref) jas.basic jas.rand jas.anom jas.uncert ala.main

9 485 0.992 0.000172 1.00 0.0155 0.894
16 765 0.991 1.52 ⋅ 10−5 1.00 0.0249 0.381
22 1005 0.975 5.96 ⋅ 10−7 1.00 0.00983 0.0571
34 1485 0.855 5.00 ⋅ 10−7 0.971 0.000729 0.000128
47 2005 0.786 5.00 ⋅ 10−7 0.388 0.000932 4.99 ⋅ 10−7

122 5005 0.0131 2.99 ⋅ 10−6 1.28 ⋅ 10−7 0.131 1.30 ⋅ 10−8

247 10005 3.46 ⋅ 10−6 3.96 ⋅ 10−5 1.86 ⋅ 10−9 0.908 1.57 ⋅ 10−7

372 15005 7.10 ⋅ 10−7 0.000190 1.86 ⋅ 10−9 0.975 2.86 ⋅ 10−7
𝐿
p
c
t
o
c

6

m
l
e
(
a
w
t
w

6

s
j
t
w
p
n
s
t
j
i
t
a
e

a
a
o
o
l
l
o
c

q
i
f
s
c
f

s
t
b

Fig. 4. Learning curves on NSL-KDD- for different initial sizes 𝐿(0).

The blue dashed line (jas.fin) is the average final performance on  of
he GBM trained on the complete train set with all labels available.
his performance metric was 𝐹1 ≈ 0.760 for Fig. 4(a) and 𝐹1 ≈ 0.759

for Fig. 4(b). The value of the line is approximately the same for both
plots, because the evaluation set  is fixed and independent of (0).
However, each GBM was tuned differently, leading to small differences.
Since all labels of the NSL-KDD dataset are technically available, we
included the final performance to show how quickly the Jasmine-based
AL methods reached this value. The purple dashed line (ala.fin) is
the final performance on  of the logistic regression classifier of the
ALADIN procedure (𝐹1 ≈ 0.720). This final performance was constant
during the simulations and for both settings of 𝐿(0), since the classifier
of ALADIN is deterministic. Finally, the gray dashed line (coin_1) is the
expected performance on  (𝐹1 ≈ 0.725) of the best dummy classifier,

hich classifies each evaluation observation as malicious.

.1.2. Statistical tests
To determine whether Jasmine performed significantly better than

he other five AL methods, we determined the 𝑝-value of the test in (10)
or each method 𝑚 = 2,… , 6 and for different values of 𝑡ref. Tables 4

nd 5 show the results for the experiments with 𝐿(0) = 125 and t

9

(0) = 250, respectively. A black value indicates that Jasmine (jas.main)
erformed significantly better than the method in the corresponding
olumn for the labeled set size 𝐿(𝑡ref). A value in italic, however, means
hat Jasmine performed significantly worse (by interchanging the sides
f (10)). A gray value means that the test was indecisive and could not
onclude whether Jasmine was better or worse.

.1.3. 𝛼-dynamic updating
Finally, Fig. 5 presents the 𝛼-dynamic updating procedure of Jas-

ine for 𝐿(0) = 125 and 𝐿(0) = 250. Similar to the figure with the
earning curves, every simulation resulted in a 𝛼-dynamic curve for
ach of the query fractions 𝛼𝑎(⋅) (a.anom), 𝛼𝑧(⋅) (a.uncert) and 𝛼𝑟(⋅)
a.rand). We took the average of the query fractions to obtain the
verage 𝛼-dynamic curves. A shaded region indicates the interval in
hich 80% of the observed fractions with matching color resided, and

herefore, shows the spread of the values. Since 𝑆 = 30 simulations
ere performed, each region contains the 24 ‘middle’ fraction values.

.1.4. Implication of results on NSL-KDD
The first thing that we observe in Fig. 4 is that the average 𝐹1

core rapidly increased in the first iterations for the Jasmine (jas.main),
as.anom, jas.uncert and jas.basic procedures. This means that by using
he corresponding query approaches, valuable unlabeled observations
ere queried to the oracle, because the GBMs were able to make better
redictions on the evaluation set NSL-KDD- . This increase is most
otable for jas.anom and then especially for 𝐿(0) = 250. This makes
ense, because NSL-KDD- contains new anomalous attack scenarios
hat are not found in the train set. Remarkably, the performance of
as.anom went higher than the final (average) 𝐹1 score. For several
teration steps, also the other three methods obtained scores higher
han the final performance for both settings of 𝐿(0). This means that
carefully constructed smaller dataset led to better predictions on the

valuation set than the complete train set did.
Even though jas.anom performed better than the other methods

t the start of the iterations, its effectiveness decreased when more
nomalous observations were added to the labeled set. The decrease
f effectiveness is also visible in Tables 4 and 5: for small values
f 𝑡ref querying only anomalies performed better than Jasmine, but
ater Jasmine obtained significantly better results. It could be that the
abeled set became more and more abnormal when more anomalous
bservations were added, resulting in impaired training of the GBM
lassifier in later iterations after it had improved before.

Furthermore, it is clear that Jasmine performed better than only
uerying uncertainties, as the 𝑝-values show. It appears that also query-
ng anomalies is important. However, when time progresses, its per-
ormance is not significantly better anymore and eventually becomes
ignificantly worse. It should be stressed, though, that the learning
urves show that both jas.main and jas.uncert have converged to the
inal score and only differ a little.

Only querying random observations, as done by jas.rand, performed
ignificantly worse than Jasmine for all reference iterations. This shows
hat specifically choosing anomalous or uncertain observations works
etter than only querying random observations.

Also interesting to note is that Jasmine was on par with or worse

han jas.basic at the start of the iteration procedure. However, when the

J. Klein, S. Bhulai, M. Hoogendoorn et al. Machine Learning with Applications 9 (2022) 100351
Table 5
𝑝-values Wilcoxon test jas.main vs. . . .with 𝐿(0) = 250.
𝑡ref 𝐿(𝑡ref) jas.basic jas.rand jas.anom jas.uncert ala.main

9 610 0.924 0.000128 0.994 0.0790 0.516
16 890 0.958 2.57 ⋅ 10−6 1.00 0.118 0.0502
22 1130 0.963 4.99 ⋅ 10−7 1.00 0.122 0.00530
34 1610 0.915 1.28 ⋅ 10−7 0.999 0.388 3.14 ⋅ 10−5

47 2130 0.897 1.02 ⋅ 10−7 0.967 0.556 1.38 ⋅ 10−6

122 5130 0.122 4.00 ⋅ 10−8 0.00233 0.997 9.31 ⋅ 10−9

247 10130 9.43 ⋅ 10−5 4.16 ⋅ 10−7 8.20 ⋅ 10−8 1.00 8.20 ⋅ 10−8

372 15130 1.89 ⋅ 10−6 1.90 ⋅ 10−6 2.79 ⋅ 10−9 1.00 1.62 ⋅ 10−6
Fig. 5. Progress of query fractions for different initial sizes.
size of (⋅) grew, Jasmine became significantly better, as the 𝑝-values
in both Tables 4 and 5 show. This means that dynamically adjusting
the query balance in a later stadium has an advantage over querying
anomalies and uncertainties in a fixed 50/50 fashion. Combining this
with the progress of the query fractions in Fig. 5 and with the fact
that jas.anom’s performance worsens over time shows that Jasmine
found the right balance between querying uncertainties and anomalies.
Nonetheless, since anomalies appeared to be better at the start, it is
curious why Jasmine did not query more anomalies in that stage.
Hence, the information metrics as defined in (4) and (5) could have
a preference for uncertain over anomalous observations.

Lastly, Jasmine performed fairly quickly significantly better than
ALADIN as the 𝑝-values show. This is partly due to the simpler ML
techniques in the latter, as it took Jasmine less effort to obtain better
results than ALADIN than it took to perform better than jas.basic.

In general, there do not seem to be large differences between the
experiments with 𝐿(0) = 125 and with 𝐿(0) = 250. However, the 𝛼-
dynamic curves in Fig. 5 show that the average initial random query
fraction 𝛼𝑟(0) was noticeably bigger for 𝐿(0) = 125 than for 𝐿(0) = 250,
since the brown curve (a.rand) starts higher in the former. This makes
sense, because (0) was randomly constructed, and hence, it became
less essential to query random instances when we chose 𝐿(0) larger.

Considering the computation times, the procedures incorporating
anomaly detection (jas.main, jas.basic and jas.anom) took significantly
longer (on average 2.8 h for 𝐿(0) = 125 and 3.3 h for 𝐿(0) = 250) than
those without the Isolation Forest (jas.rand, jas.uncert and ala.main) did
(respectively 1.5, 1.8 and 2.0 h on average for 𝐿(0) = 125 and 2.0, 2.3
and 2.1 h for 𝐿(0) = 250). The longer computation times for 𝐿(0) = 250
compared to 𝐿(0) = 125 is presumably because of the hyperparameters
chosen for the GBM, e.g., more trees are constructed, thus training
takes longer. This is supported by the negligible difference in times
for ALADIN, which does not incorporate a GBM. It is important to
note that jas.main also performs Jasmine tuning, and therefore, requires
additional computation time.

6.2. Results on NSL-KDD-rand

6.2.1. Learning curves
Similar to the results presented in Section 6.1, Fig. 6 presents
the average learning curves for each of the six AL methods and two

10
Fig. 6. Learning curves on NSL-KDD-rand with random evaluation set.

constant reference lines. In contrast to the results on the NSL-KDD
dataset, the evaluation set  was chosen anew for each simulation.
More specifically, at the start of each repetition the complete NSL-KDD-
rand dataset was randomly partitioned in (0),  (0) and  . The blue

J. Klein, S. Bhulai, M. Hoogendoorn et al. Machine Learning with Applications 9 (2022) 100351

a
l

Table 6
𝑝-values Wilcoxon test jas.main vs. . . .with 𝐿(0) = 125.
𝑡ref 𝐿(𝑡ref) jas.basic jas.rand jas.anom jas.uncert ala.main

9 485 0.798 0.000365 0.0192 0.657 5.96 ⋅ 10−7

16 765 0.886 5.96 ⋅ 10−7 0.000333 0.657 1.86 ⋅ 10−9

22 1005 0.904 1.30 ⋅ 10−8 1.52 ⋅ 10−5 0.642 1.86 ⋅ 10−9

34 1485 0.894 9.31 ⋅ 10−10 8.20 ⋅ 10−8 0.672 9.31 ⋅ 10−10

47 2005 0.831 9.31 ⋅ 10−10 9.31 ⋅ 10−10 0.708 9.31 ⋅ 10−10

122 5005 0.492 9.31 ⋅ 10−10 9.31 ⋅ 10−10 0.836 9.31 ⋅ 10−10

247 10005 0.428 9.31 ⋅ 10−10 9.31 ⋅ 10−10 0.846 9.31 ⋅ 10−10

372 15005 0.365 9.31 ⋅ 10−10 9.31 ⋅ 10−10 0.841 9.31 ⋅ 10−10
Table 7
𝑝-values Wilcoxon test jas.main vs. . . .with 𝐿(0) = 250.
𝑡ref 𝐿(𝑡ref) jas.basic jas.rand jas.anom jas.uncert ala.main

9 610 0.970 4.16 ⋅ 10−7 0.313 0.930 2.79 ⋅ 10−9

16 890 0.985 1.28 ⋅ 10−7 0.0261 0.701 1.86 ⋅ 10−9

22 1130 0.975 1.77 ⋅ 10−8 8.59 ⋅ 10−4 0.548 9.31 ⋅ 10−10

34 1610 0.963 9.31 ⋅ 10−10 5.96 ⋅ 10−7 0.516 9.31 ⋅ 10−10

47 2130 0.945 9.31 ⋅ 10−10 9.31 ⋅ 10−10 0.564 9.31 ⋅ 10−10

122 5130 0.635 9.31 ⋅ 10−10 9.31 ⋅ 10−10 0.650 9.31 ⋅ 10−10

247 10130 0.444 9.31 ⋅ 10−10 9.31 ⋅ 10−10 0.687 9.31 ⋅ 10−10

372 15130 0.444 9.31 ⋅ 10−10 9.31 ⋅ 10−10 0.650 9.31 ⋅ 10−10
Fig. 7. Progress of query fractions for different initial sizes.
dashed line (jas.fin) is the average final performance of the simulation-
specific GBMs on their corresponding evaluation sets. This metric was
𝐹1 ≈ 0.994 for Fig. 6(a) and 𝐹1 ≈ 0.995 for Fig. 6(b). This time, the
verage final performance of ALADIN represented by the purple dashed
ine (ala.fin) was no longer necessarily constant, but 𝐹1 ≈ 0.918 for

initial set size 𝐿(0) = 125 and 𝐹1 ≈ 0.917 for 𝐿(0) = 250. Lastly, the
expected performance of the best dummy classifier is not visible in the
figures, since it was 𝐹1 ≈ 0.650 for 𝐿(0) = 125 and 𝐹1 ≈ 0.651 for
𝐿(0) = 250.

6.2.2. Statistical tests
Tables 6 and 7 show the 𝑝-values of the Wilcoxon signed-rank test

with null hypothesis as given in (10) for different values of 𝑡ref.

6.2.3. 𝛼-dynamic updating
The dynamics of the 𝛼-updating procedure of Jasmine are shown in

Fig. 7 for 𝐿(0) = 125 and 𝐿(0) = 250. As described before, the curves
represent the average query fractions 𝛼𝑎(⋅) (a.anom), 𝛼𝑧(⋅) (a.uncert) and
𝛼𝑟(⋅) (a.rand) throughout the iteration process.

6.2.4. Implication of results on NSL-KDD-rand
At first glance, the results on the randomly selected evaluation sets

of NSL-KDD-rand are much better for every considered AL method. This
seems reasonable, because the fixed evaluation set for the NSL-KDD
data contains unseen cyberattacks on which the classifier could not
train. In the case of NSL-KDD-rand, the evaluation set was randomly
chosen from the complete dataset, so we expected it to have the same
structure as the train set, making it easier for the classifier to learn.
11
This was specifically the case for the GBM, because it rapidly obtained
an almost perfect 𝐹1 score on the evaluation set.

The figures also show that the three learning curves for Jasmine,
jas.basic and jas.uncert increased in a similar fashion at the start of
the procedure. This was not the case for jas.anom, indicating that it
was mostly important to query uncertain observations. This was also
reflected in the 𝑝-values, as shown by Tables 6 and 7. Jasmine quickly
performed significantly better than jas.anom, but it had more difficulty
in obtaining significantly better results than jas.basic and jas.uncert. The
latter was even significantly better than Jasmine. However, it should be
noted that the 𝐹1 scores were already near perfect for these three query
approaches. Moreover, the dynamics of the query fractions in Fig. 7
show that there was a clear preference for querying more uncertainties
than anomalous observations.

Furthermore, the learning curves show that Jasmine obtained better
results than jas.rand and ALADIN. Both Tables 6 and 7 indicate that
Jasmine was significantly better for all considered reference values.

6.3. Results on UNSW-NB15

6.3.1. Learning curves
Fig. 8 shows the average learning curves for every one of the six

AL methods and two constant reference lines. The evaluation set 
was chosen anew for each simulation, equivalent to what we discussed
in Section 6.2. The blue dashed line (jas.fin) is the average final
performance of the simulation-specific GBMs on their corresponding
evaluation sets. For Fig. 8(a), this metric was 𝐹1 ≈ 0.974, while it was
𝐹 ≈ 0.973 for Fig. 8(b). The average final performance of ALADIN
1

J. Klein, S. Bhulai, M. Hoogendoorn et al. Machine Learning with Applications 9 (2022) 100351

i

Table 8
𝑝-values Wilcoxon test jas.main vs. . . .with 𝐿(0) = 125.
𝑡ref 𝐿(𝑡ref) jas.basic jas.rand jas.anom jas.uncert ala.main

9 485 0.994 4.95 ⋅ 10−5 0.0213 0.994 0.0701
16 765 0.990 1.90 ⋅ 10−6 3.96 ⋅ 10−5 0.997 6.87 ⋅ 10−5

22 1005 0.985 9.96 ⋅ 10−7 4.00 ⋅ 10−6 0.992 3.46 ⋅ 10−6

34 1485 0.965 1.93 ⋅ 10−7 1.28 ⋅ 10−7 0.971 1.30 ⋅ 10−8

47 2005 0.918 4.00 ⋅ 10−8 6.52 ⋅ 10−9 0.897 9.31 ⋅ 10−9

122 5005 0.815 9.31 ⋅ 10−9 1.86 ⋅ 10−9 0.612 2.79 ⋅ 10−9

247 10005 0.271 5.12 ⋅ 10−8 1.86 ⋅ 10−9 0.191 1.86 ⋅ 10−9

372 15005 0.122 1.28 ⋅ 10−7 1.86 ⋅ 10−9 0.131 1.86 ⋅ 10−9
Table 9
𝑝-values Wilcoxon test jas.main vs. . . .with 𝐿(0) = 250.
𝑡ref 𝐿(𝑡ref) jas.basic jas.rand jas.anom jas.uncert ala.main

9 610 0.715 3.46 ⋅ 10−7 7.99 ⋅ 10−6 0.989 0.149
16 890 0.735 5.96 ⋅ 10−7 1.90 ⋅ 10−6 0.998 0.00128
22 1130 0.761 4.16 ⋅ 10−7 2.36 ⋅ 10−7 0.997 0.000230
34 1610 0.650 9.31 ⋅ 10−9 1.77 ⋅ 10−8 0.998 1.52 ⋅ 10−5

47 2130 0.350 2.79 ⋅ 10−9 9.31 ⋅ 10−10 0.990 2.57 ⋅ 10−6

122 5130 0.185 9.31 ⋅ 10−10 9.31 ⋅ 10−10 0.786 9.31 ⋅ 10−10

247 10130 0.0481 9.31 ⋅ 10−10 9.31 ⋅ 10−10 0.306 9.31 ⋅ 10−10

372 15130 0.0275 9.31 ⋅ 10−10 9.31 ⋅ 10−10 0.180 9.31 ⋅ 10−10
Fig. 8. Learning curves on UNSW-NB15 with random evaluation set for different 𝐿(0).

ndicated by the purple dashed line (ala.fin) was 𝐹1 ≈ 0.939 for both
initial set sizes. Lastly, the figures do no show the expected performance
of the best dummy classifier, since it was 𝐹1 ≈ 0.225 for 𝐿(0) = 125 and
𝐹1 ≈ 0.222 for 𝐿(0) = 250. These remarkably lower baseline values
are because relatively far fewer positive observations are present in
UNSW-NB15 compared to NSL-KDD.

6.3.2. Statistical tests
Tables 8 and 9 present the 𝑝-values of the Wilcoxon signed-rank test

with null hypothesis as given in (10) for different values of 𝑡 .
ref

12
6.3.3. 𝛼-dynamic updating
Fig. 9 shows the 𝛼-dynamic updating procedure of Jasmine for

𝐿(0) = 125 and 𝐿(0) = 250. Equivalent to the results in Sections 6.1
and 6.2, the curves indicate the average query fractions 𝛼𝑎(⋅) (a.anom),
𝛼𝑧(⋅) (a.uncert) and 𝛼𝑟(⋅) (a.rand) throughout the iteration process.

6.3.4. Implication of results on UNSW-NB15
There are no striking differences between the two plots in Fig. 8.

However, it seems that the average learning curves for initial set size
𝐿(0) = 125 are a bit more shaky. Since 𝐿(0) is the only different global
parameter between the two plots, the change in behavior is presumably
due to how the GBM parameters and Jasmine-specific parameters were
tuned. It probably also had to do with the imbalance of this dataset.
Approximately 12.6% of the data is related to cyberattacks, so on
average about 16 observations were malicious in (0). For tuning
purposes, this initial set was split in training, validation and test sets,
making it possible that only one malicious observation ended up in
any of those sets. Consequently, the tuned parameters possibly led to
less stable behavior of the GBM and the 𝛼-dynamic update procedure.
Hence, balancing techniques of the training data such as under- or
oversampling could be considered to improve stability.

Furthermore, the learning curves in Fig. 8 are similar to those for
NSL-KDD-rand. This is also true for the 𝑝-values presented in Tables 8
and 9 and the dynamics of the average 𝛼-update curves shown in Fig. 9.

Additionally, the precise effect of the attack imbalance was studied
by randomly downsampling the malicious observations in UNSW-NB15
from 12.6% to 1.0%. Fig. 10 shows the results of the experiments on
this highly unbalanced dataset. The learning curves (averaged over 20
runs) show that all procedures struggled at the start of the labeling pro-
cess: performance was much lower than in Fig. 8. However, jas.main,
jas.basic and jas.uncert improve very quickly. Moreover, Jasmine is
usually the best performing procedure, and for the uncommon instances
it is not, it appears to be second best.

7. Discussion

In this final section of the paper, we firstly draw conclusions based
on the implications of the results discussed in Section 6. Secondly,
we consider further directions for AL in the field of network intrusion
detection.

7.1. Conclusion

The goal of this research was to propose our hybrid Active Learn-

ing method Jasmine for network intrusion detection. It consists of

J. Klein, S. Bhulai, M. Hoogendoorn et al. Machine Learning with Applications 9 (2022) 100351

𝛼
a
o
v
f

b
T
A
n
d
F
r
q
a
a
t
i
m
f
t
o
s
c
J
i
h
m
w
d
l
p

q

Fig. 9. Progress of query fractions for different initial size 𝐿(0).
Fig. 10. Progress of query fractions for different initial size 𝐿(0).
q
b
d
u

7

d
o

t
a
m
t
p
M
c
b
A
p

m
m
e

m
p

C

w
t

-dynamic querying, which means Jasmine is able to dynamically
djust the balance between querying anomalous, uncertain and random
bservations. Consequently, only the potentially most interesting obser-
ations are presented to the human expert. This sets our method apart
rom other AL approaches that have a static query function.

On the datasets that we considered, Jasmine performed significantly
etter than ALADIN, the benchmark AL method used in this research.
his means for practitioners that it is beneficial to choose Jasmine over
LADIN for their AL problems. However, we should note that Jasmine
eeds preprocessing time, which ALADIN and other static AL methods
o not need. This is because of GBM tuning and Jasmine tuning.
urthermore, we observed that Jasmine performed more robustly with
espect to the datasets. We compared the characteristic 𝛼-dynamic
uery function of Jasmine with other query functions: querying only
nomalies, only uncertainties, only random observations and querying
nomalous and uncertain observations in a fixed 50/50 fashion. We no-
iced that Jasmine did not always outperform the other approaches, but
ts performance was less influenced by the considered data, and hence,
ore robust. On the NSL-KDD dataset, only querying anomalies per-

ormed better when the labeling process had just started, but Jasmine
ook over in the long run. On the NSL-KDD-rand and UNSW-NB15 data,
nly querying uncertainties or querying in a 50/50 fashion reigned
upreme, but Jasmine followed closely. Only querying anomalies was
learly a bad strategy for these two datasets. These findings suggest that
asmine is better able to adapt to the provided labeled dataset (⋅). This
s particularly interesting in the face of concept drift: NIDSs operate in
igh non-stationary contexts, which makes it wise to consider an AL
ethod that is able to adjust its query approach dynamically. Lastly,
e saw that the performance of Jasmine is not hindered by unbalanced
ata. Initially it does perform worse, but it quickly improves when the
abeling procedure starts and it becomes the best or one of the best
erforming methods.

However, there is room for improvement in the way 𝛼-dynamic
uerying is performed here. The results on NSL-KDD show that at first
13
uerying more anomalous than uncertain observations was beneficial,
ut this was not reflected in the way that the query fractions were up-
ated. The updating procedure seems to have a bias towards querying
ncertainties.

.2. Future work

Our first suggestion for further research is to reconsider the 𝛼-
ynamic query process such that the bias towards selecting uncertain
bservations is eliminated.

Another suggestion is to add unlabeled observations about which
he classifier has a high prediction certainty to the labeled set without
sking the oracle for its label. Consequently, the labeled set increases
uch more during an iteration, while the human expert does not have

o label more observations. This reduces labeling time drastically and
ossibly leads to better predictions in an earlier stage of the AL process.
oreover, when more labels become available, the preprocessing steps

an be repeated (in a less extensive version) to allow for the GBM to
etter adjust to the changing train set by retuning its hyperparameters.
lso, some Jasmine-specific parameters could be retuned during the
rocess.

Our last suggestion is to consider human uncertainty in the AL
ethod, since it is not always clear whether a connection is benign or
alicious. This can be done by asking the oracle for their confidence in

ach label that they provide or by incorporating a general probability.
These suggestions would increase the deployment efficiency of Jas-

ine even more. Therefore, we would like to apply our method in a
ractical setting to see how it performs.

RediT authorship contribution statement

Jan Klein: Conceptualization, Methodology (main developer), Soft-
are, Validation, Formal analysis, Investigation, Resources, Data cura-

ion, Writing – original draft, Writing – review & editing, Visualization,

J. Klein, S. Bhulai, M. Hoogendoorn et al. Machine Learning with Applications 9 (2022) 100351

𝑡
F

𝛼

W
t
a
s
𝛼
T
c

T
𝛼
d

⎧

⎪

⎪

⎨

⎪

⎪

⎩

a
⎧

⎪

⎪

⎨

⎪

⎪

⎩

R

A

B

C

C

C

E

F

F

G

G

G

G

K

L

L

L

L

M

M

N

O

Project administration. Sandjai Bhulai: Conceptualization, Method-
ology, Resources, Writing – review & editing. Mark Hoogendoorn:
Conceptualization, Methodology, Resources, Writing – review & edit-
ing. Rob van der Mei: Conceptualization, Methodology, Resources,
Writing – review & editing.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Appendix

In this section, we provide the mathematical specifications about
𝛼-dynamic querying. Before we can give the explicit definitions of the
query fractions for the next iteration, we have to derive some general
restrictions on the values of the fractions 𝛼𝑟(𝑡), 𝛼𝑎(𝑡) and 𝛼𝑧(𝑡) for all
∈ {0,… , 𝑇 }, where 𝑇 denotes the maximum number of iterations.

irst, a fundamental requirement of the fractions is that

𝑟(𝑡) + 𝛼𝑎(𝑡) + 𝛼𝑧(𝑡) = 1, (A.1)

and 𝛼𝑟(𝑡), 𝛼𝑎(𝑡), 𝛼𝑧(𝑡) ∈ [0, 1]. Furthermore, each iteration, we want to
query at least one anomaly and one uncertainty, otherwise (4) or (5)
is undefined, and consequently, 𝛥𝛾 (𝑡) is undefined. Thus, we need 𝛼𝑎(𝑡)
and 𝛼𝑧(𝑡) to be at least 𝛼min

𝑎,𝑧 ∶= 1∕𝑄. Then, the number of anomalies
and uncertainties in (𝑡) is at least 𝑄 ⋅ 𝛼min

𝑎,𝑧 = 1. This means the upper
bounds for 𝛼𝑎(𝑡) and 𝛼𝑧(𝑡) are restricted to be at most 1 − 𝛼min

𝑎,𝑧 . The
upper bound for 𝛼𝑟(𝑡) is at most 𝛼max

𝑟 ∶= 1−2𝛼min
𝑎,𝑧 , since we do allow to

query no random observations, and hence, allow 𝛼𝑟(𝑡) to go to 0. The
definition of 𝛼𝑟(𝑡) is given in (9). Note that 𝛼𝑟(𝑡) ∈ [𝛼min

𝑟 , 𝛼max
𝑟) ⊂ [0, 1]

with 𝛼min
𝑟 ∶= 𝛼𝑟(𝑇). Now, we can define the upper bound for 𝛼𝑎(𝑡) and

𝛼𝑧(𝑡) as

𝛼max
𝑎,𝑧 (𝑡) ∶= 1 − 𝛼𝑟(𝑡) − 𝛼min

𝑎,𝑧 .

Note that this upper bound depends on the iteration number 𝑡.
By using (i) 𝛼𝑟(𝑡), 𝛼𝑎(𝑡), 𝛼𝑧(𝑡) ∈ [0, 1], (ii) (A.1), and (iii) the defini-

tions of 𝛼min
𝑎,𝑧 , 𝛼min

𝑟 , 𝛼max
𝑎,𝑧 (𝑡) and 𝛼max

𝑟 , we characterize the 𝑤 variables
introduced in update rules (7) and (8) as follows:

𝑤(1)
𝑎 (𝑡) = 𝛼max

𝑎,𝑧 (𝑡) − 𝛼𝑎(𝑡)

𝑤(2)
𝑎 (𝑡) = 𝛼𝑎(𝑡) − 𝛼min

𝑎,𝑧

𝑤(1)
𝑧 (𝑡) = 𝛼max

𝑎,𝑧 (𝑡) − 𝛼𝑧(𝑡)

𝑤(2)
𝑧 (𝑡) = 𝛼𝑧(𝑡) − 𝛼min

𝑎,𝑧 .

Let us explain the specifics of the update of the anomaly fraction 𝛼𝑎(⋅).
e take the old value of 𝛼𝑎(𝑡) as a starting point for 𝛼𝑎(𝑡+1). This frac-

ion can be increased by at most 𝑤(1)
𝑎 (𝑡) = 𝛼max

𝑎,𝑧 (𝑡)−𝛼𝑎(𝑡) to obtain 𝛼max
𝑎,𝑧 (𝑡)

s the new value. This increase 𝑤(1)
𝑎 (𝑡) is scaled down by max{0, 𝛥𝛾 (𝑡)}

uch that the increment is proportional to the value of 𝛥𝛾 (𝑡). Similarly,
𝑎(𝑡) can be decreased by at most 𝑤(2)

𝑎 (𝑡) = 𝛼𝑎(𝑡) − 𝛼min
𝑎,𝑧 to obtain 𝛼min

𝑎,𝑧 .
he decrease 𝑤(2)

𝑎 (𝑡) is then scaled down by min{0, 𝛥𝛾 (𝑡)}. Hence, the
onstants ensure that 𝛼𝑎(𝑡+1) lies in the interval 𝐼𝑎,𝑧(𝑡) ∶= [𝛼min

𝑎,𝑧 , 𝛼
max
𝑎,𝑧 (𝑡)].

However, it should lie in the interval 𝐼𝑎,𝑧(𝑡+1) ∶= [𝛼min
𝑎,𝑧 , 𝛼

max
𝑎,𝑧 (𝑡+1)]. This

is why we apply the linear transformation 𝜆𝑡+1 ∶ 𝐼𝑎,𝑧(𝑡) → 𝐼𝑎,𝑧(𝑡+1). This
function is given by

𝜆𝑡+1(𝛼) =
𝛼max
𝑎,𝑧 (𝑡 + 1) − 𝛼min

𝑎,𝑧

𝛼max
𝑎,𝑧 (𝑡) − 𝛼min

𝑎,𝑧
(𝛼 − 𝛼min

𝑎,𝑧) + 𝛼
min
𝑎,𝑧 . (A.2)

Note that this function is not well-defined whenever 𝛼max
𝑎,𝑧 (𝑡) − 𝛼min

𝑎,𝑧 = 0.
his happens when 𝛼𝑟(𝑡) = 1 − 𝛼min

𝑎,𝑧 = 𝛼max
𝑟 . However, the definition of

𝑟(𝑡) in Eq. (9) shows that 𝛼𝑟(𝑡) is strictly less than 𝛼max
𝑟 , and hence the

enominator in Eq. (A.2) cannot be zero and 𝜆 is well-defined.
𝑡+1

14
Finally, for 𝑡 ∈ {0,… , 𝑇 − 1}, the systems of equations for the three
query fractions are given by
{

𝛼𝑟(0) = 𝛼max
𝑟 ⋅ 2−𝜏⋅𝐿(0)

𝛼𝑟(𝑡 + 1) = 𝛼max
𝑟 ⋅ 2−𝜏⋅(𝐿(0)+𝑄⋅(𝑡+1)),

𝛼𝑎(0) = 𝛼(0)𝑎
𝛼𝑎(𝑡 + 1) = 𝜆𝑡+1

(

𝛼𝑎(𝑡)+(𝛼max
𝑎,𝑧 (𝑡) − 𝛼𝑎(𝑡)) max{0, 𝛥𝛾 (𝑡)}

+(𝛼𝑎(𝑡) − 𝛼min
𝑎,𝑧) min{0, 𝛥𝛾 (𝑡)}

)

,

nd

𝛼𝑧(0) = 𝛼(0)𝑧
𝛼𝑧(𝑡 + 1) = 𝜆𝑡+1

(

𝛼𝑧(𝑡)+(𝛼max
𝑎,𝑧 (𝑡) − 𝛼𝑧(𝑡)) max{0,−𝛥𝛾 (𝑡)}

+(𝛼𝑧(𝑡) − 𝛼min
𝑎,𝑧) min{0,−𝛥𝛾 (𝑡)}

)

.

eferences

lmgren, M., & Jonsson, E. (2004). Using active learning in intrusion detection. In
Proceedings. 17th IEEE computer security foundations workshop, 2004 (pp. 88–98).
IEEE.

udd, S., Robinson, E. C., & Kainz, B. (2021). A survey on active learning and human-
in-the-loop deep learning for medical image analysis. Medical Image Analysis, Article
102062.

aruana, R., Karampatziakis, N., & Yessenalina, A. (2008). An empirical evaluation
of supervised learning in high dimensions. In Proceedings of the 25th international
conference on machine learning (pp. 96–103).

laesen, M., & De Moor, B. (2015). Hyperparameter search in machine learning. arXiv
preprint arXiv:1502.02127.

onsultancy. eu (2020). Cost of cybercrime per incident jumps six-fold to
e50, 000. URL https://www.consultancy.eu/news/4409/cost-of-cybercrime-per-
incident-jumps-six-fold-to-50000.

lahi, M., Ricci, F., & Rubens, N. (2016). A survey of active learning in collaborative
filtering recommender systems. Computer Science Review, 20, 29–50.

errag, M. A., Maglaras, L., Moschoyiannis, S., & Janicke, H. (2020). Deep learning for
cyber security intrusion detection: Approaches, datasets, and comparative study.
Journal of Information Security and Applications, 50, Article 102419.

riedman, J. H. (2001). Greedy function approximation: A gradient boosting machine.
The Annals of Statistics, 1189–1232.

adde, A., Gad, E. E., Avestimehr, S., & Ortega, A. (2016). Active learning for com-
munity detection in stochastic block models. In 2016 IEEE international symposium
on information theory (pp. 1889–1893). IEEE.

örnitz, N., Kloft, M., Rieck, K., & Brefeld, U. (2009). Active learning for network
intrusion detection. In Proceedings of the 2nd ACM workshop on security and artificial
intelligence (pp. 47–54).

u, Y., & Zydek, D. (2014). Active learning for intrusion detection. In 2014 National
wireless research collaboration symposium (pp. 117–122). IEEE.

uerra Torres, J. L., Catania, C. A., & Veas, E. (2019). Active learning approach to
label network traffic datasets. Journal of Information Security and Applications, 49,
Article 102388.

umar, P., & Gupta, A. (2020). Active learning query strategies for classification,
regression, and clustering: A survey. Journal of Computer Science and Technology,
35(4), 913–945.

ewis, D. D., & Gale, W. A. (1994). A sequential algorithm for training text classifiers.
In SIGIR’94 (pp. 3–12). Springer.

i, Y., & Guo, L. (2007). An active learning based TCM-KNN algorithm for supervised
network intrusion detection. Computers & Security, 26(7–8), 459–467.

iu, F. T., Ting, K. M., & Zhou, Z. H. (2008). Isolation forest. In 2008 Eighth IEEE
international conference on data mining (pp. 413–422). IEEE.

iu, F. T., Ting, K. M., & Zhou, Z. H. (2012). Isolation-based anomaly detection. ACM
Transactions on Knowledge Discovery from Data (TKDD), 6(1), 1–39.

ouloua, S. A., Ferraro, J., Mouloua, M., Matthews, G., & Copeland, R. R. (2019). Trend
analysis of cyber security research published in HFES proceedings from 1980 to
2018. In Proceedings of the human factors and ergonomics society annual meeting, Vol.
63, no. 1 (pp. 1600–1604). Los Angeles, CA: SAGE Publications Sage CA.

oustafa, N., & Slay, J. (2015). UNSW-NB15: A comprehensive data set for network
intrusion detection systems (UNSW-NB15 network data set). In 2015 Military
communications and information systems conference (pp. 1–6). IEEE.

atekin, A., & Knoll, A. (2013). Gradient boosting machines, a tutorial. Frontiers in
Neurorobotics, 7, 21.

gutu, J. O., Piepho, H.-P., & Schulz-Streeck, T. (2011). A comparison of random
forests, boosting and support vector machines for genomic selection. In BMC
proceedings, Vol. 5, no. S3 (p. S11). Springer.

http://refhub.elsevier.com/S2666-8270(22)00053-6/sb1
http://refhub.elsevier.com/S2666-8270(22)00053-6/sb1
http://refhub.elsevier.com/S2666-8270(22)00053-6/sb1
http://refhub.elsevier.com/S2666-8270(22)00053-6/sb1
http://refhub.elsevier.com/S2666-8270(22)00053-6/sb1
http://refhub.elsevier.com/S2666-8270(22)00053-6/sb2
http://refhub.elsevier.com/S2666-8270(22)00053-6/sb2
http://refhub.elsevier.com/S2666-8270(22)00053-6/sb2
http://refhub.elsevier.com/S2666-8270(22)00053-6/sb2
http://refhub.elsevier.com/S2666-8270(22)00053-6/sb2
http://refhub.elsevier.com/S2666-8270(22)00053-6/sb3
http://refhub.elsevier.com/S2666-8270(22)00053-6/sb3
http://refhub.elsevier.com/S2666-8270(22)00053-6/sb3
http://refhub.elsevier.com/S2666-8270(22)00053-6/sb3
http://refhub.elsevier.com/S2666-8270(22)00053-6/sb3
http://arxiv.org/abs/1502.02127
https://www.consultancy.eu/news/4409/cost-of-cybercrime-per-incident-jumps-six-fold-to-50000
https://www.consultancy.eu/news/4409/cost-of-cybercrime-per-incident-jumps-six-fold-to-50000
https://www.consultancy.eu/news/4409/cost-of-cybercrime-per-incident-jumps-six-fold-to-50000
http://refhub.elsevier.com/S2666-8270(22)00053-6/sb6
http://refhub.elsevier.com/S2666-8270(22)00053-6/sb6
http://refhub.elsevier.com/S2666-8270(22)00053-6/sb6
http://refhub.elsevier.com/S2666-8270(22)00053-6/sb7
http://refhub.elsevier.com/S2666-8270(22)00053-6/sb7
http://refhub.elsevier.com/S2666-8270(22)00053-6/sb7
http://refhub.elsevier.com/S2666-8270(22)00053-6/sb7
http://refhub.elsevier.com/S2666-8270(22)00053-6/sb7
http://refhub.elsevier.com/S2666-8270(22)00053-6/sb8
http://refhub.elsevier.com/S2666-8270(22)00053-6/sb8
http://refhub.elsevier.com/S2666-8270(22)00053-6/sb8
http://refhub.elsevier.com/S2666-8270(22)00053-6/sb9
http://refhub.elsevier.com/S2666-8270(22)00053-6/sb9
http://refhub.elsevier.com/S2666-8270(22)00053-6/sb9
http://refhub.elsevier.com/S2666-8270(22)00053-6/sb9
http://refhub.elsevier.com/S2666-8270(22)00053-6/sb9
http://refhub.elsevier.com/S2666-8270(22)00053-6/sb10
http://refhub.elsevier.com/S2666-8270(22)00053-6/sb10
http://refhub.elsevier.com/S2666-8270(22)00053-6/sb10
http://refhub.elsevier.com/S2666-8270(22)00053-6/sb10
http://refhub.elsevier.com/S2666-8270(22)00053-6/sb10
http://refhub.elsevier.com/S2666-8270(22)00053-6/sb11
http://refhub.elsevier.com/S2666-8270(22)00053-6/sb11
http://refhub.elsevier.com/S2666-8270(22)00053-6/sb11
http://refhub.elsevier.com/S2666-8270(22)00053-6/sb12
http://refhub.elsevier.com/S2666-8270(22)00053-6/sb12
http://refhub.elsevier.com/S2666-8270(22)00053-6/sb12
http://refhub.elsevier.com/S2666-8270(22)00053-6/sb12
http://refhub.elsevier.com/S2666-8270(22)00053-6/sb12
http://refhub.elsevier.com/S2666-8270(22)00053-6/sb13
http://refhub.elsevier.com/S2666-8270(22)00053-6/sb13
http://refhub.elsevier.com/S2666-8270(22)00053-6/sb13
http://refhub.elsevier.com/S2666-8270(22)00053-6/sb13
http://refhub.elsevier.com/S2666-8270(22)00053-6/sb13
http://refhub.elsevier.com/S2666-8270(22)00053-6/sb14
http://refhub.elsevier.com/S2666-8270(22)00053-6/sb14
http://refhub.elsevier.com/S2666-8270(22)00053-6/sb14
http://refhub.elsevier.com/S2666-8270(22)00053-6/sb15
http://refhub.elsevier.com/S2666-8270(22)00053-6/sb15
http://refhub.elsevier.com/S2666-8270(22)00053-6/sb15
http://refhub.elsevier.com/S2666-8270(22)00053-6/sb16
http://refhub.elsevier.com/S2666-8270(22)00053-6/sb16
http://refhub.elsevier.com/S2666-8270(22)00053-6/sb16
http://refhub.elsevier.com/S2666-8270(22)00053-6/sb17
http://refhub.elsevier.com/S2666-8270(22)00053-6/sb17
http://refhub.elsevier.com/S2666-8270(22)00053-6/sb17
http://refhub.elsevier.com/S2666-8270(22)00053-6/sb18
http://refhub.elsevier.com/S2666-8270(22)00053-6/sb18
http://refhub.elsevier.com/S2666-8270(22)00053-6/sb18
http://refhub.elsevier.com/S2666-8270(22)00053-6/sb18
http://refhub.elsevier.com/S2666-8270(22)00053-6/sb18
http://refhub.elsevier.com/S2666-8270(22)00053-6/sb18
http://refhub.elsevier.com/S2666-8270(22)00053-6/sb18
http://refhub.elsevier.com/S2666-8270(22)00053-6/sb19
http://refhub.elsevier.com/S2666-8270(22)00053-6/sb19
http://refhub.elsevier.com/S2666-8270(22)00053-6/sb19
http://refhub.elsevier.com/S2666-8270(22)00053-6/sb19
http://refhub.elsevier.com/S2666-8270(22)00053-6/sb19
http://refhub.elsevier.com/S2666-8270(22)00053-6/sb20
http://refhub.elsevier.com/S2666-8270(22)00053-6/sb20
http://refhub.elsevier.com/S2666-8270(22)00053-6/sb20
http://refhub.elsevier.com/S2666-8270(22)00053-6/sb21
http://refhub.elsevier.com/S2666-8270(22)00053-6/sb21
http://refhub.elsevier.com/S2666-8270(22)00053-6/sb21
http://refhub.elsevier.com/S2666-8270(22)00053-6/sb21
http://refhub.elsevier.com/S2666-8270(22)00053-6/sb21

J. Klein, S. Bhulai, M. Hoogendoorn et al. Machine Learning with Applications 9 (2022) 100351

S

S

S

S

S

S

T

X

Y

Y

Y

Pelleg, D., & Moore, A. (2004). Active learning for anomaly and rare-category detection.
Advances in Neural Information Processing Systems, 17, 1073–1080.

ettles, B. (2009). Active learning literature survey: Technical report, University of
Wisconsin-Madison Department of Computer Sciences.

ommer, R., & Paxson, V. (2010). Outside the closed world: On using machine learning
for network intrusion detection. In 2010 IEEE symposium on security and privacy (pp.
305–316). IEEE.

tokes, J. W., Platt, J., Kravis, J., & Shilman, M. (2008). Aladin: Active learning of
anomalies to detect intrusions.

tolfo, S. J., Fan, W., Lee, W., Prodromidis, A., & Chan, P. K. (2000). Cost-based
modeling for fraud and intrusion detection: Results from the JAM project. In
Proceedings DARPA information survivability conference and exposition, Vol. 2 (pp.
130–144). IEEE.

tolfo, S., et al. (1999). KDD cup 1999 dataset. UCI KDD Repository, URL http:
//kdd.ics.uci.edu.

ultana, N., Chilamkurti, N., Peng, W., & Alhadad, R. (2019). Survey on SDN based
network intrusion detection system using machine learning approaches. Peer-To-Peer
Networking and Applications, 12(2), 493–501.
15
Tama, B. A., & Rhee, K. H. (2019). An in-depth experimental study of anomaly
detection using gradient boosted machine. Neural Computing and Applications, 31(4),
955–965.

avallaee, M., Bagheri, E., Lu, W., & Ghorbani, A. A. (2009). A detailed analysis of
the KDD cup 99 data set. In 2009 IEEE symposium on computational intelligence for
security and defense applications (pp. 1–6). IEEE.

in, Y., Kong, L., Liu, Z., Chen, Y., Li, Y., Zhu, H., et al. (2018). Machine learning and
deep learning methods for cybersecurity. IEEE Access, 6, 35365–35381.

ang, K., Ren, J., Zhu, Y., & Zhang, W. (2018). Active learning for wireless IoT intrusion
detection. IEEE Wireless Communications, 25(6), 19–25.

avanoglu, O., & Aydos, M. (2017). A review on cyber security datasets for ma-
chine learning algorithms. In 2017 IEEE international conference on big data (pp.
2186–2193). IEEE.

in, L., Wang, H., & Fan, W. (2018). Active learning based support vector data
description method for robust novelty detection. Knowledge-Based Systems, 153,
40–52.

Zamani, M., & Movahedi, M. (2013). Machine learning techniques for intrusion
detection. arXiv preprint arXiv:1312.2177.

http://refhub.elsevier.com/S2666-8270(22)00053-6/sb22
http://refhub.elsevier.com/S2666-8270(22)00053-6/sb22
http://refhub.elsevier.com/S2666-8270(22)00053-6/sb22
http://refhub.elsevier.com/S2666-8270(22)00053-6/sb23
http://refhub.elsevier.com/S2666-8270(22)00053-6/sb23
http://refhub.elsevier.com/S2666-8270(22)00053-6/sb23
http://refhub.elsevier.com/S2666-8270(22)00053-6/sb24
http://refhub.elsevier.com/S2666-8270(22)00053-6/sb24
http://refhub.elsevier.com/S2666-8270(22)00053-6/sb24
http://refhub.elsevier.com/S2666-8270(22)00053-6/sb24
http://refhub.elsevier.com/S2666-8270(22)00053-6/sb24
http://refhub.elsevier.com/S2666-8270(22)00053-6/sb25
http://refhub.elsevier.com/S2666-8270(22)00053-6/sb25
http://refhub.elsevier.com/S2666-8270(22)00053-6/sb25
http://refhub.elsevier.com/S2666-8270(22)00053-6/sb26
http://refhub.elsevier.com/S2666-8270(22)00053-6/sb26
http://refhub.elsevier.com/S2666-8270(22)00053-6/sb26
http://refhub.elsevier.com/S2666-8270(22)00053-6/sb26
http://refhub.elsevier.com/S2666-8270(22)00053-6/sb26
http://refhub.elsevier.com/S2666-8270(22)00053-6/sb26
http://refhub.elsevier.com/S2666-8270(22)00053-6/sb26
http://kdd.ics.uci.edu
http://kdd.ics.uci.edu
http://kdd.ics.uci.edu
http://refhub.elsevier.com/S2666-8270(22)00053-6/sb28
http://refhub.elsevier.com/S2666-8270(22)00053-6/sb28
http://refhub.elsevier.com/S2666-8270(22)00053-6/sb28
http://refhub.elsevier.com/S2666-8270(22)00053-6/sb28
http://refhub.elsevier.com/S2666-8270(22)00053-6/sb28
http://refhub.elsevier.com/S2666-8270(22)00053-6/sb29
http://refhub.elsevier.com/S2666-8270(22)00053-6/sb29
http://refhub.elsevier.com/S2666-8270(22)00053-6/sb29
http://refhub.elsevier.com/S2666-8270(22)00053-6/sb29
http://refhub.elsevier.com/S2666-8270(22)00053-6/sb29
http://refhub.elsevier.com/S2666-8270(22)00053-6/sb30
http://refhub.elsevier.com/S2666-8270(22)00053-6/sb30
http://refhub.elsevier.com/S2666-8270(22)00053-6/sb30
http://refhub.elsevier.com/S2666-8270(22)00053-6/sb30
http://refhub.elsevier.com/S2666-8270(22)00053-6/sb30
http://refhub.elsevier.com/S2666-8270(22)00053-6/sb31
http://refhub.elsevier.com/S2666-8270(22)00053-6/sb31
http://refhub.elsevier.com/S2666-8270(22)00053-6/sb31
http://refhub.elsevier.com/S2666-8270(22)00053-6/sb32
http://refhub.elsevier.com/S2666-8270(22)00053-6/sb32
http://refhub.elsevier.com/S2666-8270(22)00053-6/sb32
http://refhub.elsevier.com/S2666-8270(22)00053-6/sb33
http://refhub.elsevier.com/S2666-8270(22)00053-6/sb33
http://refhub.elsevier.com/S2666-8270(22)00053-6/sb33
http://refhub.elsevier.com/S2666-8270(22)00053-6/sb33
http://refhub.elsevier.com/S2666-8270(22)00053-6/sb33
http://refhub.elsevier.com/S2666-8270(22)00053-6/sb34
http://refhub.elsevier.com/S2666-8270(22)00053-6/sb34
http://refhub.elsevier.com/S2666-8270(22)00053-6/sb34
http://refhub.elsevier.com/S2666-8270(22)00053-6/sb34
http://refhub.elsevier.com/S2666-8270(22)00053-6/sb34
http://arxiv.org/abs/1312.2177

	Jasmine: A new Active Learning approach to combat cybercrime
	Introduction
	Related work
	Query strategies
	Active Learning in network intrusion detection
	ALADIN

	Preliminaries
	Methods
	Classification and anomaly detection techniques
	Tuning GBM hyperparameters
	Training, evaluating and predicting
	Calculating certainty score and anomaly score
	Constructing query sample Q(t)
	-Dynamic update
	Constructing update parameters
	Defining query fractions

	Final iteration updates
	Tuning jasmine hyperparameters

	Experimental setup
	Data
	NSL-KDD
	NSL-KDD-rand
	UNSW-NB15

	Experiments
	Query functions
	Global parameters
	Hyperparameter tuning GBM
	Jasmine tuning
	Evaluation of AL methods

	Results
	Results on NSL-KDD
	Learning curves
	Statistical tests
	-dynamic updating
	Implication of results on NSL-KDD

	Results on NSL-KDD-rand
	Learning curves
	Statistical tests
	-dynamic updating
	Implication of results on NSL-KDD-rand

	Results on UNSW-NB15
	Learning curves
	Statistical tests
	-dynamic updating
	Implication of results on UNSW-NB15

	Discussion
	Conclusion
	Future work

	CRediT authorship contribution statement
	Declaration of competing interest
	Appendix
	References

